Urakawa, H. Osaka J. Math. 10 (1973), 93-113

RADIAL CONVERGENCE OF POISSON INTEGRALS ON SYMMETRIC BOUNDED DOMAINS OF TUBE TYPE

HAJIME URAKAWA

(Received March 10, 1972)

1. Introduction

Let $\mathcal{D} = \{z \in C; |z| < 1\}$ be the unit disc in C and $\mathcal{B} = \{e^{it}; -\pi \le t \le \pi\}$ the boundary of \mathcal{D} . For an integrable function f (In this note a function will always mean a complex valued function) on \mathcal{B} with respect to the normalized measure $\frac{1}{2\pi}dt$ on \mathcal{B} , we define the Poisson integral of f by

$$F(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) P(z, e^{it}) dt \quad \text{for} \quad z \in \mathcal{D}$$

where

$$P(re^{i\theta}, e^{it}) = \frac{1-r^2}{1-2r\cos(\theta-t)+r^2}$$
 for $0 \le r < 1$

and it is called the Poisson kernel of the unit disc \mathcal{D} . F is a C^{∞} -function on \mathcal{D} and it is harmonic on \mathcal{D} , that is $\Delta F=0$ for the Laplace-Beltrami operator Δ on C^{∞} -functions on \mathcal{D} with respect to the Poincaré metric on \mathcal{D} .

Then the classical Fatou's theorem asserts that for an integrable function f on \mathcal{B} ,

$$\lim_{r \to 1} F(re^{i\theta}) = f(e^{i\theta})$$

for almost every point $e^{i\theta}$ of \mathcal{B} with respect to the measure $\frac{1}{2\pi}d\theta$.

Now let G be any non-compact connected semi-simple Lie group with finite center, and let K be a maximal compact subgroup of G. Then the homogeneous space G/K is a symmetric space of non-compact type. Let g=t+p be the Cartan decomposition of the Lie algebra g of G with respect to the Lie algebra t of K. Let a be a maximal abelian subspace of p. Fix an order on a and let a^+ be the positive Weyl chamber of a with respect to this order. Let M be the centralizer of a in K. Then the homogeneous space K/M is the maximal boundary of G/K in the sense of Furstenberg [2]. Let μ be the normalized

K-invariant measure on K/M and $L^{p}(K/M)$ denote the L^{p} -space on K/M with respect to the measure μ . Let P(gK, kM) be the Poisson kernel on $G/K \times K/M$ geven by Korányi [11].

Knapp [7] has proved the following Fatou-type theorem which generalizes the classical Fatou's theorem: Suppose G/K is a symmetric space of noncompact type of rank one. Then for $X \in \mathfrak{a}^+$ and $f \in L^1(K/M)$, it holds

$$\lim_{t\to\infty}\int_{K/M}f(kM)P(k_0\exp tX\cdot K,\,kM)d\mu(kM)=f(k_0M)$$

for almost every point k_0M of K/M with respect to the measure μ .

In the case of an arbitrary symmetric space G/K of non-compact type, for $f \in L^{\infty}(K/M)$ and $X \in \mathfrak{a}^+$, Helgason-Korányi [5] has proved a theorem of the same type as above on the boundary behavior of the Poisson integral of f.

In the classical Fatou's theorem, the unit disc \mathcal{D} is a symmetric bounded domain of tube type and the boundary \mathcal{B} is the Bergman-Šilov boundary of \mathcal{D} . The purpose of the present paper is to prove for a symmetric bounded domain \mathcal{D} of tube type and the Bergman-Šilov boundary \mathcal{B} of \mathcal{D} , the Poisson integral of a function $f \in L^1(\mathcal{B})$ converges to f almost everywhere \mathcal{B} .

In general, Korányi [11] has defined the notion of the admissibly and unrestrictedly convergence. Knapp and Williamson [8] showed that the Poisson integral of a function f in $L^{\infty}(K/M)$ converges to f admissibly and unrestrictedly almost everywhere. Moreover, in the case of a Siegel domain in the sense of Pyatetskii-Šapiro [14] which is analytically isomorphic to a symmetric bounded domain \mathcal{D} , Stein and Weiss [16], [17], [19], have defined the notion of the restricted and admissible convergence. Let B denote the Šilov boundary in the sense of Pyatetskii-Šapiro [14] of the Siegel domain. Then they showed that the Poisson integral of an integrable function f on B converges to f admissibly and restrictedly almost everywhere on B. The generalized Cayley transform of Korányi-Wolf [12] carries the bounded symmetric domain \mathcal{D} onto the Siegel domain and its inverse image of the Silov boundary B of the Siegel domain is open and dense in the Bergman-Šilov boundary \mathcal{B} of the bounded domain. The inverse Cayley transform carries the L^{p} -space $L^{p}(B)$ of B into the L^{p} -space $L^{p}(\mathcal{B})$ on \mathcal{B} , but not onto, unless $p = \infty$. Therefore Fatou's theorem for symmetric bounded domains and that for Siegel domains are not equivalent.

In §2, for a symmetic bounded domain \mathcal{D} we define the notion of the radial convergence of Poisson integrals of functions on the Bergman-Šilov boundary of \mathcal{D} and formulate a Fatou-type theorem. In §3, we give an explicit formula and an estimate of the Poisson kernel of \mathcal{D} . In §4, for a symmetric bounded domain of tube type, we define a maximal function and establish an estimate of Poisson integrals by means of this maximal function. In §5, we prove a covering theorem of Vitali-type and a maximal theorem of Knapp-type and give the proof of Fatou's theorem for a symmetric domain of tube type. In §6, we prove inequalities of Hardy-Littlewood, making use of the maximal theorem.

2. Statement of Fatou's theorem

Let G be a connected semi-simple Lie group with finite center, K a maximal compact subgroup of G. We assume that the quotient space G/K is an irreducible hermitian symmetric space. Let \mathfrak{g} and \mathfrak{k} be the Lie algebras of G and K, respectively, and let g = t + p be the Cartan decomposition of g with respect to \mathfrak{k} . Then K has the same rank as G. Let \mathfrak{t} be a Cartan subalgebra Then t is also a Cartan subalgebra of g. Let g^c , t^c , p^c and t^c be the of **f**. complexifications of g, \mathfrak{k} , \mathfrak{p} and \mathfrak{k} , respectively. Then the set R of roots of \mathfrak{g}^c with respect to t^c can be decomposed into two disjoint sets $C = \{\alpha \in R; E_{\alpha} \in \mathfrak{k}^{c}\}$ and $P = \{ \alpha \in R; E_{\alpha} \in \mathfrak{p}^{c} \}$, where $\{ E_{\alpha} \}$ is a set of root vectors. A root of C or P is called compact or non-compact. Let \mathfrak{p}^{\pm} be the subspace of \mathfrak{p}^{c} corresponding to $(\pm i)$ -eigenspace of the complex structure tensor on the tangent space of G/Kat the origin eK. We choose and fix an order \subseteq on roots in R such that $\mathfrak{p}^+, \mathfrak{p}^$ are spanned by the E_{α} 's, $E_{-\alpha}$'s, respectively, where α runs through positive noncompact roots. Let Δ be the maximal set of strongly orthogonal non-compact positive roots of Harish-Chandra [4]. We choose root vectors $\{E_{\alpha}\}$ in such a way that $\tau E_{\alpha} = -E_{-\alpha}$ for the conjugation τ of g^c with respect to the compact real from $g_{\mu} = t + i p$ of g^c . For $\alpha \in R$, let H_{α}' be the unique element of it satisfying $\alpha(H) = \langle H_{\alpha'}, H \rangle$ for all $H \in \mathfrak{t}$, where \langle , \rangle denotes the Killing form of g^c . For $\alpha \in \Delta$, we put $X^0_{\alpha} = E_{\alpha} + E_{-\alpha}$, $Y^0_{\alpha} = (-i)(E_{\alpha} - E_{-\alpha})$ and $H_{\omega} = \frac{2}{\langle H_{\omega}', H_{\omega}' \rangle} H_{\omega}'$. Let g_{ω} denote the subalgebra of g spanned by $\{iH_{\alpha}, X_{\alpha}^{0}, Y_{\alpha}^{0}\}$. Strong orthogonality of Δ implies $[g_{\alpha}, g_{\beta}] = \{0\}$ for $\alpha \neq \beta$. Let t⁻ be the subalgebra of t_a spanned by $\{iH_a; \alpha \in \Delta\}$ and let t⁺ be the orthogonal complement of t^- in t with respect to the Killing form \langle , \rangle . The vectors $X^{\mathfrak{o}}_{\alpha}, \alpha \in \Delta$, span a maximal abelian subalgbra \mathfrak{a} of \mathfrak{p} and $\mathfrak{h}=\mathfrak{t}^{+}+\mathfrak{a}$ is a Cartan subalgebra of g. Let \mathfrak{h}^c be the complexification of \mathfrak{h} . A and H^- denote analytic subgroups of G generated by \mathfrak{a} and \mathfrak{t}^- , respectively. of a^c defined by

Following Moore [13], we consider the Cayley transform
$$\tilde{c}$$
 of $\mathfrak{g}^{\mathfrak{c}}$ defined by
 $\tilde{c} = Ad\left(\exp\left(\frac{\pi}{4}\sum_{\alpha\in\Delta}(-i)Y^{0}_{\alpha}\right)\right)$. Then \tilde{c} transforms
 $X^{0}_{\alpha}\mapsto -H_{\alpha}, H_{\alpha}\mapsto X^{0}_{\alpha} \text{ and } Y^{0}_{\alpha}\mapsto Y^{0}_{\alpha} \qquad (\alpha\in\Delta)$

and \tilde{c} leaves t^+ pointwise fixed. Hence \tilde{c} maps it^- onto \mathfrak{a} and t^c onto \mathfrak{h}^c , so that it maps R onto the set Σ of roots of \mathfrak{g}^c with repsect to \mathfrak{h}^c . Let σ be the conjugation of \mathfrak{g}^c with repsect to \mathfrak{g} . σ permutes roots of Σ by

$$\sigma(\alpha)(H) = \overline{\alpha(\sigma(H))}$$
 for $\alpha \in \Sigma, H \in \mathfrak{h}^c$.

We choose a following linear order < on Σ and fix it once and for all: (i) If $\alpha \in \Sigma$, $\alpha > 0$ and α does not vanish on \mathfrak{a} , then $\sigma(\alpha) > 0$. (ii) If $\gamma \in \Delta$, then $\tilde{c}(\gamma) > 0$. Then Σ can be decomposed into three disjoint sets; $\Sigma^+ = \{\alpha \in \Sigma; \alpha > 0, \sigma(\alpha) > 0\}$, $\Sigma^- = -\Sigma^+$ and $\Sigma_0 = \{\alpha \in \Sigma; \alpha = -\sigma(\alpha)\}$, $\sum_{\alpha \in \Sigma^+} C\tilde{E}_{\alpha}$ and $\sum_{\alpha \in \Sigma^-} C\tilde{E}_{\alpha}$ are both invariant under σ , where $\{\tilde{E}_{\alpha}\}$ is a set of root vectors of \mathfrak{g}^c with respect to \mathfrak{h}^c . We put $\mathfrak{n} = \sum_{\alpha \in \Sigma^+} C\tilde{E}_{\alpha} \cap \mathfrak{g}$ and $\overline{\mathfrak{n}} = \sum_{\alpha \in \Sigma^-} C\tilde{E}_{\alpha} \cap \mathfrak{g}$, which are real forms of $\sum_{\alpha \in \Sigma^+} C\tilde{E}_{\alpha}$ and $\sum_{\alpha \in \Sigma^-} C\tilde{E}_{\alpha}$, respectively. Then \mathfrak{n} and $\overline{\mathfrak{n}}$ are nilpotent subalgebras of \mathfrak{g} . We obtain the Iwasawa decompositions $\mathfrak{g} = \mathfrak{k} + \mathfrak{a} + \mathfrak{n}$ and G = KAN, where A and N are analytic subgroups of G generated by \mathfrak{a} , \mathfrak{n} . So any $g \in G$ can uniquely decomposed as $g = k(g) \exp H(g)\mathfrak{n}(g)$, where $k(g) \in K$, $H(g) \in \mathfrak{a}$ and $\mathfrak{n}(g) \in N$.

The restriction to a of a root of $\Sigma - \Sigma_0$ is called a restricted root and the order > on Σ induces a linear order > on the set of restricted roots. Let F be the fundamental system of restricted roots with respect to the order >. Let $X^0 = \sum_{\alpha \in \Delta} X^0_{\alpha}$, and we put $E = \{\alpha \in F; \alpha(X^0) = 0\}$ and $\alpha(E) = \{H \in \alpha; \alpha(H) = 0$ for all $\alpha \in E\}$. Then $\alpha(E)$ is spanned by X^0 , and g is the direct sum of eigen-spaces for ad X^0 on g. The sum of the positive (negative) eigen-spaces of g is denoted by $\mathfrak{n}(E)(\overline{\mathfrak{n}}(E))$. Let $\mathfrak{b}(E)$ be the sum of non-negative eigen-spaces, I the centralizer of X^0 in \mathfrak{k} , let $2\rho_E$ be the sum of restricted roots α with $\alpha(X^0) > 0$, with multiplicties counted.

The analytic subgroups of G generated by n(E), $\overline{n}(E)$ will be denoted by N(E), $\overline{N}(E)$. Let L be the centralizer of X° in K and B(E) the normalizer of $\mathfrak{n}(E)$ in G. Then I, $\mathfrak{b}(E)$ are Lie algebras of L, B(E) and we have the decompositions B(E)=LAN and $\mathfrak{b}(E)=\mathfrak{l}+\mathfrak{a}+\mathfrak{n}$. From the Iwasawa decomposition G=KAN, K/L is naturally identified with G/B(E) as K-spaces. Let Φ be the holomorphic imbedding of Harish-Chandra [4] of G/K into \mathfrak{p}^- as a bounded domain in the complex vector space \mathfrak{p}^- and let $\mathcal{D}=\Phi(G/K)$. Then the imbedding Φ is equivariant with respect to the natural action of K on G/K and the adjoint action of K on \mathfrak{p}^- . Let \mathcal{B} be the Bergman-Šilov boundary of the bounded domain \mathcal{D} in \mathfrak{p}^- . Then it is known (Korányi-Wolf [12]) that $\sum_{\alpha \in A} E_{-\alpha} \in \mathcal{B}$, K acts transitively on \mathcal{B} by the adjoint action and L becomes the isotropy subgroup of K at $\sum_{\alpha \in A} E_{-\alpha}$. Thus the Bergman-Šilov boundary \mathcal{B} is isomorphic to K/L.

Let μ_E be the normalized K-invariant measure on K/L and $L^p(K/L)$ denote the L^p -space on K/L with respect to the measure μ_E . Then the Poisson kernel on $G/K \times K/L$ is defined by

$$P_E(gK, kL) = e^{-2\rho_H(H(g^{-1}k))} \quad \text{for} \quad g \in G, k \in K$$

where $\exp H(g^{-1}k)$ is the A-component of $g^{-1}k$ in the Iwasawa decomposition. We define the *Poisson integral* of a function $f \in L^1(K/L)$ by

$$\int_{K/L} f(kL) P_E(gK, kL) d\mu_E(kL) \quad \text{for} \quad g \in G$$

The hermitian symmetric space G/K of non-compact type is called of tube type if (t, l) is a symmetric pair, then t^- is a Cartan subalgebra of (t, l) and eigenvalues of $ad(\frac{1}{2}X_0)$ are $0, \pm 1$ (Korányi-Wolf [12]).

Now we can state our main theorem:

Theorem 1. Let G/K be an irreducible hermitian symmetric space of tube type. Let $a_t = \exp tX^\circ$ for a real number t. If $f \in L^1(K/L)$, then

$$\lim_{t\to\infty}\int_{K/L}f(kL)P_E(k_0a_tK,\,kL)d\mu_E(kL)=f(k_0L)$$

for almost every point k_0L of K/L with respect to μ_E .

We assumed the irreducibility of G/K for the simplicity, but the generalization of Theorem 1 of general spaces of tube type is immediate.

3. Estimate of Poisson kernel

In this section we assume G/K is an irreducible hermitian symmetric space, not necessarily of tube type.

Proposition 1. Let $a = \exp \sum_{\alpha \in \Delta} t_{\alpha} X^{0}_{\alpha} \in A$, $h = \exp \sum_{\alpha \in \Delta} \theta_{\alpha} \frac{iH_{\alpha}}{2} \in H^{-}$. Then we have

$$P_E(aK, hL) = \prod_{\alpha \in \Delta} P(\tanh t_{\alpha}, e^{i\theta_{\alpha}})^{\rho_{\mathbb{B}}(X_{\alpha}^0)}$$

where P(t, u) is a function on the product of the open interval (-1, 1) and the circle $\mathcal{B}=\{u\in C; |u|=1\}$ defined by $P(r, u)=(1-r^2)|1-r\overline{u}|^{-2}$. (We note that P(r, u) coincides on (-1, 1) with the Poisson kernel of the unit disc in C.)

Proof. To calculate $e^{-2\rho_{\overline{B}}(H(a^{-1}h))}$, we consider the Iwasawa decomposition of the element $a^{-1}h$ of G. We have $Y^0_{\alpha} + iH_{\alpha} \in \mathfrak{n}$ for $\alpha \in \Delta$ because we have $Y^0_{\alpha} + iH_{\alpha} = \tilde{c}(Y^0_{\alpha} - iX^0_{\alpha}) = \tilde{c}\{(-i)(E_{\alpha} - E_{-\alpha}) - i(E_{\alpha} + E_{-\alpha})\} = \tilde{c}(-2iE_{\alpha}) \in C\tilde{E}_{\tilde{c}\alpha}$ and from the condition (ii) of the ordering > on Σ , we obtain $Y^0_{\alpha} + iH_{\alpha} \in \mathfrak{g} \cap \sum_{\alpha \in \Sigma^+} C\tilde{E}_{\alpha}$

=n. Since $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}] = \{0\}$ for $\alpha \neq \beta$, α , $\beta \in \Delta$, it follows that

$$a^{-1}h = \prod_{\sigma \in \Delta} \exp(-t X_{\sigma}) \exp\left(\theta_{\sigma} \frac{iH_{\sigma}}{2}\right).$$

If we have the Iwasawa decompostion

$$\exp\left(-t_{a} X_{a}^{0}\right) \exp\left(\theta_{a} \frac{iH_{a}}{2}\right) = \exp a_{a} \frac{iH_{a}}{2} \exp b_{a} X_{a}^{0} \exp\left(c_{a} (Y_{a}^{0} + iH_{a})\right)$$

of each factor, we have

$$a^{-1}h = \exp\left(\sum_{\boldsymbol{\alpha}\in\Delta}a_{\boldsymbol{\alpha}}\frac{iH_{\boldsymbol{\alpha}}}{2}\right)\exp\left(\sum_{\boldsymbol{\alpha}\in\Delta}b_{\boldsymbol{\alpha}}X_{\boldsymbol{\alpha}}^{0}\right)\exp\left(\sum_{\boldsymbol{\alpha}\in\Delta}c_{\boldsymbol{\alpha}}(Y_{\boldsymbol{\alpha}}^{0}+iH_{\boldsymbol{\alpha}})\right)$$

and thus $H(a^{-1}h) = \sum_{\alpha \in \Delta} b_{\alpha} X^{0}_{\alpha}$. Now let

$$SU(1, 1) = \left\{ x \in M_{2}(\mathbf{C}); \ {}^{t}\bar{x} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} x = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\}$$
$$X^{0} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad Y^{0} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}.$$

Then the Lie algebra $\mathfrak{su}(1, 1)$ of SU(1, 1) is spanned by X° , iH and $Y^{\circ}+iH$ and the homomorphism $\phi_{\sigma}: \mathfrak{su}(1, 1) \to \mathfrak{g}_{\sigma}$ defined by

$$X^{0}\mapsto X^{0}_{a}$$
, $iH\mapsto iH^{0}_{a}$, $Y^{0}+iH\mapsto Y^{0}_{a}+iH_{a}$

can be extended to the homomorphism ϕ_{α} : $SU(1, 1) \rightarrow G$. In SU(1, 1) we have the decomposition

$$\exp\left(-tX^{\circ}\right)\exp\left(\theta\frac{iH}{2}\right) = \exp\left(a\frac{iH}{2}\right)\exp bX^{\circ}\exp c(Y^{\circ}+iH)$$

with $b = \frac{1}{2} \log(ch^2 t - 2cht sht \cos\theta + sh^2 t) = -\frac{1}{2} \log P(\tanh t, e^{i\theta})$. Applying the homorphism ϕ_{σ} on the both sides, we have

$$b_{\sigma} = -\frac{1}{2} \log P(\tanh t_{\sigma}, e^{i\theta_{\sigma}})$$

Q.E.D.

This implies the Proposition.

Now we define for $0 < \rho \leq 1$,

$$\mathfrak{D}_{\rho} = \left\{ \exp\left(\sum_{\sigma \in \Delta} \theta_{\sigma} \frac{iH_{\sigma}}{2}\right) \in H^{-}; \ |\theta_{\sigma}| < \pi \rho, \text{ for any } \alpha \in \Delta \right\},$$

 $\mathfrak{D}_{\rho} = \{lhL \in K/L; \ l \in L, \ h \in \mathfrak{D}_{\rho}\},$

and for $\rho > 1$,

$$\mathfrak{B}_{
ho} = \{lhL \in K/L; l \in L, h \in H^{-}\}$$
.

In §4, we shall calculate the measure of \mathfrak{B}_{ρ} with respect to μ_E for a space of tube type. We give an estimate of Poisson kernel on \mathfrak{B}_{ρ} in the following.

Proposition 2. Let $a = \exp \sum_{\alpha \in \Delta} t_{\alpha} X_{\alpha}^{0} \in A$. Then we obtain an estimate of Poisson kernel as follows:

(i) If
$$0 < \rho < 1$$
 and $\frac{1}{2} < \tanh t_{a} < 1$ for any $\alpha \in \Delta$, then

$$\sup_{h \in \mathcal{U}^{-} - \mathfrak{H}_{\rho}} P_{E}(aK, hL) \leq C_{1} \prod_{\alpha \in \Delta} \left(\frac{1 - \tanh t_{\alpha}}{\rho^{2}} \right)^{\rho_{\mathcal{B}}(X_{\mathfrak{G}}^{0})}$$
(ii)
$$\sup_{h \in \mathcal{H}^{-}} P_{E}(aK, hL) \leq C_{3} \prod_{\alpha \in \Delta} \left(\frac{1}{1 - \tanh t_{\alpha}} \right)^{\rho_{\mathcal{B}}(X_{\mathfrak{G}}^{0})}$$

where C_1 , C_2 are constants independent on a and ρ . In particular, if $a_t = \exp tX^0$, then

(i) If
$$0 < \rho < 1$$
 and $\frac{1}{2} < \tanh t < 1$, then

$$\sup_{kL \in \mathfrak{B}_1^- \mathfrak{B}_\rho} P_E(a_t K, kL) \leq C_1 \left(\frac{1 - \tanh t}{\rho^2}\right)^{\rho_B(\lambda^0)}$$
(1)

(ii)
$$\sup_{kL\in\mathfrak{B}_1} P_E(a_tK, kL) \leq C_3 \left(\frac{1}{1-\tanh t}\right)^{P_E(\Delta)}$$
(2)

(We note that \mathfrak{B}_1 is equal to K/L if G/K is of tube type).

Proof. We have (Korányi [10]) an estimate of the Poisson kernel for the unit disc in C as follows:

(i)
$$\sup_{\substack{\pi \rho \leq |\theta| \leq \pi}} (1-r^2) |1-re^{-i\theta}|^{-2} \leq C_1' \frac{1-r}{\rho^2} \quad \text{if } \frac{1}{2} < r < 1.$$

(ii)
$$\sup_{\substack{0 \leq |\theta| \leq \pi}} (1-r^2) |1-re^{-i\theta}|^{-2} \leq C_2' \frac{1}{1-r} \quad \text{if } 0 < r < 1.$$

where C'_1 , C'_2 , are constants. This together with Proposition 1 implies the first statement. If $a_t = \exp tX^\circ$, then we have $P_E(a_tK, hL) = P_E(a_tK, hL)$ for $h \in H^-$ and $l \in L$ since L centralizes X° in K. This together with the first statement implies the second statement. Q.E.D.

4. Maximal function

Henceforth we shall assume that G/K is an irreducible hermitian symmetric space of tube type. We consider the Poisson integral

$$\int_{K/L} f(kL) P_E(a_t K, kL) d\mu_E(kL) \tag{3}$$

for $a_t = \exp tX^\circ$ and an integrable function f on K/L with respect to μ_E .

Since K/L is a symmetric space, we may use the following integral formula for K/L (Harish-Chandra [4]): For each continuous function f on K/L, we have

$$\int_{K/L} f(kL) d\mu_E(kL) = c \int_{H^-} \left(\int_{L/Z_L(t^-)} f(lhL) d\bar{l} \right) |D(h)| dh$$

where c is a constant independent on f, $Z_L(t^-)$ is the centralizer of t^- in L, dh is a Haar measure on H^- and $d\bar{l}$ is a quotient measure on $L/Z_L(t^-)$ induced from the normalized Haar measure dl on L. Moreover

$$D(h) = \prod_{\beta \in P_+^k} \sin \beta(iH)$$
 for $h = \exp H, H \in t^-$

where $P_{+}^{k} = \{ \alpha \in C; \text{ positive and } \alpha | t = \pm 0 \}.$

Making use of this integral formula, we have the measure $||\mathfrak{B}_{\rho}||$ of \mathfrak{B}_{ρ} with respect to μ_E as follows:

$$||\mathfrak{B}_{\rho}|| = \int_{K/L} \chi_{\mathfrak{B}_{\rho}}(kL) d\mu_{E}(kL) = c \int_{H^{-}} (\int_{L/Z_{L}(t^{-})} \chi_{\mathfrak{B}_{\rho}}(lhL) d\bar{l}) |D(h)| dh$$
$$= c \int_{\mathfrak{B}_{\rho}} |D(h)| dh$$

where $\chi_{\mathfrak{B}_{\rho}}$ is the characteristic function of \mathfrak{B}_{ρ} . The density D(h) of the integral is given as follows: Let $\Delta = \{\gamma_1, \dots, \gamma_m\}, \gamma_1 - \Im \gamma_2 - \Im \dots - \Im \gamma_m$, where m = rank of G/K. For $\alpha \in R$, let $\pi(\alpha)$ be the restriction of α to the complexification $(t^-)^c$ of t^- , but $\pi(\gamma_i)$ will be denoted by γ_i for the brevity, since any root $\beta \neq \gamma_i$ does not coincide with $\pi(\gamma_i)$ on $(t^-)^c$. Since G/K is of tube type, we have (Harish-Chandra [4], Korányi-Wolf [12]) for a positive compact root β ,

$$\pi(\beta) = \begin{cases} 0 & \text{or} \\ \frac{1}{2}(\gamma_j - \gamma_i) & (i < j) \end{cases}$$

and for a positive non-compact root β ,

$$\pi(\beta) = \begin{cases} \gamma_i & \text{or} \\ \frac{1}{2}(\gamma_j + \gamma_i) & (i < j). \end{cases}$$

Moreover the number r_{ij} (i < j) of elements of $\left\{ \beta \in P_+^*; \pi(\beta) = \frac{1}{2} (\gamma_j - \gamma_i) \right\}$ is the same as the number of positive non-compact roots β such that $\pi(\beta) = \frac{1}{2} (\gamma_j + \gamma_i)$. It follows that

$$D\left(\exp\sum \theta_{a}\frac{iH_{a}}{2}\right) = \prod_{1 \leq i < j \leq m} \left\{\sin \frac{1}{2}(\theta_{i}-\theta_{j})\right\}^{r_{ij}}.$$

Now we obtain the following

Lemma 1. For $0 < \rho < 1$, we have an estimate of the measure of \mathfrak{B}_{ρ} :

RADIAL CONVERGENCE OF POISSON INTEGRALS

$$||\mathfrak{B}_{\rho}|| \leqslant C \rho^{\rho_{\mathcal{B}}(\mathfrak{X}^{0})} \tag{4}$$

where C is a constant independent on ρ . For $\rho \ge 1$, we have $||\mathfrak{B}_{\rho}||=1$ (from the definition of \mathfrak{B}_{ρ}).

Proof. From the above argument,

$$||\mathfrak{B}_{\rho}|| = c \int_{\mathfrak{B}_{\rho}} |D(h)| dh = c \int_{-\pi\rho}^{\pi\rho} \cdots \int_{-\pi\rho}^{\pi\rho} \prod_{i < j} |\sin \frac{1}{2} (\theta_i - \theta_j)|^{r_{ij}} d\theta_1 \cdots d\theta_m$$
$$\leq c(\pi\rho)^{\sum_{i < j} r_{ij}} \int_{-\pi\rho}^{\pi\rho} \cdots \int_{-\pi\rho}^{\pi\rho} d\theta_1 \cdots d\theta_m \leq C\rho^{m+\sum_{i < j} c_{ij}} (C = c\pi^{m+\sum_{i < j} r_{ij}} 2^m)$$

because $|\sin \frac{1}{2}(\theta_i - \theta_j)| \leq \frac{1}{2} |\theta_i - \theta_j| \leq \pi \rho$.

On the other hand, $X^{0} = \sum_{k=1}^{m} X^{0}_{\gamma_{k}}$ and

$$\rho_E(X^0_{\gamma_k}) = (\tilde{c}^{-1}\rho_E)(\tilde{c}^{-1}X^0_{\gamma_k}) = \frac{1}{2} \left(\sum_{i=1}^m \gamma_i + \sum_{i < j} \frac{r_{ij}}{2} (\gamma_j + \gamma_i) \right) (H_{\gamma_k})$$
$$= 1 + \sum_{i < k} r_{ik} \,.$$

Hence $\rho_E(X^0) = m + \sum_{1 \le i < j \le m} r_{ij}$, then the result follows. Q.E.D.

DEFINITION. For an integrable function f on K/L, we define a maximal function f^* on K/L by

$$f^*(k_0L) = \sup_{0 < \rho < 1} \frac{1}{||\mathfrak{B}_{\rho}||} \int_{\mathfrak{B}_{\rho}} |f(k_0kL)| d\mu_E(kL) \quad \text{for} \quad k_0L \in K/L .$$

The function f^* on K/L is measurable because the supremum over rational ρ ($0 < \rho < 1$) gives the same answer.

Proposition 3. For an integrable function f on K|L, we have an estimate of Poisson integral by means of the above maximal function:

$$\sup_{k < \tanh t < 1} \int_{K/L} |f(kL)| P_E(k_0 a_t K, kL) d\mu_E(kL) \leq C' f^*(k_0 L)$$

for all $k_0 \in K$, where $a_t = \exp tX^0$ and C' is a constant not depending on f and k_0L .

Proof. We fix first an arbitrary constant $\alpha > 0$ put $\delta = (1-\tanh t)\alpha$ for $\frac{1}{2} < \tanh t < 1$. We may suppose $k_0 = e$ in view of the K-invariance of the measure μ_E , replacing f by the function f^{k_0} defined by $f^{k_0}(kL) = f(k_0kL)$. Then for $\frac{1}{2} < \tanh t < 1$, we have

$$\int_{K/L} |f(kL)| P_{E}(a_{t}K, kL) d\mu_{E}(kL) = \int_{\mathfrak{B}_{1}} |f(kL)| P_{E}(a_{t}K, kL) d\mu_{E}(kL)$$

$$\leq \int_{\mathfrak{B}_{\delta}} |f(kL)| P_{E}(a_{t}K, kL) d\mu_{E}(kL) + \sum_{j=0}^{\infty} \int_{\mathfrak{B}_{2}^{j+1}\delta^{-\mathfrak{B}_{2}^{j}\delta}} |f(kL)| P_{E}(a_{t}K, kL) d\mu_{E}(kL).$$
(5)

Here we note that the summation of the second term in (5) is in fact finite sum because $\mathfrak{B}_{2^{j}\delta} = K/L$ for $2^{j}\delta \ge 1$.

The right hand side of (5) can be estimated as follows:

the first term
$$\leq C_2 \left\{ \frac{1}{1-\tanh t} \right\}^{\rho_{\mathbb{B}}(X^0)} \int_{\mathfrak{B}_{\delta}} |f(kL)| d\mu_E(kL)$$
 (by (2))
 $\leq C_2 \left\{ \frac{1}{1-\tanh t} \right\}^{\rho_{\mathbb{B}}(X^0)} ||\mathfrak{B}_{\delta}|| f^*(eL)$ (by the definition of f^*)
 $\leq C_2 C \left\{ \frac{1}{1-\tanh t} \right\}^{\rho_{\mathbb{B}}(X^0)} \delta^{\rho_{\mathbb{B}}(X^0)} f^*(eL)$ (by (4))
 $= C_2 C \alpha^{\rho_{\mathbb{B}}(X^0)} f^*(eL).$ (6)

the second term
$$\leq \sum_{j=0}^{\infty} C_1 \left\{ \frac{1-\tanh t}{(2^j \delta)^2} \right\}^{\rho_{\mathbb{B}}(\mathbb{X}^0)} \int_{\mathfrak{B}_2^{j+1} \delta^-\mathfrak{B}_2^{j} \delta} |f(kL)| d\mu_E(kL) \text{ (by (1))}$$

 $\leq C_1 \sum_{j=0}^{\infty} \left\{ \frac{1-\tanh t}{(2^j \delta)^2} \right\}^{\rho_{\mathbb{B}}(\mathbb{X}^0)} ||\mathfrak{B}_{2^{j+1} \delta}|| f^*(eL) \quad \text{(by the definition of} f^*)$
 $\leq C_1 C \sum_{j=0}^{\infty} \left\{ \frac{1-\tanh t}{(2^j \delta)^2} \right\}^{\rho_{\mathbb{B}}(\mathbb{X}^0)} (2^{j+1} \delta)^{\rho_{\mathbb{B}}(\mathbb{X}^0)} f^*(eL) \quad \text{(by (4))}$
 $= C_1 C \left(\frac{2}{\alpha} \right)^{\rho_{\mathbb{B}}(\mathbb{X}^0)} \left(\sum_{j=0}^{\infty} \left\{ \frac{1}{2^{\rho_{\mathbb{B}}(\mathbb{X}^0)}} \right\}^j \right) f^*(eL) \quad (7)$

where the sum $\sum_{j=0}^{\infty} \left\{ \frac{1}{2^{\rho_{B^{(z_{-}^{0})}}}} \right\}^{j}$ converges to $\frac{1}{1-(1/2)^{\rho_{B^{(z_{-}^{0})}}}}$. Hence putting together (6) and (7) into (5), we obtain the inequality:

$$\sup_{1/2 < \tanh t < 1} \int_{K/L} |f(kL)| P_E(a_t K, kL) d\mu_E(kL)$$

$$\leq \left\{ C_2 C \alpha^{\rho_B(X^0)} + C_1 C \left(\frac{2}{\alpha}\right)^{\rho_B(X^0)} \frac{1}{1 - (1/2)^{\rho_B(X^0)}} \right\} f^*(eL) \qquad \text{Q.E.D.}$$

5. Covering theorem and proof of Fatou's theorem

In this section we shall prove a covering theorem of Vitali type with respect to the family of sets of the form $k\mathfrak{B}_{\rho}$, $0 < \rho < 1$, $k \in K$ and prove a maximal theorem related to the maximal function f^* on K/L.

Let q be the orthogonal complement of l in t with respect to \langle , \rangle . Then $q = Ad(L)t^{-}$ since K/L is a symmetric space. We define a map $\psi: q \rightarrow p$ by

 $\psi(X) = \frac{1}{2}[X^0, X]$ for $X \in \mathfrak{q}$ and putting $\mathfrak{p}^* = \psi(\mathfrak{q})$, define a map $j: \mathfrak{p}^* \to \overline{\mathfrak{n}}(E)$ by $j(X) = X - \frac{1}{2}[X^0, X]$ for $X \in \mathfrak{p}^*$. Then both ψ and j are *L*-equivariant isomorphisms (Takeuchi [18]). We have $\psi(iH_{\mathfrak{a}}) = Y^0_{\mathfrak{a}}$ and $j(Y^0_{\mathfrak{a}}) = Y^0_{\mathfrak{a}} - iH_{\mathfrak{a}}$ for any $\alpha \in \Delta$ so that $j\psi(\mathfrak{t}^-)$ is the subspace of $\overline{\mathfrak{n}}(E)$ spanned by $\{Y^0_{\mathfrak{a}} - iH_{\mathfrak{a}}; \alpha \in \Delta\}$. Thus we have the following

Lemma 2. $Ad(L)\{Y^{0}_{\alpha}-iH_{\alpha}: \alpha \in \Delta\}_{R}=\overline{\mathfrak{n}}(E)$

where $\{Y_{\alpha}^{0}-iH_{\alpha}: \alpha \in \Delta\}_{R}$ is the subspace of $\overline{\mathfrak{n}}(E)$ spanned by $\{Y_{\alpha}^{0}-iH_{\alpha}: \alpha \in \Delta\}$.

Now we define an *L*-invariant norm || || on $\overline{\mathfrak{n}}(E)$ as follows. We define a *K*-invariant inner product on g by

$$(X, Y) = -\langle X, \tau Y \rangle$$
 for $X, Y \in \mathfrak{g}$.

For $Z \in \overline{\mathfrak{n}}(E)$, let |Z| denote the operator norm of $ad(j^{-1}Z)$ with respect of (,) and let $||Z|| = \frac{1}{2}|Z|$. Then (Takeuchi [18]) || || is a *L*-invariant norm on $\overline{\mathfrak{n}}(E)$ satisfying

$$||Z|| = \max_{a \in \Delta} |a_a| \quad \text{for} \quad Z = \sum_{a \in \Delta} a_a (Y^0_a - iH_a).$$

For each $\delta > 0$, let

$$egin{aligned} B_{\delta} &= \{Z\!\in\!ar{\mathfrak{n}}(E);\,||Z||\!<\!\delta\}\ ar{B}_{\delta} &= \{k(ar{n})L\!\in\!K\!/L;\,ar{n} = \exp Z,Z\!\in\!B_{\delta}\} \end{aligned}$$

where $k(\bar{n})$ is the K-component of \bar{n} in the Iwasawa decomposition.

Lemma 3. For $0 < \rho < 1$, we have $\mathfrak{B}_{\rho} = \left\{ k(\bar{n})L \in K/L; \bar{n} = \exp Ad(l)(\sum_{\alpha \in \Delta} a_{\alpha}(Y^{0}_{\alpha} - iH_{\alpha})), l \in L, \max_{\alpha \in \Delta} |a_{\alpha}| < \frac{1}{2} \operatorname{tan}((\pi/2)\rho) \right\}$ and therefore

$$\mathfrak{B}_{\rho} = \bar{B}_{1/2 \tan\left(\left(\pi/2\right)\rho\right)}$$

Proof. Recall the definition of \mathfrak{B}_{ρ} for $0 < \rho < 1$:

$$\mathfrak{B}_{\mathfrak{p}} = \left\{ lhL \in K/L; \ l \in L, \ h = \exp\left(\sum_{\mathfrak{a} \in \Delta} \theta_{\mathfrak{a}} \frac{iH_{\mathfrak{a}}}{2}\right), \ |\theta_{\mathfrak{a}}| < \pi \rho \right\}.$$

As in the proof of Proposition 1, we have

$$\exp\left(\sum_{\alpha\in\Delta}\theta_{\alpha}\frac{i}{2}H_{\alpha}\right) = k\left(\exp\left(-\frac{1}{2}\sum_{\alpha\in\Delta}\tan\left(\frac{1}{2}\theta_{\alpha}\right)(Y_{\alpha}^{0}-iH_{\alpha})\right)\right) \quad \text{for} \quad |\theta_{\alpha}| < \pi.$$

Since $l\bar{n}l^{-1}B(E) = lk(\bar{n})B(E)$ for $l \in L$, $\bar{n} \in \bar{N}(E)$ and $G/B(E) \ni gB(E) \mapsto k(g)L$ $\in K/L$ is a bijection, we have $k(l\bar{n}l^{-1})L = lk(\bar{n})L$. Then the statement follows. Q.E.D.

The purpose of this section is to prove the following covering theorem;

Theorem 2. There is some constant C''>0 with the following property. If U is any Borel set in K/L, and if to each point kL in U there is associated a set $k\mathfrak{B}_{\rho}$ (with $0 < \rho < 1$ depending on $k \in K$), then there is a countable disjoint subfamily of $\{k\mathfrak{B}_{\rho}\}$, say $k_{i}\mathfrak{B}_{i}$, such that

$$C''\sum_{j=1}^{\infty}\mu_E(k_j\mathfrak{B}_j) \geqslant \mu_E(U)$$

In view of Lemma 3, we may prove the following theorem in place of Theorem 2.

Theorem 2'. There is some constant C''>0 with the following property. If U is any Borel set in K/L, and if to each point kL in U there is associated a set $k\bar{B}_{\delta}$ (with $\delta>0$ depending on $k \in K$), then there is a countable disjoint subfamily of $\{k\bar{B}_{\delta}\}$, say $k_{j}\bar{B}_{j}$, such that

$$C''\sum_{j=1}^{\infty}\mu_E(k_j\bar{B}_j) \ge \mu_E(U)$$

The proof will proceed in the same way as Knapp's proof [7] of the covering theorem on Furstenberg's boundary K/M of a symmetric space of rank one.

Any $\overline{n} \in \overline{N}(E)$ can be written uniquely in the form $\overline{n} = \exp Z$, $Z \in \overline{n}(E)$. We write as $Z = \log \overline{n}$. Then we define

 $|\bar{n}| = ||\log \bar{n}||$.

We have $|\bar{n}^{\exp t(\bar{X}^0/2)}| = e^{-t \leq 0} |\bar{n}|$ for $\bar{n}^{\exp t(\bar{X}^0/2)} = \left(\exp t \frac{X^0}{2}\right) \bar{n} \exp\left(-t \frac{X^0}{2}\right)$ since $\bar{n}(E)$ is (-1)-eigenspace of $ad \frac{1}{2} X^0$.

Lemma 4. There exists a constant C_3 such that

$$|\bar{n}|\bar{n}'| \leq C_{\mathfrak{z}}(|\bar{n}|+|\bar{n}'|)$$

for all \bar{n} , $\bar{n}' \in \bar{N}(E)$.

Proof. The proof is quite same as that of Lemma 2.3 in Korányi [11]. Let $V_t = \{\bar{n} \in \bar{N}(E); |\bar{n}| \leq e^t\}$ for $t \in \mathbb{R}$. The sets V_t are compact and converge to $\bar{N}(E)$ as $t \to \infty$. Then there exists r > 0 such that $V_0 \cdot V_0 \subset V_r$. We put $C_s = e^r$. By the above remark $V_t = V_0^{\exp(-t(\perp 0/2))}$. For $\bar{n}, \bar{n}' \in \bar{N}(E)$ we write $|\bar{n}| = e^t, |\bar{n}'| = e^{t'}$, and let $\tau = \text{Max}\{t, t'\}$. Then $\bar{n}, \bar{n}' \in V_t, V_{t'} \subset VV = (V_0 \cdot V_0)^{\exp(-\iota_0 0/2)} \subset V_{\tau+r}$ and so $|\bar{n}, \bar{n}'| \leq e^{\tau+r} \leq e^r(|\bar{n}| + |\bar{n}'|)$. Q.E.D. **Lemma 5.** By $\overline{N}(E)$ -hull of $\exp(B_{\delta})$, we mean the union of all $\overline{N}(E)$ translates of $\exp(B_{\delta})$ which have non-empty intersection with $\exp(B_{\delta})$. Then there is a constant C_4 such that for each $\delta > 0$,

$$\overline{N}(E)$$
-hull of $\exp(B_{\delta}) \subset \exp(B_{C_{\delta}\delta})$.

Proof. Let $\bar{n} \exp(B_{\delta}) \cap \exp(B_{\delta}) \neq \phi$ for $\bar{n} \in \bar{N}(E)$ and $\bar{n} \bar{n}_1 = \bar{n}_2$ for $\bar{n}_1, \bar{n}_2 \in \exp(B_{\delta})$. Then $|\bar{n}| = |\bar{n}_2 \bar{n}_1^{-1}| \leq C_3(|\bar{n}_1| + |\bar{n}_2|) \leq 2C_3 \delta$ by Lemma 4. Hence for each $\bar{n}_3 \in \exp(B_{\delta})$, we have

$$|\bar{n}\,\bar{n}_3| \leqslant C_3(|\bar{n}|+|\bar{n}_3|) \leqslant C_3(2C_3\delta+\delta) = (2C_3^2+C_3)\delta$$

Therefore $C_4 = 2C_3^2 + C_3$ is a desired constant.

The mapping γ of G onto K/L which sends g into k(g)L is an injective real analytic mapping of $\overline{N}(E)$ onto a dense open subset of K/L. By the continuity of the action of K on K/L, there exist open subsets $U \subset K$, $\widetilde{V} \subset K/L$ with $e \in U$, $eL \in \widetilde{V}$ such that $U\widetilde{V} \subset \gamma(\overline{N}(E)) \subset K/L$. We put $V = \gamma^{-1}(\widetilde{V}) \subset \overline{N}(E)$. The function γ^{-1} is defined at each point of \widetilde{V} since $\widetilde{V} = e\widetilde{V} \subset \gamma(\overline{N}(E))$. For $g \in G$ and $\overline{n} \in \overline{N}(E)$, we put

$$g \cdot \bar{n} = \gamma^{-1}(g \cdot \gamma(\bar{n}))$$

if the right hand side is defined. If $k \in U$ and $\bar{n} \in V$, then $k \cdot \gamma(\bar{n}) \in U\tilde{V}$ and $k \cdot \bar{n} = \gamma^{-1}(k \cdot \gamma(\bar{n}))$ is defined. We put $\bar{n}(k) = \gamma^{-1}(kL)$ for $k \in U$. We consider the mapping $U \times V \to \bar{N}(E)$ defined by

$$(k, \bar{n}) \mapsto \bar{n}(k)^{-1}(k \cdot \bar{n}) \quad \text{for} \quad k \in U, \, \bar{n} \in V.$$

$$(11)$$

Then we obtain the following Lemma, which, together with Lemma 5, is essential for proof of the covering theorem.

Lemma 6. There exist a neighborhood W_1 of e in $\overline{N}(E)$, a neighborhood W_2 of e in K and a constant $C_5 > 0$ such that if $k \in W_2$ and $\exp(B_{\delta}) \subset W_1$, then $\overline{n}(k)^{-1}(k \cdot \exp(B_{\delta})) \subset B_{C_5\delta}$.

Proof. Let ν be the dimension of K and d the dimension of $\overline{N}(E)$. We fix any basis $\{X_i\}$ of $\overline{n}(E)$ and define coordinates of $\overline{N}(E)$ by

$$\exp\left(\sum_{j=1}^d x_i X_i\right) \mapsto (x_1, \cdots, x_d).$$

Restrict the coordinates to the open set $V \subset \overline{N}(E)$ and choose an open coordinate neighborhood $U_1 \subset U$ of e in K with local coordinates (k_1, \dots, k_{ν}) , $(k_1(e), \dots, k_{\nu}(e)) = (0, \dots, 0)$. We will describe the mapping (11) by these coordinates x_i, k_j . We choose neighborhoods W_1, W_2 such that $W_1 \subset V \cap \exp(B_1)$, $W_2 \subset U_1, W_2$ has compact closure and these power series of coordinates of

Q.E.D.

 $\overline{n}(k)^{-1}(k \cdot \overline{n})$ converge in an open neighborhood of the closure of $W_1 \times W_2$. We can rearrange the terms of these power series to write the *l*-th coordinate of $\overline{n}(k)^{-1}(k \cdot \overline{n})$ as

$$a_{l}(k) + \sum_{i=1}^{d} a_{li}(k) x_{i} + \sum_{i,j}^{d} a_{lij}(\bar{n}, k) x_{i} x_{j}, \qquad l=1, \cdots, d$$

where $a_i(k)$, $a_{ii}(k)$ and $a_{iij}(\bar{n}, k)$ are real analytic functions of $\bar{n} \in W_1$ and $k \in W_2$.

The terms $a_l(k)$ vanish on $W_2 \subset K$ since $\overline{n}(k)^{-1}(e \cdot k) = e$. There exist $C_6, C_7 > 0$ such that for each $l, i, j, |(a_{lij}(\overline{n}, k))| \leq C_6$ on the compact closure of $W_1 \times W_2$ and $\max_{1 \leq i \leq d} |x_i| \leq C_7 ||X||$ for $X = \sum_{i=1}^d x_i X_i \in \overline{n}(E)$. Then $|\sum_{i,j} a_{lij}(\overline{n}, k) x_i x_j| \leq C_6 C_7^2 ||\log \overline{n}||$ on the closure of $W_1 \times W_2$. Hence we obtain

$$\overline{n}(k)^{-1}(k \cdot \overline{n}) = \exp\left(\sum a_{li}(k)x_i + Z\right)$$

where $||Z|| \leq C_6 C_7^2 ||\log \bar{n}||^2$ for $\bar{n} \in W_1$ and $k \in W_2$.

For fixed $k \in W_2$, the matrix $(a_{Ii}(k))$ is the Jacobian matrix of the transformation

$$\overline{n} \mapsto \overline{n}(k)^{-1}(k \cdot \overline{n}) \qquad \text{for} \quad \overline{n} \in \overline{N}(E) .$$
 (12)

Since $k \in W_2 \subset U_1 \subset U$ and $(U)(eL) \subset \gamma(\overline{N}(E))$, we can write $\overline{n}(k) = \gamma^{-1}(kL) = kb$ by uniquely determined $b \in \overline{B}(E)$ because the restriction of γ to $\overline{N}(E)$ is an injection.

Then the mapping (12) is the same as the mapping

$$\bar{n} \mapsto b^{-1} \cdot \bar{n}$$
 for $\bar{n} \in \bar{N}(E)$ (13)

In fact, γ^{-1} is defined on $k\bar{n}B(E)$ for $k \in W_2$ and $\bar{n} \in W_1$ and we have $b^{-1}\bar{n}B(E) = b^{-1}k^{-1}\gamma^{-1}(k\bar{n}B(E))B(E) = \bar{n}(k)^{-1}\gamma^{-1}(k\bar{n}B(E))B(E) = \gamma(\bar{n}(k)^{-1}\gamma^{-1}(k\bar{n}B(E))) = \gamma(\bar{n}(k)^{-1}\gamma^{-1}(k\cdot\gamma(\bar{n}))) = \gamma(\bar{n}(k))^{-1}(k\cdot\bar{n})).$

The differential of the mapping (13) at $e \in \overline{N}(E)$ is given by

$$X \mapsto P_{\overline{\mathfrak{n}}(E)}Ad(b^{-1})X$$
 for $x \in \overline{\mathfrak{n}}(E)$

where $P_{\overline{\mathfrak{n}}(E)}$ is the projection of \mathfrak{g} onto $\overline{\mathfrak{n}}(E)$ along the decomposition $\mathfrak{g}=\overline{\mathfrak{n}}(E)+\mathfrak{b}(E)$, since the mapping (13) is the composite of the conjugation of b^{-1} , the quotient map $G \to G/B(E)$ and the map γ^{-1} .

Now we consider the operator $P_{\overline{\mathfrak{n}}(E)}Ad(b^{-1})$. The restriction of $P_{\overline{\mathfrak{n}}(E)}Ad(b^{-1})$ to $\overline{\mathfrak{n}}(E)$ is a bounded operator on $\overline{\mathfrak{n}}(E)$ with respect to the norm || ||. Let $||P_{\overline{\mathfrak{n}}(E)}Ad(b^{-1})|_{\overline{\mathfrak{n}}(E)}||$ be the operator norm of $P_{\overline{\mathfrak{n}}(E)}Ad(b^{-1})$ on $\overline{\mathfrak{n}}(E)$. Then since the closure \overline{W}_2 of W_2 is compact, $C_3 = \sup_{\substack{k \in \overline{W}_2\\\overline{\mathfrak{n}}(k) = kb}} ||P_{\overline{\mathfrak{n}}(E)}Ad(b^{-1})|_{\overline{\mathfrak{n}}(E)}||$ is finite

and we have $||P_{\overline{\mathfrak{n}}(E)}Ad(b^{-1})X|| \leq C_8 ||X||$ for all $X \in \overline{\mathfrak{n}}(E)$ and $k \in W_2$.

Consequently we have for $\bar{n} \in W_1$ and $k \in W_2$,

$$||\log (\bar{n}(k)^{-1}(k \cdot \bar{n}))|| = ||a_{Ii}(k)x_i + Z|| \leq (C_6 C_7^2 + C_8)||\log \bar{n}||.$$

Therefore we conclude

$$\bar{n}(k)^{-1}(k \cdot \exp(B_{\delta})) \subset B_{C_5\delta}, \quad C_5 = C_6 C_7^2 + C_8$$

for exp $(B_{\delta}) \subset W_1$ and $k \in W_2$.

Q.E.D.

By K-hull of \overline{B}_{δ} , we mean the union of all K-translates of \overline{B}_{δ} which have non-empty intersection with \overline{B}_{δ} .

Proposition 4.
$$\sup_{0<\delta<\infty} \frac{\mu_E(K\text{-hull of } B_{\delta})}{\mu_E(\bar{B}_{\delta})} < \infty$$

Proof. Let W_1 and W_2 be neighborhoods as in Lemma 6. Let $k \in W_2$, $k \cdot \exp(B_{\delta}) \cap \exp(B_{\delta}) \neq \phi$ and $\exp(B_{\delta}) \subset W_1$. Then $\overline{n}(k) \exp(B_{C_5\delta}) \cap \exp(B_{C_5\delta}) \subset \overline{n}(k)[\overline{n}(k)^{-1}(k \cdot \exp(B_{\delta}))] \cap \exp(B_{\delta}) = k \cdot \exp(B_{\delta}) \cap \exp(B_{\delta}) \neq \phi$. Lemma 5 shows that $k \cdot \exp(B_{\delta}) = \overline{n}(k)[\overline{n}(k)^{-1}(k \cdot \exp(B_{\delta}))] \subset \overline{n}(k) \exp(B_{C_5\delta}) \subset \exp(B_{C_4C_5\delta})$. Hence we have $k\overline{B}_{\delta} \subset \overline{B}_{C_9\delta}$ with $C_9 = C_4C_5$.

There exists a number $\delta_0 > 0$ such that $\exp(B_{\delta})$ is included in W_1 for any $\delta < \delta_0$. We may prove that

$$\sup_{\delta \leqslant \delta_0} \frac{\mu_E(K\text{-hull of } \bar{B}_{\delta})}{\mu_E(\bar{B}_{\delta})} < \infty$$
(14)

since $\mu_E(K/L) = 1$.

Now we assume that (14) is false. Then there exist a sequence $0 < \delta_n \leq \delta_0$ and $k_n \in K$ such that $k_n \bar{B}_{\delta_n} \cap \bar{B}_{\delta_n} \pm \phi$ and $k_n \bar{B}_{\delta_n} \oplus \bar{B}_{C_9 \delta_n}$ since there exists a constant C_{10} such that $\frac{\mu_E(\bar{B}_{C_9})}{\mu_E(\bar{B}_{\delta})} \leq C_{10}$ for each $\delta \leq \delta_0$. Moreover we may assume $\delta_n \to 0$ as $n \to \infty$ since $\mu_E(K/L) = 1$. Let σ be the quotient mapping of K onto K/L. Since $k\bar{B}_{\delta} = kl\bar{B}_{\delta}$ for $l \in L$ and $k \in K$, it follows from the first argument that if $k \in \sigma^{-1}(\sigma(W_2)), \delta \leq \delta_0$ and $k\bar{B}_{\delta} \cap \bar{B}_{\delta} \pm \phi$, then $k\bar{B}_{\delta} \subset \bar{B}_{C_9\delta}$. Therefore $\sigma(k_n)$ is not in the neighborhood $\sigma(W_2)$ of eL. We may suppose k_n converges to some point $k_0 \in K$ with $\sigma(k_0) \pm eL$ since K is compact. If $p_n \in k_n \bar{B}_{\delta_n} \cap \bar{B}_{\delta_n}, p_n$ converges to eL since \bar{B}_{δ_n} shrinks to eL as $n \to \infty$. But $p_n = k_n q_n$ with $q_n \in \bar{B}_{\delta_n}, q_n \to eL$ as $n \to \infty$. Therefore we obtain $eL = k_0 eL$ or $\sigma(k_0) = eL$, a contradiction. Q.E.D.

Proof of Theorem 2'. We put

$$C'' = \sup_{-\infty < t < \infty} \frac{\mu_E(K\text{-hull of } \overline{B}_{e^t})}{\mu_E(\overline{B}_{e^{t-1}})}.$$

Then Proposition 4 implies that $1 < C'' < \infty$. Let $T_1 = \sup\{t_k; k\bar{B}_{e'k} \text{ is associated} \text{ to } kL \in U\}$. If $T_1 = +\infty$, then we can find a set $k \cdot \bar{B}_{e'k}$ with measure as close to 1 as we like, and the conclusion of the theorem follows since $1 < C'' < \infty$. We

assume from now on that $T_1 < \infty$. We construct R_n , T_n and $k_n \bar{B}_{e^{t_n}}$ in the following process: Let R_1 be the family $\{k\bar{B}_{e^{t_k}}\}$ of all associated sets. Taking a set $k_1\bar{B}_{e^{t_1}} \in R_1$ with $T_1 - 1 \le t_1 \le T_1$, we put $R_2 = \{k\bar{B}_{e^{t_k}} \in R_1; k\bar{B}_{e^{t_k}} \cap k_1\bar{B}_{e^{t_1}} = \phi\}$. If $R_2 = \phi$, then our process is over. If $R_2 \neq \phi$, then we put $T_2 = \sup\{t_k; k\bar{B}_{e^{t_k}} \in R_2\}$. Taking a set $k_2\bar{B}_{e^{t_2}} \in R_2$ with $T_2 - 1 \le t_2 \le T_2$, we put $R_3 = \{k\bar{B}_{e^{t_k}} \in R_2$; $k\bar{B}_{e^{t_k}} \cap k_2\bar{B}_{e^{t_2}} = \phi\}$ and our process is continued inductively.

If V_n is the union of the members of $R_n - R_{n+1}$ and V_0 is the union of the members of R_1 , then $V_0 = \bigcup_{n=1}^{\infty} V_n$. Since $U \subset V_0$, we obtain $\mu_E(U) \leq \sum_{n=1}^{\infty} \mu_E(V_n)$. The proof will be complete if we show that $\mu_E(V_n) \leq C'' \mu_E(k_n \bar{B}_{e^t n})$. Let $k\bar{B}_{e^t k} \in R_n - R_{n+1}$. Then $T_n \geq t_k$ and $k\bar{B}_{e^t k} \cap k_n \bar{B}_{e^{tn}} \neq \phi$. Thus $k\bar{B}_{e^T n} \cap k_n \bar{B}_{e^T n} \neq \phi$, $k_n^{-1}k\bar{B}_{e^T n} = \phi$. Kently, $k\bar{B}_{e^T n} = 0$, $k_n \bar{B}_{e^T n} = 0$. Thus $k\bar{B}_{e^T n} = 0$, $k_n \bar{B}_{e^T n} = 0$. Thus $k\bar{B}_{e^T n} = 0$, $k_n \bar{B}_{e^T n} = 0$. Thus $k\bar{B}_{e^T n} = 0$, $k_n \bar{B}_{e^T n} = 0$. Thus $k\bar{B}_{e^T n} = 0$, $k_n \bar{B}_{e^T n} = 0$. Thus $k\bar{B}_{e^T n} = 0$, $k_n \bar{B}_{e^T n} = 0$. Thus $k\bar{B}_{e^T n} = 0$, $k_n \bar{B}_{e^T n} = 0$. Thus $k\bar{B}_{e^T n} = 0$, $k_n \bar{B}_{e^T n} = 0$. Thus $k\bar{B}_{e^T n} = 0$. Thus $k\bar{B}_{e^T n} = 0$. The $k\bar{B}_{e^T n} = 0$ and $k\bar{B}_{e^T n} = 0$. Thus $k\bar{B}_{e^T n} = 0$. The $k\bar{B}_{e^T n} = 0$ and $k\bar{B}_{e^T n} = 0$. Thus $k\bar{B}_{e^T n} = 0$. The $k\bar{B}_{e^T n} = 0$ and the inequality $T_n - 1 \leq t_n$, we obtain $\mu_E(V_n) \leq \mu_E(k_n(K-hull of \bar{B}_{e^T n})) \leq C'' \mu_E(\bar{B}_{e^T n}) = 0$. Q.E.D.

REMARK. From the definition of the maximal function f^* for an integrable function f on K/L and Lemma 3, we have

$$f^*(k_{\scriptscriptstyle 0}L) = \sup_{{\scriptscriptstyle 0} < \delta < \infty} \frac{1}{\mu_E(\bar{B}_{\delta})} \int_{\bar{B}_{\delta}} |f(k_{\scriptscriptstyle 0}kL)| d\mu_E(kL) \quad \text{for} \quad k_{\scriptscriptstyle 0}L \in K/L$$

Theorem 3. (Maximal theorem)

For an integrable function f on K|L and any real number $\xi > 0$, we obtain the following inequalities:

(i)
$$\mu_E\{kL \in K/L; f^*(kL) > \xi\} \leq \frac{C''}{\xi} \int_{K/L} |f(kL)| d\mu_E(kL)$$
 (15)

(ii)
$$\mu_E\{kL \in K/L; f^*(kL) > \xi\} \leq \frac{2C''}{\xi} \int_{|f(kL)| \ge \frac{1}{2}\xi} |f(kL)| d\mu_E(kL)$$
 (16)

where C'' is the same constant as in Theorem 2'.

Proof. Let $U = \{kL \in K/L; f^*(kL) > \xi\}$. From the above Remark, for each $k_0 L \in U$ there exists \overline{B}_{δ_0} such that

$$\int_{k_0\bar{B}_{\delta_0}} |f(kL)| \, d\mu_E(kL) \! \ge \! \xi \mu_E(\bar{B}_{\delta_0}) = \xi \mu_E(k_0\bar{B}_{\delta_0}) \, .$$

Theorem 2' says that there exists a disjoint subfamily $\{k_j \bar{B}_{\delta j}\}$ of $\{k_0 \bar{B}_{\delta_0}; k_0 L \in U\}$ such that $C'' \sum_{j=1} \mu_E(k_j \bar{B}_{\delta j}) \ge \mu_E(U)$. Therefore

$$\int_{K/L} |f(kL)| d\mu_E(kL) \geq \sum_{j=1}^{\infty} \int_{k_j \overline{B}_{\delta_j}} |f(kL)| d\mu_E(kL) \geq \xi \sum_{j=1}^{\infty} \mu_E(k_j \overline{B}_{\delta_j}) \geq \frac{\xi}{C''} \mu_E(U)$$

and the inequality (i) follows. For the proof of (ii), we define an integrable function h on K/L by

$$h(kL) = \begin{cases} f(kL) & \text{if } |f(kL)| \ge \frac{1}{2}\xi \\ 0 & \text{otherwise.} \end{cases}$$

Then $h^*(kL) + \frac{1}{2}\xi \ge f^*(kL)$. Hence by (i)

$$\mu_{E}(U) \leq \mu_{E} \left\{ kL; h^{*}(kL) > \frac{1}{2}\xi \right\} \leq \frac{2C''}{\xi} \int_{K/L} |h(kL)| d\mu_{E}(kL)$$
$$= \frac{2C''}{\xi} \int_{|f(KL)| \ge \frac{1}{2}\xi} \int |f(kL)| d\mu_{E}(kL) . \qquad \text{Q.E.D.}$$

Proof of Theorem 1. For any $\mathcal{E}_1 > 0$, we can write as $f = f_1 + f_2$ where f_1 is continuous and $f_2 \in L^1(K/L)$ with L^1 -norm $||f_2||_1 < \mathcal{E}^2$. Let h_1 , h_2 and h be the Poisson integrals of f_1 , f_2 and f, respectively. Since f_1 is continuous, we can choose (Korányi-Helgason [5]) T > 0 large enough such that t > T implies

$$|h_1(ka_tK) - f_1(kL)| < \varepsilon$$
 for all $k \in K$

where $a_t = \exp tX^{\circ}$. If $U_1 = \{kL \in K/L; |f_1(kL) - f(kL)| \ge \varepsilon\} = \{kL \in K/L; |f_2(kL)| \ge \varepsilon\}$, then $\mu_E(U_1) < \varepsilon$ since $\varepsilon \mu_E(U_1) \le ||f_2||_1 < \varepsilon^2$. Therefore except in the set U_1 of measure $<\varepsilon$,

$$|h_1(ka_tK)-f(kL)| < 2\varepsilon$$
 for $t > T$.

Let $U_2 = \left\{ kL \in K/L; f_2^*(kL) > \frac{\varepsilon}{C'} \right\}$ where C' is a constant in Proposition 3. Then we have by Theorem 3 (i)

$$\mu_E(U_2) \leqslant \frac{C'C''}{\varepsilon} \int_{K/L} |f_2(kL)| d\mu_E(kL) \leqslant \frac{C'C''}{\varepsilon} \cdot \varepsilon^2 = C'C''\varepsilon .$$

Hence we have by Proposition 3

$$|h_2(ka_tK)| \leq \varepsilon$$
 for all $t > \tanh^{-1}\left(\frac{1}{2}\right)$

except in the set U_2 of measure $\leq C'C''\varepsilon$. Therefore, except in the set $U_1 \cup U_2$ of measure $(C'C''+1)\varepsilon$,

$$|h(ka_tK)-f(kL)| < 3\varepsilon$$
 for $t > \max\left(T, \tanh^{-1}\left(\frac{1}{2}\right)\right)$.

Replacing \mathcal{E} by $2^{-n}\mathcal{E}$ and taking $U_1^{(n)}$ and $U_2^{(n)}$ in place of U_1 and U_2 , let U be the union of all $U_1^{(n)} \cup U_2^{(n)}$, $n=1, 2, \cdots$. Then we have

$$\lim_{t\to\infty}h(ka_tK)=f(kL)$$

except in the set U of measure $\leq 2(C'C''+1)\varepsilon$. Since ε is arbitrary,

$$\lim_{t\to\infty} h(ka_tK) = f(kL)$$

almost everywhere on K/L with respect to μ_E .

6. Inequalities of Hardy-Littlewood

In this section, we shall prove inequilities of Hardy-Littlewood in the same way as Rauch's proof [15] of the inequalities for hermitian hyperbolic spaces. We assume again that G/K is an irreducible hermitian symmetric space of tube type. For a function f on K/L, we define a real valued non-negative function $\log^+ |f|$ on K/L by

$$(\log^+ |f|)(kL) = \begin{cases} \log |f(kL)| & \text{if } |f(kL)| \ge 1 \\ 0 & \text{otherwise.} \end{cases}$$

For a measurable function φ on K/L, we define a decreasing function μ_{φ} on $\mathbf{R}^+ = [0, \infty)$ by

$$\mu_{\varphi}(\xi) = \mu_E\{kL \in K/L; |\varphi(kL)| > \xi\} \quad \text{for} \quad \xi \in \mathbf{R}^+.$$

Then for any non-negative increasing function s on \mathbf{R}^+ we obtain

$$\int_{\mathcal{K}/L} s(|\varphi(kL)|) d\mu_E(kL) = -\int_0^\infty s(\xi) d\mu_{\varphi}(\xi)$$
(17)

Q.E.D.

where the right hand side means the Lebesgue-Stieltjes integral with respect to μ_{φ} .

Proposition 5. There exist positive constants C_{11} , α and β such that (i) if p > 1, $\int_{K/L} |f^*(kL)|^p d\mu_E(kL) \leq C_{11} ||f||_p^p$ for all $f \in L^p(K/L)$ (ii) if p=1, $\int_{K/L} |f^*(kL)| d\mu_E(kL) \leq \alpha \int_{K/L} |f(kL)| \log^+(|f(kL)|) d\mu_E + \beta$ for all functions fsuch that $f \log^+ f \in L^1(K/L)$.

Proof. Since we have from Theorem 3 (ii) and (17)

$$\mu_{f^*}(\xi) \leq \frac{2C''}{\xi} \int_{|f(KL)| \geq \frac{1}{\xi} \xi} |d\mu_E|(kL) = -\frac{2C''}{\xi} \int_{\frac{1}{\xi} \xi}^{\infty} x d\mu_f(x) \quad \text{for} \quad \xi > 0,$$

we have

$$\int_{0}^{\infty} \mu_{f^{*}}(\xi) \xi^{p-1} d\xi \leq -2C'' \int_{0}^{\infty} \xi^{p-2} d\xi \int_{\frac{1}{2}}^{\infty} x d\mu_{f}(x) = -2C'' \int_{0}^{\infty} x d\mu_{f}(x) \int_{0}^{2x} \xi^{p-2} d\xi.$$

Let p > 1. Then $\int_{0}^{\infty} \mu_{f^{*}}(\xi) \xi^{p-1} d\xi = -\frac{2^{p-1}}{p-1} (2C'') \int_{0}^{\infty} x^{p} d\mu_{f}(x)$ $= \frac{2^{p-1}}{p-1} (2C'') \int_{K/L} |f(kL)|^{p} d\mu_{E}(kL) < \infty.$

Hence we obtain

$$\lim_{\xi\to 0}\int_{\xi}^{2\xi}\mu_{f^*}(x)x^{p-1}dx=0.$$

Since μ_{f^*} is a decreasing function on \mathbf{R}^+ , we have

$$\mu_{f^{*}}(2\xi)\xi^{p}\frac{2^{p}-1}{p} = \mu_{f^{*}}(2\xi)\int_{\xi}^{2\xi}x^{p-1}dx \leq \int_{\xi}^{2\xi}\mu_{f^{*}}(x)x^{p-1}dx$$

Therefore $\lim_{\xi \to \infty} \mu_{f^*}(2\xi)\xi^p = 0$, and making use of integration by parts of Lebesgue-Stieltjes integral, we obtain

$$\int_{K/L} f^*(kL)^p d\mu_E(kL) = -\int_0^\infty x^p d\mu_{f^*}(x) = \int_0^\infty \mu_{f^*}(x) p x^{p-1} dx$$
$$\leq \frac{p}{p-1} 2^{p-1} (2C'') \int_{K/L} |f(kL)|^p d\mu_E(kL) + \frac{p}{p-1} (2C'') (2C'') \int_{K/L} |f(kL)|^p d\mu_E(kL) + \frac{p}{p-1} (2C'') (2C'') (2C'') \|f(kL)\|^p d\mu_E(kL) + \frac{p}{p-1} (2C'') \|f(kL)\|^p d\mu_E(kL) + \frac{p}{p-1} (2C'') \|f(kL)\|^p d\mu_E(kL) + \frac{p}{p-1} (2C'') \|f(kL)\|^p \|$$

If p=1, then we have

$$\begin{split} \int_{1}^{\infty} \mu_{f^{\star}}(x) dx &\leq -2C^{\prime\prime} \int_{1}^{\infty} y d\mu_{f}(y) \int_{1}^{2y} \frac{dx}{x} = -2C^{\prime\prime} \int_{1}^{\infty} y \log{(2y)} d\mu_{f}(y) \\ &\leq 2C^{\prime\prime} \int_{K/L} |f(kL)| \log^{+}(|f(kL)|) d\mu_{E}(kL) \\ &+ 2C^{\prime\prime} \log{2} \int_{K/L} |f(kL)| d\mu_{E}(kL) \,. \end{split}$$

Since $|f| \leq 1 + |f| \log^+ |f|$, we have

$$\int_{K/L} |f(kL)| d\mu_E(kL) \leq \mu_E(K/L) + \int_{K/L} |f(kL)| \log^+(|f(kL)|) d\mu_E(kL)$$

and

$$\int_0^1 \mu_f *(x) dx \leqslant \mu_E(K/L) .$$

Since

$$\int_{K/L} |f^*(kL)| d\mu_E(kL) = -\int_0^\infty x d\mu_{f^*}(x) = \int_0^\infty \mu_{f^*}(x) dx$$
$$= \int_0^1 \mu_{f^*}(x) dx + \int_1^\infty \mu_{f^*}(x) dx ,$$

Q.E.D.

the second inequality follows.

DEFINITION. For an integrable function f on K/L, we define a function f_* on K/L by

$$f_{*}(k_{0}L) = \sup_{\frac{1}{2} < \tanh t < 1} \int_{K/L} |f(kL)| P_{E}(k_{0}a_{t}K, kL) d\mu_{E}(kL) \quad \text{for} \quad k_{0}L \in K/L$$

where $a_t = \exp tX^{\circ}$. Since L centralizes X° , f_* is a well defined function on K/L. Since the supremum over rational t gives the same answer, f_* is a measurable function on K/L.

Theorem 4. (Inequalities of Hardy-Littlewood) There exist constants C_{13} , α' and β' such that

(i) if
$$p > 1$$
, $\int_{K/L} |f_*(kL)|^p d\mu_E(kL) \leq C_{13} ||f||_p^p$ for all $f \in L^p(K/L)$

(ii) if
$$p=1$$
, $\int_{K/L} |f_*(kL)| d\mu_E(kL) \leq \alpha' \int_{K/L} |f(kL)| \log^+(|f(kL)|) d\mu_E(kL) + \beta'$

for all f such that $f \log^+ |f| \in L^1(K/L)$.

Proof. These are immediate consequences of Propositions 3 and 5. Q.E.D.

OSAKA UNIVERSITY

References

- [1] S. Bochner: Classes of holomorphic functions of several variables in circular domains, Proc. Nat. Acad. Sci. U.S.A. 46 (1960), 721–723.
- [2] H. Furstenberg: A poisson formula for semi-simple Lie groups, Ann. of Math. (2) 77 (1963), 335-386.
- [3] G.H. Hardy and J.E. Littlewood: A maxiaml theorem with function-theoretic applications, Acta Math. 54 (1930), 81-116.
- [4] Harish-Chandra: Representations of semi-simple Lie groups: VI, Amer. J. Math. 78 (1956), 564–628.
- [5] S. Helgason and A. Korányi: A Fatou-type theorem for harmonic functions for symmetric spaces, Bull, Amer. Math. Soc. 74 (1968), 258-263
- [6] S. Helgason: A duality for symmetric space with applications to group representations, Advance in Math. 5 (1970), 1-154.
- [7] A.W. Knapp: Fatou's theorem for symmetric spaces: I, Ann. of Math. (2) 88 (1968), 106–127.
- [8] A.W Knapp and R.E. Williamson: Poisson integrals and semisiple Lie groups, J. Analyse Math. 24 (1971) 53-76.
- [9] A. Korányi: The Poisson integral for generalized halfplanes and bounded symmetric domains, Ann. of Math. (2) 82 (1965), 332–250.

- [10] ——: Harmonic functions on hermitian hyperbolic space, Trans. Amer. Math. Soc. 135 (1969), 50–7516.
- [11] A. Korányi: Boundary behavior of Poisson integrals on symmetric spaces, Trans. Amer. Math. Soc. 140 (1969), 393-409.
- [12] ——and J.A. Wolf: Realization of hermitian symmetric spaces as generalized half-planes, Ann. of Math. (2) 81 (1965), 265–288.
- [13] C.C. Moore: Compactifications of symmetric spaces, Amer. J. Math. 86 (1964), 201-218, 358-378.
- [14] I.I. Pjateckii-Šapiro: Geometry of Classical Domains and Theory of Automorphic Functions, Moscow, 1961.
- [15] H.E. Rauch: Harmonic and ayalytic functions of several variables and the maximal theorem of Hardy and Littlewood, Canad. J. Math. 8 (1956), 171–183.
- [16] E.M. Stein and N.J. Weiss: On the convergence of Poisson integrals, Trans. Amer Math. Soc. 140 (1969), 35-54.
- [17] E.M. Stein, G. Weiss and M. Weiss: H^p class of holomorphic functions in tube domains, Proc. Nat. Acad. Sci. U.S.A. 52 (1964), 1035-1039.
- [18] M. Takeuchi: Cell decompositions and Morse equalities on certain symmetric spaces, J. Fac. Sci. Univ. Tokyo Sect. I. XII (1965), 81-192.
- [19] N.J. Weiss: Almost everywhere convergence of Poisson integral on generalized half-planes, Bull. Amer. Math. Soc. 74 (1968), 533-537.
- [20] N.J. Weiss: Almost everywhere convergence of Poisson integrals on tube domain, over cones, Trans. Amer. Math. Soc. 129 (1967), 283-307.
- [21] A. Zygmund: Trigonometric Series, 2nd ed. Cambride Univ. Press, New York, 1959.