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1. Introduction

Let 3)={z<=C\ \z\ <!} be the unit disc in C and 3$={eit\ -π<t<π} the
boundary of 3). For an integrable function/(In this note a function will always
mean a complex valued function) on 3$ with respect to the normalized measure

— dt on J2, we define the Poisson integral of /by
2π

where

F(z) = -ί Γ f(t)P(z, e»)dt for
2π J-*

P(reίθ, e») = ——-—- for
v ' l-2rcos(θ-t)+r2

and it is called the Poisson kernel of the unit disc 3). F is a C°°-function on 3)
and it is harmonic on 3), that is ΔF=0 for the Laplace-Beltrami operator Δ on
C °°-functions on 3) with respect to the Poincarό metric on 3).

Then the classical Fatou's theorem asserts that for an integrable function
/on.®,

Urn F(reiθ) = f(eiθ)

for almost every point eiθ of 3$ with respect to the measure —dθ.
2π

Now let G be any non-compact connected semi-simple Lie group with finite
center, and let K be a maximal compact subgroup of G. Then the homogeneous
space G/K is a symmetric space of non-compact type. Let g=ϊ-|-p be the

Cartan decomposition of the Lie algebra g of G with respect to the Lie algebra

ϊ of K. Let α be a maximal abelian subspace of \>. Fix an order on α and let
α+ be the positive Weyl chamber of α with respect to this order. Let M be
the centralizer of α in K. Then the homogeneous space K/M is the maximal
boundary of G/K in the sense of Furstenberg [2]. Let μ be the normalized



94 H. URAKAWA

^-invariant measure on K/M and LP(K/M) denote the ZΛspace on K/M with
respect to the measure μ. Let P(gKy kM) be the Poisson kernel on G/KxK/M
geven by Korέnyi [11].

Knapp [7] has proved the following Fatou-type theorem which generalizes
the classical Fatou's theorem: Suppose G/K is a symmetric space of non-

compact type of rank one. Then for J5Γeα+ and/eL^/M), it holds

lim f f(kM)P(k0 exp tX K, kM)dμ(kM) = f(k0M)
' >°° J K/M

for almost every point k0M of K/M with respect to the measure μ.

In the case of an arbitrary symmetric space G/K of non-compact type, for
f^L°°(KIM) and X^a+, Helgason-Koπinyi [5] has proved a theorem of the
same type as above on the boundary behavior of the Poisson integral of/.

In the classical Fatou's theorem, the unit disc 3) is a symmetric bounded

domain of tube type and the boundary <£ is the Bergman-Silov boundary of 3).
The purpose of the present paper is to prove for a symmetric bounded domain

v

3) of tube type and the Bergman-Silov boundary 3$ of j2), the Poisson integral

of a function f^Ll(<3$) converges to/almost everywhere £B.
In general, Kor&nyi [11] has defined the notion of the admissibly and

unrestrictedly convergence. Knapp and Williamson [8] showed that the Poisson
integral of a function / in L°°(K/M) converges to / admissibly and unrestrictedly
almost everywhere. Moreover, in the case of a Siegel domain in the sense of

Pyatetskii-Sapiro [14] which is analytically isomorphic to a symmetric bounded

domain 3), Stein and Weiss [16], [17], [19], have defined the notion of the re-

stricted and admissible convergence. Let B denote the Silov boundary in the
V

sense of Pyatetskii-Sapiro [14] of the Siegel domain. Then they showed that
the Poisson integral of an integrable function f on B converges to / admissibly
and restrictedly almost everywhere on B. The generalized Cayley transform of

Kordnyi-Wolf [12] carries the bounded symmetric domain 3) onto the Siegel

domain and its inverse image of the Silov boundary B of the Siegel domain is

open and dense in the Bergman-Silov boundary J3 of the bounded domain.
The inverse Cayley transform carries the L^-space LP(B) of B into the ZΛspace
Lp(<3ί) on .$, but not onto, unless p=oo. Therefore Fatou's theorem for
symmetric bounded domains and that for Siegel domains are not equivalent.

In §2, for a symmetic bounded domain 3) we define the notion of the radial

convergence of Poisson integrals of functions on the Bergman-Silov boundary of
3) and formulate a Fatou-type theorem. In §3, we give an explicit formula and
an estimate of the Poisson kernel of 3). In §4, for a symmetric bounded domain
of tube type, we define a maximal function and establish an estimate of Poisson
integrals by means of this maximal function. In § 5, we prove a covering theorem
of Vitali-type and a maximal theorem of Knapp-type and give the proof of Fatou's
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theorem for a symmetric domain of tube type. In § 6, we prove inequalities of
Hardy-Littlewood, making use of the maximal theorem.

2. Statement of Fatou's theorem

Let G be a connected semi-simple Lie group with finite center, K a maximal
compact subgroup of G. We assume that the quotient space G/K is an
irreducible hermitian symmetric space. Let g and ϊ be the Lie algebras of G

and K, respectively, and let g—ϊ+p be the Cartan decomposition of g with
respect to ϊ. Then K has the same rank as G. Let t be a Cartan subalgebra
of ϊ. Then t is also a Cartan subalgebra of g. Let gc, ϊc, pc and tc be the
complexifications of g, ϊ, p and t, respectively. Then the set R of roots of gc

with respect to tc can be decomposed into two disjoint sets C={a^R; E#^lc}

and P= {αe/?; E^$c}, where {E#} is a set of root vectors. A root of C or P

is called compact or non-compact. Let p* be the subspace of pc corresponding
to (J^-eigenspace of the complex structure tensor on the tangent space of G/K

at the origin eK. We choose and fix an order £- on roots in R such that p+, p~

are spanned by the £Ό/s, E_#s, respectively, where a runs through positive non-
compact roots. Let Δ be the maximal set of strongly orthogonal non-compact

positive roots of Harish-Chandra [4]. We choose root vectors {EΛ} in such a
way that rEa=—E_a for the conjugation r of gc with respect to the compact
real from g^ϊ+φ of gc. For a€ΞRy let HΛ' be the unique element of it
satisfying a(H) = (Ha',Hy for all ίfet, where < , > denotes the Killing

form of QC. For αeΔ, we put X} = EΛ+E_Λ9 ΎΌ

Λ = (-ί)(E*-E_Λ) and
2

HΛ= —Ha. Let gΛ denote the subalgebra of g spanned by
<#</> HΛ >

{iHΛ, XI, y°}. Strong orthogonality of Δ implies [gΛ, gβ]= {0} for αφ/3. Let
t~ be the subalgebra of tΛ spanned by {iHΛ\ αeΔ} and let t+ be the orthogonal
complement of t" in t with respect to the Killing form <, >. The vectors
X°, α^Δ, span a maximal abelian subalgbra α of p and ^=t++α is a Cartan
subalgebra of g. Let ϊjc be the complexification of ϊj. A and H~ denote
analytic subgroups of G generated by α and t~, respectively.

Following Moore [13], we consider the Cayley transform c of gc defined by

c=Ad(txp(7r- Σ (_i)yΛ\ Then c transforms
\ \ 4 *^Δ //

XI K* -HΛ, HΛ H> XI and Y° H» YΛ° (αe=Δ)

and c leaves t+ pointwise fixed. Hence I maps it" onto α and tc onto ί)c, so
that it maps R onto the set Σ of roots of gc with repsect to ^c. Let σ be the

conjugation of gc with repsect to g. σ permutes roots of Σ by

σ(a)(H) = a(σ(H)) for αeΣ,
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We choose a following linear order < on Σ and fix it once and for all: (i) If
#eΣ, α>0 and a does not vanish on α, then σ(α)>0. (ii) If γeΔ, then
£(γ)>0. Then Σ can be decomposed into three disjoint sets; Σ+— {α^Σ;

α>0, σ(tf)>0}, Σ-=-Σ+ and Σ0-{αeΣ; α=-σ(α)}, ΣC£Λ and ΣC&
Λe2+ «eS-

are both invariant under σ, where {E#} is a set of root vectors of gc with respect
to ήc. We put n= Σ CJBΛΓ\a andπ = Σ CE^ίΊα, which are real forms of

*eS+ *E2-

Σ {?£* and Σ CjB^ respectively. Then rt and rϊ are nilpotent subalgebras of
*es+ *e2-

g. We obtain the Iwasawa decompositions g^ϊ + α + n and G=KAN, where A
and N are analytic subgroups of G generated by α, n. So any g^G can
uniquely decomposed as g = k(g) expH(g)n(g), where k(g)^K, H(g)^a and

The restriction to α of a root of Σ — Σ0 is called a restricted root and the
order > on Σ induces a linear order > on the set of restricted roots. Let F be
the fundamental system of restricted roots with respect to the order >. Let

^°=Σ XL and we put E={a<=F; α(^°)=0} and a(E)={Hea; a(H) = 0 for
ΛGΔ

all a^E}. Then a(E) is spanned by JC°, and g is the direct sum of eigen-spaces
for ad XQ on g. The sum of the positive (negative) eigen-spaces of g is denoted
by u(E)(ri(E)). Let b(E') be the sum of non-negative eigen-spaces, I the cen-
tralizer of X° in f, let 2pE be the sum of restriected roots a with α(^Γ°)>0,
with multiplicties counted.

The analytic subgroups of G generated by π(£"), τi(E) will be denoted
by N(E), N(E). Let L be the centralizer of X* in K and B(E) the normalizer
of n(E) in G. Then I, b(E) are Lie algebras of L, B(E) and we have the decom-
positions B(E}—LAN and b(JE)=I+α+π. From the Iwasawa decomposition
G=KAN, K\L is naturally identified with G\B(Έ) as J£-spaces. Let Φ be the
holomorphic imbedding of Harish-Chandra [4] of G/K into p~ as a bounded
domain in the complex vector space p~ and let <D=Φ(G/K). Then the
imbedding Φ is equivariant with respect to the natural action of K on G/K and

the adjoint action of K on JΓ. Let <B be the Bergman-Silov boundary of the
bounded domain S) in JΓ. Then it is known (Korέnyi-Wolf [12]) that
Σ E-<*^ $> K acts transitively on j2 by the adjoint action and L becomes the
ΛCΔ

isotropy subgroup of K at Σ ^-* Thus the Bergman-Silov boundary <B is
«ΘΔ

isomorphic to K/L.
Let μE be the normalized ^-invariant measure on K/L and LP(K/L) denote

the ZAspace on K/L with respect to the measure μE. Then the Poisson kernel
on G/KxK/L is defined by

Ps(gK, kL) = t-*'*11"-1*" for
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where ex$H(g~lk) is the ^4-component of g~lk, in the Iwasawa decomposition.
We define the Poisson integral of a function f'^L^K/L) by

( f(kL)PE(gK,kL)dμE(kL) for
J K/L

The hermitian symmetric space G/K of non-compact type is called of tube
type if (ϊ, I) is a symmetric pair, then t" is a Cartan subalgebra of (I, I) and

eigenvalues of ad(—Xλ are 0, ±1 (Korέnyi-Wolf [12]).

Now we can state our main theorem:

Theorem 1. Let G/K be an irreducible hermitian symmetric space of tube
type. Let at=exp tXQ for a real number t. If f^L^K/L), then

lim f(kL)PE(kQatK, kL)dμE(kL) =
*•>«» JK/L

for almost every point kJL of K/L with respect to μE.

We assumed the irreducibility of G/K for the simplicity, but the gener-
alization of Theorem 1 of general spaces of tube type is immediate.

3. Estimate of Poisson kernel

In this section we assume G/K is an irreducible hermitian symmetric space,
not necessarily of tube type.

Proposition 1. Let a = exp Σ taX*<=A, h = exp Σ 0*— ̂ H'. Then
Ί ΛGΔ α^Δ 2

we have

PE(aK, hL) = Π ^(tanh ίβ, e' Y***'*
αεΛ

where P(t, u) is a function on the product of the open interval (— 1, 1) and the circle
$={u£ΞC; \u\=l} defined by P(r, u)=(\-rz)\ \-rU\ ~2. (We note that P(r, u)
coincides on (—1, 1) with the Poisson kernel of the unit disc in C.)

Proof. To calculate e-2^^*"1*^ we consider the Iwasawa decomposition
of the element a~lh of G. We have Y°-}-iHΛ^n for α^Δ because we have
Yl+iHa=ϊ(Yl-iX%=c{(-i}(Ea-E-a)-i(Ea+E-a}} = c(-2iEa)&Ce^ and
from the condition (ii) of the ordering > on Σ, we obtain Y^

=tt. Since [gα, flβ]={0} for αΦβ, a, /3eΔ, it follows that

fl-Ά = Π exp(-ί X.)
ΛeΔ

If we have the Iwasawa decompostion
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exp (-tΛ XI) exp - * = exp a exp b*X° exp (

of each factor, we have

β-'λ = exp ( Σ a^A exp (Σ baX°a) exp ( Σ ca( Y°Λ+iHa))
\«eΔ 2 / Λ^Δ ΛeΛ

and thus H(a.-lK)=^ baX%. Now let

, = ,
1 O/ \0 -I/

Then the Lie algebra βϋ(l, 1) of SU(1, 1) is spanned by X", iH and Y°+iH

and the homomorphism φa: 8ύ(l, 1) -*• gβ defined by

JΓβι-»^, M^iHl, Y°+iH ̂  Y°a+iHa

can be extended to the homomorphism φa: SU(ί, 1)-»G. In SU(l, 1) we
have the decomposition

exp (-**0) exp (0— ) = exp fa^\escpbXβex.pc(Y0+iH)

with b =— Iog(ch2ί-2chί shί cos^+sh2ί)= — - logP(tanh t, eίβ). Applying the

homorphism φa on the both sides, we have

ba = ~ log /Xtanh tM e"*) .

This implies the Proposition. Q.E.D.

Now we define for 0<p<l,

< 9 < , e / ί - ; \θa\<πp, for any
Λ<ΞΔ

33P =

and for p>l,

93P - {lhL<=K/L-,

In §4, we shall calculate the measure of 93P with respect to μE for a space
of tube type. We give an estimate of Poisson kernel on 35P in the following.

Proposition 2. Let a—exp^taX%^A. Then we obtain an estimate of
«eΔ

Poisson kernel as follows:



RADIAL CONVERGENCE OF POISSON INTEGRALS 99

(i) IfO<p<l and— <tanh ίΛ<l/or any αeΔ, then

v t rsup PE(aK, x- p2

I

(ii) sup P^αtf, hL) < C3 Π-

Ί, C2 are constants independent on a and p.
/w particular, if at=exp tX°, then

(i) If 0<ρ<l αwrf — <tanh

sup P^α^^Xc (1)
esβj-jβp \ p2 /

/ 1 VP^C-^0)

(ii) supPgK^^)<C3 / (2)

(We note that 33j is equal to .K/L if G/K is of tube type).

Proof. We have (Kordnyi [10]) an estimate of the Poisson kernel for the
unit disc in C as follows:

(i) sup (l-r^ll-ra-"!-'^— if — <r<l .
*p<ι0ι<« 2 2

(ii) sup (l-r2)|l-r*-''*|-2<C£-— if 0<r<l .
0<|0|<Λ 1 - f

where C{, C^, are constants. This together with Proposition 1 implies the
first statement. If αί=exp tXQ, then we have PE(atK, lhL)=PE(atK, hL) for
h^H~ and /eL since L centralizes X° in K. This together with the first
statement implies the second statement. Q.E.D.

4. Maximal function

Henceforth we shall assume that G/K is an irreducible hermitian symme-
tric space of tube type. We consider the Poisson integral

f f(kL)PE(atK, kL)dμε(kL)
J KlL,

for fl,=exp tX° and an integrable function/ on K/L with respect to μE.
Since K/L is a symmetric space, we may use the following integral formula

for K/L (Harish-Chandra [4]): For each continuous function / on K/L, we

have
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f(kL)dμE(kL) = c ( f(lhL)dΐ)\D(h)\dh
L Js- JL/ZL^-)

where c is a constant independent on/, ZL(t~) is the centralizer of t~ in L, dh is

a Haar measure on H~ and dϊ is a quotient measure on L/ZL(t~) induced from
the normalized Haar measure dl on L. Moreover

£>(/*) = Πftsin/3(/#) for h = exp H,H <=f

where P£ = {# e C positive and α 1 1 - φ 0} .
Making use of this integral formula, we have the measure ||33P|| of 95 p with

respect to μE as follows:

I I»P! I = f X*p(kL)dμE(kL) = c( ( ( X*p(lhL)dϊ) I D(h) I dh
JK/L p Js~ JL/Z^-) μ

where %93P is the characteristic function of 93P. The density D(h) of the integral
is given as follows: Let A=^{γ^ •••, γw}, 7χ-372-3 %Ύm> where m=rank of
G/K. For a^R, let π(ά) be the restriction of a to the complexification (t~)c

of t~, but τr(7, ) will be denoted by γ, for the brevity, since any root /3Φ7, does
not coincide with τr(γt ) on (t~)c. Since G/K is of tube type, we have (Harish-
Chandra [4], Korέnyi-Wolf [12]) for a positive compact root /?,

0 or

x / \

and for a positive non-compact root /3,

Ύi or

1 ,

Moreover the number r{j (ί<j) of elements of |/3ePί π(β)= — (Ύj—Ύi) \ is

the same as the number of positive non-compact roots /3 such that

ττ(/3) =— (jj+7i). It follows that

Now we obtain the following

Lemma 1. For 0<p<l, we have an estimate of the measure o/33p:
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(4)

where C is a constant independent on p. For p>l, we have ||95P|| = 1 (from the
definition of 23P).

Proof. From the above argument,

Π |sin^1.-«9,)Γ'̂ 1...^M
-ΊCP

— itp J -lip

because |sin— (0,— 0y)| <— |0,-0y| <πp.
L* £*

On the other hand, X°=Σ X%k and
*=1

Hence pβ(^°)-=m+ Σ ^, , then the result follows. Q.E.D.
*

DEFINITION. For an integrable function / on K/L, we define a maximal
function /* on

/*(*„£) = \mkL)\dμE(kL) for

The function /* on K/L is measurable because the supremum over rational
p (0<p<l) gives the same answer.

Proposition 3. For an integrable function f on K\Ly we have an estimate
of Poisson integral by means of the above maximal function :

sup ί \f(kL)\PE(k0atK,kL)dμE{kL)^C'f*(k<>L)
i<tanh/<l JK/L

for all k0^K, where at=exp tX° and Cr is a constant not depending on f and k0L.

Proof. We fix first an arbitrary constant α>0 put δ— (1— tanh t)a for

— <tanhί<l. We may suppose k0=e in view of the ^-invariance of the
Δι

measure μE, replacing / by the function /*o defined byfko(kL)=f(kQkL). Then

for — <tanh ί<l, we have
Ll
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\f(kL)\PE(atK, kL)dμE(kL) = βι \f(kL)\PE(atK, kL)dμE(kL)

\f(kL)\PE(atK, kL)dμE(kL)+± \ \f(kL)\PE(atK, kL)dμE(kL).
y=o Js2/ + is-9V's

( 5 )

Here we note that the summation of the second term in (5) is in fact finite sum
because %>2J8=K/L for 2'δ^l.

The right hand side of (5) can be estimated as follows:

the first term< \f(kL)\dμE(kL) (by (2))

<
( 1 }PE<iJL0)

C2 -
 J: - \\®*\\f*(eL) (by the definition of/*)

11 — tanhί)

the second term<Σ c
(Z 'δ)2

" +1

( 6 )

\f(kL)\dμs(kL) (by (1))

(bythe definition-|

*(eL) (by (4))

where the sum Σ converges to

Hence putting together (6) and (7) into (5), we obtain the inequality:

sup ( \f(kL)\PE(atK,kL)dμE(kL)
l/2<tanh*<l JK/L

Q.E.D.

5. Covering theorem and proof of Fatou's theorem

In this section we shall prove a covering theorem of Vitali type with respect
to the family of sets of the form $8P, 0<p<l, k^K and prove a maximal
theorem related to the maximal function /* on K/L.

Let q be the orthogonal complement of I in ϊ with respect to < , >. Then
q=Ad(L)t~ since K/L is a symmetric space. We define a map ψ: q->p by
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ψ(X)=—[X°, X] for X<=q and putting p*=ι/r(q), define a map j: $*-*ri(E) by
Ll

j(X) = X——[X\ X] for X <Ξp*. Then both ψ and j are L-equivariant iso-

morphisms (Takeuchi [18]). We have ψ(iHΛ)=Y°Λ and j(YΌ

Λ)=YΌ

Λ-iHΛ for
any #eΔ so that/t/r(t~) is the subspace of ri(E) spanned by {Y^—iHΛ;
Thus we have the following

Lemma 2. Ad(L){Y°Λ-iHΛ: a<=ΞΔ}R=rϊ(E)

where {Y^—iHΛ: α<ΞΔ}Λ is the subspace ofn(E) spanned by {Y°Λ—iHa:

Now we define an L-invariant norm || || on n(E) as follows. We define

a ίΓ-invariant inner product on g by

(X,Y)=-<X,rYy for X, ΓeΞg.

For Z^n(E), let \Z\ denote the operator norm of ad(j 1Z) with respect of ( , )

and let \\ί

satisfying

and let ||Z||=— |Z|. Then (Takeuchi [18]) || || is a L-invariant norm on n(E)

Λ | for Z =
ΛGΔ

For each δ>0, let

B8 = {k(n)LζΞK/L; n = exp Z, Z<EΞ#δ}

where k(n) is the ^-component of n in the Iwasawa decomposition.

Lemma 3. For 0<ρ<l, we have

33P= ik(n)L^K/L ή=exp Ad(l)(Σ aa( Y°-iHa)), /e=L, max | aΛ \ <ltan((τr/2)p]
I ΛCΔ ΛGΔ 2 )

and therefore

Proof. Recall the definition of 35P for 0<p<l:

*eΔ 2

As in the proof of Proposition 1, we have

for
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Since lnl-lB(E)=lk(ή)B(E) for /e=L, n^N(E) and GIB(E)^gB(E)^k(g)L
^K/L is a bijection, we have k(lήl~1)L=lk(n)L. Then the statement follows.

Q.E.D.

The purpose of this section is to prove the following covering theorem;

Theorem 2. There is some constant C">0 with the following property.
If U is any Borel set in K/L, and if to each point kL in U there is associated a set
J£8P (with 0<p<l depending on k^K)} then there is a countable disjoint subfamily
of {$8p}, say k^j, such that

In view of Lemma 3, we may prove the following theorem in place of Theorem 2.

Theorem 2'. There is some constant C">0 with the following property.
If U is any Borel set in K\Ly and if to each point kL in U there is associated a set
kB8 (with δ>0 depending on k^.K), then there is a countable disjoint subfamily of
{kB8}t say k j ϊ ϊ j , such that

The proof will proceed in the same way as Knapp's proof [7] of the covering
theorem on Furstenberg's boundary K/M of a symmetric space of rank one.

Any n^N(E) can be written uniquely in the form w— expZ, Z^ϊi(E).
We write as Z=logn. Then we define

We have | nexp 'cλ 0/2) | = e'*- ° | n | for wexp *<x°w= (exp t —}n exp ( - 1 —} since

ή(E) is (— l)-eigensρace of ad — X°.

Lemma 4. There exists a constant C3 such that

Proof. The proof is quite same as that of Lemma 2.3 in Kordnyi [11].
Let Vt={n<=N(E)', \n\ ^e*} for t<=R. The sets Vt are compact and con-
verge to N(E) as Z^oo. Then there exists r>0 such that VQ VQc_Vr. We
put C3 = er. By the above remark Vt — V^~^ ^ 0/2)}. For n,n'&N(E) we
write \ n \ = e f , \ n' \ =e*' , and let r = Max {/, t'} . Then n W <Ξ Vt, Vt'd VV=
(Vo V0)

ext*- °/2)c:Vτ+r and so \ήn'\ ^eτ+r^er(\n\ + \ n f \ ) . Q.E.D.
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Lemma 5. By N(E)-hull of exp (B8), we mean the union of all N(E)-

translates of exp (.Bδ) which have non-empty intersection with exp (J3δ). Then
there is a constant C4 such that for each δ>0,

ΛΓ(£)-hull of exp (5δ)cexp (ĵ ,) .

Proof. Let n exp (Bδ) Π exp (£δ)Φφ for ή^N(E) and n n^n2 for n19 n2^

exp(£δ). Then \n\ = \n2n^\ ^CβdSJ + |n2 |)<2C3δ by Lemma 4. Hence
for each n3eexρ (5δ), we have

\nn3\ <C,(|n| + |δ,|)<Q2C^+δ) - (2C3

2+C3)δ .

Therefore C.= 2C§+C3 is a desired constant. Q.E.D.

The mapping γ of G onto jfiΓ/L which sends g into £(#)£ is an injective
real analytic mapping of N(E) onto a dense open subset of K/L. By the conti-
nuity of the action of K on K/L, there exist open subsets UdK, VdK/L with

e£ΞU, eL^V such that UVc:<γ(N(E))c:K/L. We put ' Fr=γ-1(lP') c //(£).
The function γ"1 is defined at each point of V since V= eVdrγ(N(E)). For

and n^N(E), we put

if the right hand side is defined. If k^U and n^V, then A γ(n)et/F and
Λ n=γ"1(Λ γ(w)) is defined. We put ή(k)=fγ~"l(kL) for k^U. We consider
the mapping Ux V^N(E) defined by

(k,n)^n(k)-l(k n) for k<=U,n<=V. (11)

Then we obtain the following Lemma, which, together with Lemma 5, is
essential for proof of the covering theorem.

Lemma 6. There exist a neighborhood W^ of e in N(E), a neighborhood
W2 of e in K and a constant C5>0 such that if k^W2 and exp (βδ)c W^ then

Proof. Let v be the dimension of K and d the dimension of N(E). We

fix any basis {Xj} of π(£) and define coordinates of N(E) by

exp

Restrict the coordinates to the open set VaN(E) and choose an open

coordinate neighborhood U^U of e in K with local coordinates (k19 •• ,^v),

(kι(e)> '"> ^v(^))=(0> " jO) We will describe the mapping (11) by these coordi-
nates xiykj. We choose neighborhoods W19 W2 such that PFjCFfl exp(5j),
W2dU19 W2 has compact closure and these power series of coordinates of
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n(k)~\k n) converge in an open neighborhood of the closure of W^X W2. We

can rearrange the terms of these power series to write the /-th coordinate of

n(k)-\k n) as

where #/(&), aH(k) and atij(n^ k) are real analytic functions of n^ W1 and Ae W2.

The terms #/(£) vanish on W2(^K since n(k)~1(e k) = e. There exist

C6, C7>0 such that for each /, i, j, |(fl/, y(ft, k)\ <C6 on the compact closure of

W,x W2 and max|^| <C7||^|| for X=^ XfX^^E).
!<!<</ 1=1

<C6C7||log n\\ on the closure of PΪ^X W2. Hence we obtain

n(k)~l(k n) = exp (Σ an(k)xt+Z)

where ||Z||<CβC?||log w||2 for n^W, and
For fixed kξΞW2J the matrix (a;i(^)) is the Jacobian matrix of the trans-

formation

n^n(k)-\k n) for ϊi<=N(E) . (12)

Since k^W^U^U and (C7)(^L)cγ(N(£)), we can write n(k)=j-^(kL)=kb

by uniquely determined b^B(E) because the restriction of γ to -ZV(£") is an

injection.
Then the mapping (12) is the same as the mapping

n^b-i-n for n<=N(E) (13)

In fact, γ-1 is defined on knB(E) for k<= W2 and n<= Wl and we have b~lnB(E)

The differential of the mapping (13) at e^N(E) is given by

X *-» P^EΛd(b-l)X for χ(Ξ n(E)

where PHC«) ig tne projection of g onto n(£") along the decomposition
g=π(£')+ί>(£1), since the mapping (13) is the composite of the conjugation of
Zr1, the quotient map G^>G/B(E) and the map γ'1.

Now we consider the operator P^E^Ad(b~l). The restriction of P^E^Ad(b-1)

to n(ί') is a bounded operator on n(£) with respect to the norm || ||. Let

\\P^E^d(b-l)\^E^\\ be the operator norm of P^EyAd(b'1) on π(£). Then
since the closure W2 of W2 is compact, C8= su£ \\P^E^Ad(b~l) |nC£)|| is finite

and we have HPπc^^^"1)^!! <C.||-Y|| for all XtΞV((E) and k<=Ξ W2.
Consequently we have for n^Wl and
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\\log (n(k)-\k n))\\ = \\an(k)Xi+Z\\^(C6C
2

Ί+C8)\\logn\\ .

Therefore we conclude

n(k)-\k exp (£δ))c£C5δ, C5 = C6C7

2+C8

for exp (jB8)c Wl and k<= W2. _ Q.E.D.
By K-hull of B8, we mean the union of all ίC-translates of B8 which have

non-empty intersection with B8.

Proposition 4 . s u p ^ - f B8)<oo
o<δ<

Proof. Let Wλ and W2 be neighborhoods as in Lemma 6. Let
k exp (fiβ) Π exp (B8) Φ φ and exp (B8) c W^. Then n(k) exp (£Csδ) Π exp (BC58) c
n(k)\n(k)-\k exp (£δ))] Π exp (B8)=k exp (£δ) Π exp (5δ) Φ φ. Lemma 5 shows

that Λ.expCBaϊ^SWpf^-XA expί^lcϊfί*) exp (^c5δ)ciexp (£C4c5δ) Hence
we have kB8(^BCg8 with C9-=C4C5.

There exists a number δ0>0 such that exp(βδ) is included in W^ for any

δ<δ0. We may prove that

g _ f B8)

s<s0 μE(B8)

since μE(K/L)= I .
Now we assume that (14) is false. Then there exist a sequence 0<δw<δ0

and kn^K such that knBSnΓ\B8n=^φ and knB8n(tBCgSn since there exists a con-

stant C10 such that - . ~ ^ <C10 for each δ<δ0. Moreover we may assume

as w-»oo since μE(K/L)=l. Let σ be the quotient mapping of K onto
Since kB8—klBδ for /eL and k^K, it follows from the first argument

that if kζΞσ-l(σ(W2)\ δ<δ0 and &BδΠ £δφφ, then kB8c:BCg8. Therefore σ(βn)
is not in the neighborhood σ(W2) of ^L. We may suppose kn converges to some

point kQ^K with σ(k0)^eL since K is compact. If pn^knB8nΓ\ B8n9 pn con-
verges to eL since βδw shrinks to eL as w->oo. But pn=knqn with qn^B8n,
qn-*eL as w^ oo. Therefore we obtain eL=k0eL or σ(kQ)=eL, a contradiction.

Q.E.D.

Proof of Theorem 2X. We put

// = sup /^g of Bet)

Then Proposition 4 implies that 1<C/X< oo. Let T^sup {tk\ kBe*k is associated
to kL^U}. If ^=-(-00^ then we can find a set k Be*k with measure as close to
1 as we like, and the conclusion of the theorem follows since l<Cx/<oo. We
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assume from now on that 7\<°o. We construct Rny Tn and knBe*n in the

following process: Let R1 be the family {kBe*k} of all associated sets. Taking

a set kλBet^Rl with 7\— K^T^, wQputR^ikB^k^R^kB^kΓi^B^^φ}.
If R2=φy then our process is over. If R2ήpφy then we put T"2=sup {tk\ kBe*k&

R2}. Taking a set k2Be<2<^R2 with Γ2-l<ί2<Γ2, we put R3={kBetk<=R2;

kBe'kΓ(k2Be'2=φ} and our process is continued inductively.
If Vn is the union of the members of Rn—Rn+l and F0 is the union of the

members of Rly then V0=[jVn. Since C/cF0, we obtain μ/Λ £/)<]>] μE(Vn)
»=*! n=ι

The proof will be complete if we show that μE(Vn)^C"μE(knBβ

t«). Let
kBetk<=Rn-Rn+Γ_ Then Γn>^and kBe'kΓ(knB^nφφ. Thus kB/nf\knBeτn

Φφ, k^lkBeVnΠBeTn^φ9 k-lkBeΓndK-hull of β/« and kBe<kc:kn (K-hull of
J5/«). Hence FwcAr t (ίC-hull of J5/A). From the definition of C" an_d the

inequality Tn— 1 <ίrt, we obtain A6^(FM)<A6J5(Art(X"-hull of β^^J^CV^ί-β/"-1)

^^^^C^^β )̂. Q.E.D.

REMARK. From the definition of the maximal function /* for an integrable
function / on K/L and Lemma 3, we have

/*(ftβL) = sup — * - ( _ I f(k0kL) I dμE(kL) for
0<δ<°° B J*δ

Theorem 3. (Maximal theorem)
For an integrable function f on K/L and any real number ξ>0, we obtain

the following inequalities:

(i) μE{kL^KIL f*(kL}>ξ}<^-^\f(kL)\dμE(kL) (15)

(ii) μB{kL^K/L;f*(kL)>ξ}< \f(kL)\dμE(kL) (16)
ς J|/C*£)l>iξ

C7/ is- the same constant as in Theorem Ί! .

Proof. Let U= {kLzΞK/L J*(kL)>ξ}. From the above Remark, for
each k0L^U there exists BSQ such that

_
koB80

Theorem 2' says that there exists a disjoint subfamily {kjB8j} of {k0Bδo;
k0L(=U} such that C " Σ μE(kjBSj) > ̂ £( C7). Therefore
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and the inequality (i) follows. For the proof of (ii), we define an integrable
function h on K/L by

f(kL) if
.h(kL) =

0 otherwise.

Then A*(A:L)+— ξ ̂  f*(kL). Hence by (i)

μE(U)<μE{kL A*(*L)>_b}< 2£1' { \h(kL)\dμE(kL)
i 2 J ξ JK/L

\\ f(kL) I dμE(kL) . Q.E.D.
£ J

Proof of Theorem 1. For any SjX), we can write as /— /i+/2 where /x

is continuous and f2^U(KIL) with L^norm H/all^S2. Let An A2 and h be the
Poisson integrals of /„ /2 and /, respectively. Since /i is continuous, we can
choose (Kordnyi-Helgason [5]) Γ>0 large enough such that t>T implies

\hl(katK)-f1(kL)\<£ for all k<=K

where at = exptX°. If Ul=^

\f2(kL)\^8}, then μE(U^<8 since ^£;(ί71)<||/2||1<^2. Therefore except in

the set U1 of measure <£ ,

|<2£ for t>T.

ί £ ΊLet U2 = {kL^KIL;f$(kL)>—\ where Cr is a constant in Proposition 3.

Then we have by Theorem 3 (i)

I f2(kL) Irf^(AL) <^ £2 = C'C"£ .
£

Hence we have by Proposition 3

\h2(katK)\<ε for all t>tanh-^—

except in the set U2 of measure <C'C"£. Therefore, except in the set L^U U2

of measure (C'C

\h(katK)-f(kL)\<38 for ί>max(r,

Replacing 6 by 2~*£ and taking U{™ and ί7^w) in place of Ul and ?72, let U be

the union of all C/Γ U C/Γ, n=l, 2, - . Then we have
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lίmh(katK)=f(kL)

except in the set U of measure <2(C"C"4-1)£. Since 8 is arbitrary,

limh(katK)=f(kL)

almost everywhere on K/L with respect to μE. Q.E.D.

6. Inequalities of Hardy-Littlewood

In this section, we shall prove inequlities of Hardy-Littlewood in the same
way as Rauch's proof [15] of the inequalities for hermitian hyperbolic spaces.
We assume again that G/K is an irreducible hermitian symmetric space of tube
type. For a function / on K/L, we define a real valued non-negative function
log+ |/| on K/L by

(log+|/|)(*L) = \ lθgl/(*L)l ίf I/(*L)I >l

[ 0 otherwise.

For a measurable function φ on K/L, we define a decreasing function μφ on
Λ+=[0, oo)by

μφ(ξ) = μE{kL<ΞK/L; \φ(kL)\>ξ} for

Then for any non-negative increasing function ϊ on R+ we obtain

S(\φ(kL)\ )dμE(kL}= -Γ S(ξ)dμφ(ξ) (17)
L Jo

where the right hand side means the Lebesgue-Stieltjes integral with respect to
μφ.

Proposition 5. There exist positive constants Cu, a and β such that

(i) if /»!, ( \f*(lιL)\^dμB(kL)<,C^\\f\\l for all f^L\K\L) (ii) if p=l,
J K/L

\ I f*(kL) I dμε(kL)^a { I / (kL) \ log+( | J(kL) \ )dμε+β for all functions f
JK/L JK/L

such thatflog+f<ΞL\K/L).

Proof. Since we have from Theorem 3 (ii) and (17)

7/^/' r 9/r>f// Γ°°
/*Xf)<^- \dμs\(kL)= -^-\ xdμ/x) for ξ>0,

ξ J|/«£)I>J{ ξ Jίl

we have

~ xdμf(X) = -2C" \~xdμf(X)
i Jo
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Let/>>l. Then

J"μχf)e*-^= -|ί±(2C") Γx*dμf(x)
Jo p — 1 Jo

= ̂ 1(2C") ί I ί(kL) I >dμB(kL)<»o .
p — 1 JK/L

Hence we obtain

52ξ
μf*(x)xp~1dx = 0.£ i-j v /

Since μ,7* is a decreasing function on R+, we have

λ = μ/*(2ξ) ^Xp~*dx^ μf*(x)xp-ldx .
p

Therefore \ιmμf*(2ξ)ξp=Q, and making use of integration by parts of Lebesgue-
£->°°

Stieltjes integral, we obtain

f*(kL)>dμE(kL) =
K/L

2>->(2C'0
P — 1

If p=l, then we have

< 2C" (
J K/

+2C"log2\ \f(kL)\dμE(kL).
J K./ L

Since |/ |<l+|/ | log + | / | ,wehave

5^/£ I f(kL) I dμE(kL)<μE(KIL)+ Ji/£ I /(*L) I log+ ( | f(kL) \ )dμB(kL)

and

Jo

Since

( \f*(kL)\dμE(kL) = -
JK/L

= I μf*(x)dx-{-\ μ^(x)dx,
Jo Ji
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the second inequality follows. Q.E.D.

DEFINITION. For an integrable function /on K/L, we define a function/*

on K/L by

f*(k0L)^= sup ( \f(kL)\PE(k0atK,kL)dμE(kL) for k0L^K/L
i<tanh*<l JK/L

where at=exp tX°. Since L centralizes X°, /# is a well defined function on

K/L. Since the supremum over rational t gives the same answer, /# is a

measurable function on K/L.

Theorem 4. (Inequalities of Hardy-Littlewood) There exist constants

C13, a! and β' such that

(i) if

(ii) iίp=\,\ \U(kL)\dμE(kL)^a'\ \f(kL)\\og+(\f(kL)\)dμeίkL)+β'
JK/L JK/L

for all f such that/log* \f\ ^L^K/L).

Proof. These are immediate consequences of Propositions 3 and 5.

Q.E.D.
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