Matumoto, T. Osaka J. Math. 10 (1973), 51-68

EQUIVARIANT COHOMOLOGY THEORIES ON G-CW COMPLEXES

ΤΑΚΑΟ ΜΑΤUMOTO*

(Received December 10, 1971)

Introduction

G.Bredon developed the equivariant (generalized) cohomology theories in [3], in which he had to restrict himself to the case of finite groups. One of the purposes of this note is to generalize his theory by replacing G-complexes with G-CW complexes. Then, for example, the followings are still true for the case in which G is an arbitrary topological group. The E_2 -term of the Atiyah-Hirzebruch spectral sequence associated to a G-cohomology theroy (in this note we frequently use 'G-' instead of 'equivariant') is a classical G-cohomology theory, which is easy to calculate ($\S1 \sim \S4$). The G-obstruction theory works in a classical G-cohomology theory ($\S5$). Moreover, for a G-cohomology theory we get a representation theorem of E.Brown ($\S6$) and the Maunder's spectral sequence ($\S7$).

As an application we study the equivariant K^* -theory in the last sestion (§8). The Atiyah-Hirzebruch spectral sequence for $K^*_{\mathcal{C}}(X)$ collapses, if dim $X/G \leq 2$ or X satisfies some other conditions. The E_2 -term depends only on the orbit type decomposition of the orbit space, if X is a regular O(n)-manifold or the like. These facts enable us to calculate the equivariant K^* -group of Hirzebruch-Mayer O(n)-manifolds and Jänich knot O(n)-manifolds. Our spectral sequence for a differentiable G-manifold is similar to that of G.Segal which is defined by the equivariant nerve of his [13], but ours is easier to calculate the E_2 -term.

In this note G denotes a fixed topological group. Terminologies and notation follow those of [3], [9], [10] in general, though σ denotes a closed cell which is the closure of an (open) cell in the definition of a G-CW complex in [10]. And $G\sigma$ denotes the G-orbit of σ and H_{σ} the unique isotropy subgroup at any interior point of σ . §0 is exposed for reference to the properties of G-CW complexes.

The author wishes to thank Professors Shôrô Araki and Akio Hattori for their criticisms and encouragements.

^{*)} Supported in part by the Sakkokai Foundation.

0. Preliminaries about G-CW complexes

We summarize here the properties of G-CW complexes and G-CW complexes with base point (the base point in G-CW complex is always assumed to be a vertex which is left fixed by each element of G).

Proposition 0.1. (G-cellular approximation theorem) Let $f: X \to Y$ be a G-map between G-CW complexes (with base point). Then f is (base point preserving) G-homotopic to a G-map, $f': X \to Y$ such that $f'(X^n) \subset Y^n$ for any n.

This is Theorem 4.4 of [10]. Moreover, if f is G-cellular on a G-subcomplex A, then we may require f'=f on A.

Proposition 0.2. (G-homotopy extension property) Let $f_0: X \to Y$ be a given G-map of a G-CW complex X into an arbitrary G-space Y. Let $g_t: A \to Y$ be a G-homotopy of $g_0=f_0|A$, where A is a G-subcomplex of X. Then, there is a G-homotopy $f_t: X \to Y$, such that $f_t|A=g_t$.

This is (J) of [10].

For a pair of G-CW complexes (X, A), collapsed A into a point, X/A forms a G-CW complex with a base point A/A (taken to be a disjoint point if $A=\phi$, in which case X^+ denotes X/ϕ). Let $i: A \to X$ be the inclusion. Consider the mapping cone $C_i = X \cup CA = (X \times \{1\} \cup A \times I)/A \times \{0\}$ with the obvious Gaction, trivial on I. Then, by the G-homotopy extension property, we can prove that the collapsing map, $X \cup CA \to X \cup CA/CA = X/A$ is a G-homotopy equivalence. Therefore, we get

Proposition 0.3. Let (X, A) be a pair of G-CW complexes (with base point) and let i: $A \rightarrow X$ be the natural inclusion. Then, in the following cofibering sequence, the vertical maps are G-homotopy equivalences:

Proposition 0.4. (Theorem of J.H.C.Whitehead) Let φ : $(X, A) \rightarrow (Y, B)$ be a G-map between two pairs of G-CW complexes with base point. For each closed subgroup H which appears as an isotropy subgroup in X or Y, we assume that X^{H} , A^{H} , Y^{H} and B^{H} are arcwise connected, and the induced maps,

and

 $\varphi_*: \pi_n(X^H, *) \to \pi_n(Y^H, *)$ $\varphi_*: \pi_n(A^H, *) \to \pi_n(B^H, *)$

are bijective for $1 \leq n \leq \max(\dim X, \dim Y)$. Then, $\varphi: (X, A) \rightarrow (Y, B)$ is a G-

homotopy equivalence.

This is a special case of *) Theorem 5.3 of [10].

Proposition 0.5. Let G be a compact Lie group. Then any compact differentiable G-manifold has a G-finite G-CW complex structure. This comes from Proposition 4.4 of [9].

1. Definition of an equivariant cohomology theory on G-CW complexes

On the category of pairs of G-finite G-CW complexes and G-homotopy classes of G-maps, a G-cohomology theory is defined to be a sequence of contravariant functors $h_G^n(-\infty < n < \infty)$ into the category of abelian groups together with natural transformation $\delta^n : h_G^n(A, \phi) \rightarrow h_G^{n+1}(X, A)$ such that the following axioms are satisfied (we put $h_G^n(X) = h_G^n(X, \phi)$):

(1) The inclusion $(X, X \cap A) \rightarrow (X \cup A, A)$ induces an isomorphism,

$$h^n_G(X \cup A, A) \xrightarrow{\cong} h^n_G(X, X \cap A)$$
.

(2) If (X, A) is a pair of G-finite G-CW complexes, the sequence,

$$\cdots \to h^n_G(X, A) \to h^n_G(X) \to h^n_G(A) \xrightarrow{\delta^n} h^{n+1}_G(X, A) \to \cdots$$

is exact.

Standard argument can be used to prove the exactness of Mayer-Vietoris sequence and the long sequence of triples.

Lemma 1.1. For a pair of G-finite G-CW complexes (X, A), the collapsing map, $(X, A) \rightarrow (X|A, A|A)$, induces an isomorphism,

$$h^n_G(X|A, A|A) \xrightarrow{=} h^n_G(X, A)$$

Proof. By the proposition 0.3 the collapsing map, $X \cup CA \rightarrow X \cup CA/CA = X/A$ is a G-homotopy equivalence. Moreover, $CA \rightarrow *$ is an G-homotopy equivalence, and $(X, A) \rightarrow (X \cup CA, CA)$ is an existion map. Hence, we get the commutative diagram (the homomorphisms are induced by the canonical G-maps),

$$\begin{array}{ccc} h^n_G(X \cup CA, \, *) \xrightarrow{\cong} h^n_G(X \cup CA, \, CA) \\ \simeq & \swarrow & \swarrow & \uparrow \simeq \\ h^n_G(X|A, \, A|A) \rightarrow & h^n_G(X, \, A) \end{array}$$
q.e.d.

^{*)} The footnote at p. 371 of [10] is inadequate. (*) $\pi_k(X, Y)$ vanishes' should read ($\pi_k(X, Y, y)$ vanishes for every point y of Y'' and also (φ_* : *) $\pi_k(X) \rightarrow \pi_k(Y)$ is bijective or surjective' should read (φ_* : $\pi_k(X, x) \rightarrow \pi_k(Y, \varphi(x))$) is bijective or surjective for every point x of X''. Then, the statements and proofs in [10] are true in the context except Theorem 5.2. In Theorem 5.2 we should add the assumption that each arcwise connected component of X or Y is n-simple for every $n \ge 1$.

Т. Матимото

For a G-CW complex with base point X, $SX=S \wedge X$ (with obvious G-action, trivial on the "circle factor" S) denotes the reduced suspension of X. A reduced G-cohomology theory on the category of G-finite G-CW complexes with base point and base point preserving G-homotopy classes of base point preserving G-maps is a sequence of contravariant functors $\tilde{h}_G^n(-\infty < n < \infty)$ into the category of abelian groups, together with natural transformations $\sigma^n: \tilde{h}_G^n(X) \rightarrow \tilde{h}_G^{n+1}(SX)$ satisfying the following axioms:

- (1)' σ^n is an isomorphism for each *n* and *X*.
- (2)' The short sequence,

$$\hat{h}^n(X|A) \to \hat{h}^n_G(X) \to \hat{h}^n_G(A)$$

is exact.

REMARK 1.2. By Proposition 0.3 and Axioms (1)', (2)' we get the long exact sequence for $\hat{h}_{c}^{*}(\cdot)$.

Let h_G^* be a G-cohomology theory. Define $\tilde{h}_G^*(X)$ by $h_G^*(X, *)$. Then h_G^* is a reduced G-cohomology theory by Lemma 1.1. Conversely let \tilde{h}_G^* be a reduced G-cohomology theory. Define $h_G^*(X, A)$ by $\tilde{h}_G^*(X|A)$. Then \tilde{h}_G^* is a G-cohomology theory by Remark 1.2. This is a canonical one-to-one correspondence. Afterwards we identify $h_G^n(X, A)$ and $\tilde{h}_G^n(X|A)$.

We enclose this section after giving some examples.

Examples 1.3. of G-cohomology theories:

(i) $h_G^n(X) = H^n(X/G; Z).$

(ii) $h_G^n(X) = K_G^n(X)$ when G is a compact Lie group.

(iii) $h_G^n(X) = h^n(X \times_G E_G)$ where E_G is a universal G-principal bundle and h^n a cohomology theory for spaces.

2. On classification of G-maps between G-cells of the same dimension up to G-homotopy classes

Let *H* be a closed subgroup of *G*. Suppose that \bar{X} is a space and $G/H \times \bar{X}$ is a *G*-space with the obvious *G*-action, trivial on \bar{X} . Let *Y* be a *G*-space and $f: G/H \times \bar{X} \to Y$ be a *G*-map. Since *f* is *G*-equivariant, we get, $f(H/H \times \bar{X}) \subset Y^H$ where Y^H is the *H*-pointwise fixed subspace of *Y*. Therefore, we may define a map, $f: \bar{X} \to Y^H$, by $\bar{f}(x) = f(H/H \times x)$.

Lemma 2.1. In the above situation, the correspondence, $f \mapsto \overline{f}$, yields an isomorphism of sets,

G-maps $(G/H \times \overline{X}, Y) \xrightarrow{\simeq} Maps (\overline{X}, Y^H)$.

Moreover, the isomorphism induces another isomorphism,

 $[G/H \times \bar{X}; Y]_G \xrightarrow{\simeq} [\bar{X}; Y^H]$

54

where $[\cdot; \cdot]_G$ stands for the set of G-homotopy classes of G-maps.

Proof. Let $f: \bar{X} \to Y^H$ be a map. Define a map, $f: G/H \times \bar{X} \to Y$, by $f(gH/H \times x) = g \cdot \bar{f}(x)$ for any $g \in G$, and any $x \in X$. If gH/H = g'H/H, then $g' = g \cdot h$ for some $h \in H$, so that $g \cdot \bar{f}(x) = g' \cdot \bar{f}(x)$ (since $\bar{f}(x)$ is fixed by H), which shows that this definition is valid. By this definition f is certainly G-equivariant, and conversely if we assume that a map $f: G/H \times \bar{X} \to Y$ is G-equivariant, we get $f(gH/H \times x) = g \cdot f(H/H \times x)$.

Therefore, the correspondence, $\vec{f} \mapsto \vec{f}$, is the converse to the correspondence, $f \mapsto \vec{f}$. This proves the first isomorphism. The second isomorphism is induced, because the *G*-homotopy $f_t(0 \le t \le 1)$ and homotopy $\vec{f}_t(0 \le t \le 1)$ correspondence each other in the same way.

q.e.d.

Assume that \bar{X} has a distinguished closed subspace \bar{A} and Y has a base point y_0 (the base point is left fixed by G).

Lemma 2.1'. The correspondence, $f \mapsto \overline{f}$, yields an isomorphism,

G-maps $((G|H \times \overline{X})|(G|H \times \overline{A}), Y|y_0)_0 \xrightarrow{\cong} Map (\overline{X}|\overline{A}, Y^H|y_0)_0$.

Moreover, the isomorphism induces another isomorphism,

 $[(G/H \times \overline{X})/(G/H \times \overline{A}); Y/y_{0}]_{G,0} \xrightarrow{\cong} [\overline{X}/\overline{A}; Y^{H}/y_{0}]_{0},$

where $[\cdot, \cdot]_{G,0}$ stands for the set of base point preserving G-homotopy classes of base point preserving G-maps.

Proof. The correspondence $\overline{f} \mapsto f$, is also defined in the same way as in Lemma 2.1.

q.e.d.

Therefore, we get

Corollary 2.2. Let H and K be two closed subgroups of G and $n \ge 0$ be a fixed integer. Then, "the restriction" yields the following isomorphisms,

- (i) $[G/H; G/K]_G \xrightarrow{\cong} \pi_0((G/K)^H),$
- (ii) $[(G/H \times \Delta^n)/(G/H \times \partial \Delta^n); (G/K \times \Delta^n)/(G/K \times \partial \Delta^n)]_{G,0}$

$$\stackrel{\cong}{\to} \pi_n((G/K)^H \times \Delta^n)/((G/K)^H \times \partial \Delta^n, *).$$

Here $\pi_0(\cdot)$ stands for the set of arcwise connected components and * is the base point $((G/K)^H \times \partial \Delta^n)/(G/K)^H \times \partial \Delta^n).$

Now let Y be a space and $n \ge 1$ be an integer.

Lemma 2.3. $Y \times \Delta^n / Y \times \partial \Delta^n$ is (n-1)-connected, and there are natural isomorphisms,

$$\pi_n'(Y \times \Delta^n / Y \times \partial \Delta^n, *) \xrightarrow{\cong} H_n(Y \times \Delta^n / Y \times \partial \Delta^n; \mathbb{Z}) \xrightarrow{\cong} H_0(Y; \mathbb{Z})$$

Т. Матимото

Here $\pi_n'(\cdot) = \pi_n(\cdot)$ for $n \ge 2$ and $\pi_1'(\cdot)$ is the abelianized group of $\pi_1(\cdot)$ and $H_n(\cdot; \mathbb{Z})$ is the singular homology group.

Proof. By the definition, $Y \times \Delta^n / Y \times \partial \Delta^n$ is homeomorphic with the smash product $Y^+ \wedge \Delta^n / \partial \Delta^n$. Hence $Y \times \Delta^n / Y \times \partial \Delta^n$ is (n-1)connected. If we use the Hurwicz theorem, the rest is easily proved.

q.e.d.

Let $\{Y_{\lambda}: \lambda \in \Lambda\}$ be the family of all the arcwise connected components of Y. Take an element $y_{\lambda} \in Y_{\lambda}$ for each λ . Then each element of $H_0(Y; \mathbb{Z})$ has $\sum n_{\lambda} \cdot y_{\lambda}(n_{\lambda}=0 \text{ except the finite } \lambda's)$ as its representative. Also any map: $(\Delta^n, \partial \Delta^n) \rightarrow (Y \times \Delta^n/Y \times \partial \Delta^n, *)$ determines n_{λ} uniquely.

Now let H and K be closed subgroups of G. Recall that for any element $g \in N(H, K) = \{g \in G, Hg \subset gK\}, \hat{g}: G/H \rightarrow G/K$ is defined by $\hat{g}(aH) = agK$, and this correspondence, $g \mapsto \hat{g}$, induces an isomorphism,

$$N(H, K)/K = (G/K)^H \xrightarrow{\cong} G$$
-maps $(G/H, G/K)$.

Suppose that $\{g_{\lambda} \in G\}$ is the family of representatives of all arcwise connected components of $N(H, K)/K = (G/K)^{H}$. Then any base point preserving G-map,

$$f\colon (G/H\times\Delta^n)/(G/H\times\partial\Delta^n)\to (G/K\times\Delta^n)/(G/K\times\partial\Delta^n),$$

determines $n_{\lambda}(f)$ such that \overline{f} is equal to $\Sigma n_{\lambda}(f) \cdot g_{\lambda}$ in $\pi_n'(((G/K)^H \times \Delta^n)/((G/K)^H \times \partial \Delta^n))$, *) $\cong H_0((G/K)^H; \mathbb{Z})$.

Let L be another closed subgroup of G. Suppose that $g_{\lambda} \in N(H, K)$ and $g_{\mu} \in N(K, L)$, then we get

 $g_{\lambda} \cdot g_{\mu} \in N(H, L) \text{ (not } g_{\mu} \cdot g_{\lambda}!), \text{ and } (g_{\lambda} \cdot g_{\mu})^{\wedge} = \hat{g}_{\mu} \circ \hat{g}_{\lambda}.$

From this we get

Proposition 2.4. Let H, K and L be closed subgroup of G. Suppose that $\{g_{\lambda} \in G\}$, $\{g_{\mu} \in G\}$ and $\{g_{\nu} \in G\}$ are the families of representatives of all arcwise connected components of N(H, K)/K, N(K, L)/L and N(H, L)/L respectively. Let $f: (G/H) \times \Delta^n)/(G/H \times \partial \Delta^n) \rightarrow (G/K \times \Delta^n)/(G/K \times \partial \Delta^n)$ and $g: (G/K \times \Delta^n)/(G/K \times \partial \Delta^n) \rightarrow (G/L \times \Delta^n)/(G/L \times \partial \Delta^n)$, be base point preserving G-maps. Then,

$$n_{\nu}(g \circ f) = \Sigma n_{\mu}(g) n_{\lambda}(f) .$$

Here the summation is taken over the pairs (λ, μ) such that $g_{\lambda} \cdot g_{\mu}$ and g_{ν} are in the same arcwise connected component of N(H, L)/L.

3. Classical G-cohomology theory on G-CW complexes

We shall define a classical G-cohomology theory with coefficients in a (generic) G-coefficient system. In §4 the classical G-cohomology theory will be characterized as the G-cohomology theory which satisfies also the dimension

axiom.

DEFINITION 3.1. A (generic) *G*-coefficient system is a contravariant functor M_G of the category of the left coset spaces of G by closed subgroups, G/H, and G-homotopy classes of G-maps (equivariant with respect to left translation), $G/H \rightarrow G/K$, into the category of abelian groups.

REMARK. When G is a discrete group, any two distinct G-maps between G-coset spaces cannot be G-homotopic and hence this definition coincides with the generic equivariant coefficient system of Bredon in [3].

Examples 3.2. Of G-coefficient systems:

(i) $M_G = h_G^q$.

(ii) $M_G = \mathbf{Z}$ with a trivial G-action.

(iii) $M_G = \omega_n(Y) (n \ge 2)$, where Y is a G-space with a base point y_0 and $\omega_n(Y) (G/H) = \pi_n(Y^H, y_0) \simeq [(G/H \times \Delta^n) (G/H \times \partial \Delta^n), Y/y_0]_{G,0}$.

Let M_G be a G-coefficient system. The *n*-dimensional G-cochain group of a pair of G-CW complexes (X, A) with coefficients in M_G , denoted by $C^n_G(X, A; M_G)$, is defined to be the group of all G-equivariant functions φ on the *n*-cells of (X, A) with $\varphi(\sigma) \in M_G(G/H_{\sigma})$ and $M_G(\hat{g})\varphi(\sigma) = \varphi(g\sigma)$ for a right translation $\hat{g}: G/H_{g\sigma} \supseteq aH_{g\sigma} = ag(H_{\sigma})g^{-1} \mapsto agH_{\sigma} \in G/H_{\sigma}$. (If σ is an *n*-cell of Aor a *p*-cell $(p \neq n)$, then $\varphi(\sigma) = 0$.)

By the definition of the G-cochain group, $C^n_G(X, A; M_G)$ is canonically isomorphic with $C^n_G(X^n/X^{n-1} \cup A; M_G)$. Moreover, since $X^n/X^{n-1} \cup A = \bigvee (G\sigma/G\partial\sigma)$ where σ range over the representatives of all *n*-dimensional G-cells of (X, A),

$$C^n_G(X^n/X^{n-1}\cup A; M_G) = C^n_G(\vee(G\sigma/G\partial\sigma); M_G) = \prod C^n_G(G\sigma/G\partial\sigma; M_G).$$

Let $f: (X, A) \rightarrow (Y, B)$ be a G-cellular map between pairs of G-CW complexes. Then, for every n, f induces a G-map,

$$f^n: X^n/X^{n-1} \cup A \to Y^n/Y^{n-1} \cup B.$$

Suppose that σ and τ are representatives of all *G*-*n*-cells of (X, A) and (Y, B) respectively. Then we can define a *G*-map $f_{\sigma\tau}$ (between *G*-cells of the same dimension *n*) by $f_{\sigma\tau} = c \circ f^n \circ i$ in the following diagram:

where i is the inclusion and c is the collapsing of the other factors.

Let $\{g_{\lambda(\sigma,\tau)} \in G\}$ be the family of representatives of all arcwise connected components of $(G/H_{\tau})^{H_{\sigma}}$ as in §2.

Define $f^* = C^n_G(f; M_G): C^n_G(Y, B; M_G) \rightarrow C^n_G(X, A; M_G)$ by

$$(f^*\varphi)(\sigma) = \sum_{\tau} \sum_{\lambda(\sigma,\tau)} n_{\lambda(\sigma,\tau)}(f_{\sigma\tau}) M_G(\hat{g}_{\lambda(\sigma,\tau)}) \varphi(\tau)$$

where τ ranges over the representatives of all *G*-*n*-cells of (*Y*, *B*). The sum is finite because $n_{\lambda}(f_{\sigma\tau})=0$ except the finite λ 's.)

Proposition 3.3. Let M_G be a G-coefficient system. Then, $C_G^n(\cdot; M_G)$ is a contravariant functor from the category of pairs of G-CW complexes and G-cellular maps into the category of abelian groups.

Proof. If we fix the representatives, $(g \circ f)^* = f^* \circ g^*$ by Proposition 2.4. It is easily seen that f^* is determined independent of the representatives. Remark that f^* depends only on the G-homotopy class of the G-map f^* .

Now recall that $X^n/X^{n-1} \cup A$ has the same G-homotopy type with $X^n \cup C(X^{n-1} \cup A)$ canonically. As a special case of Proposition 0.3, we have a Puppe sequence (the horizontal sequence),

Since both the vertical and oblique sequences are cofiberings, we get that $S(\partial) \circ$ ∂ is G-homotopic to the trivial map. On the other hand we have a canonical isomorphism,

$$\sigma\colon C^{n-1}_G(X^{n-1}/X^{n-2}\cup A;M_G)\stackrel{\cong}{\to} C^n_G(S(X^{n-1}/X^{n-2}\cup A);M_G).$$

Define the coboundary homomorphism

$$\delta \colon C^{n-1}_G(X, A; M_G) \to C^n_G(X, A; M_G)$$

by $\delta = C_G^n(\partial) \circ \sigma$. Then, because $S(\partial) \circ \partial \simeq_G 0$, we get $\delta \circ \delta = 0$.

DEFINITION 3.4. The classical G-cohomology theory on a pair of G-CW complexes (X, A) with the coefficients in a G-coefficient system M_G , denoted by $H^*_G(X, A; M_G)$, is defined by $H^n_G(X, A; M_G) = H^n(C^*_G(X, A; M_G), \delta)$.

REMARK 3.5. Let σ and τ be *n*-cell and (n-1)-cell of (X, A). We write $[\sigma, g_{\lambda(\sigma,\tau)}\tau]$ for $n_{\lambda(\sigma,\tau)}(\partial_{\sigma\tau})$ where $\partial_{\sigma\tau}: G\sigma/G\partial\sigma \rightarrow S(G\tau/G\partial\tau)$. Then, we get the formula,

$$(\delta arphi)(\sigma) = \sum_{ au} \sum_{\lambda(\sigma, au)} [\sigma, g_{\lambda(\sigma, au)} au] M_G(\hat{g}_{\lambda(\sigma, au)}) arphi(au)$$

where τ ranges over the representatives of all G-(n-1)-cells and $g_{\lambda(\sigma,\tau)}$ ranges over the representatives of all arcwise connected components of $N(H_{\sigma}, H_{\tau})/H_{\tau}$.

Theorem 3.6. The classical G-cohomology theory $H^*_G(\cdot; M_G)$ is a G-cohomology theory in the sense of §1.

Proof. We prove here only the G-homotopy axiom. The exision axiom and the exactness axiom is trivially satisfied. Let $f: (X, A) \rightarrow (Y, B)$ be a G-map between pairs of G-CW complexes. By a G-cellular approximation theorem we may assume that f is G-cellular. The induced map $f^*: C^n_G(Y, B; M_G) \rightarrow$ $C^n_G(X, A; M)$ commutes with δ , in fact, $f^* \circ \delta = C^n_G(f) \circ C^n_G(\partial) \circ \sigma = C^n_G(\partial \circ f) \circ \sigma =$ $C^n_G(S(f) \circ (\partial) \circ \sigma = C^n_G(\partial) \circ C^n_G(f) \circ \sigma = C^n_G(\partial) \circ \sigma \circ C^{n-1}_G(f) = \delta \circ f^*$. This gives an induced map $f^*: H^*_G(Y, B; M_G) \rightarrow H^*_G(X, A; M_G)$. If f is G-homotopic to g, we may assume that not only f and g are G-cellular but G-homotopy $F: (X \times I, A \times I) \rightarrow$ (Y, B) with $F \mid X \times \{0\} = f, F \mid X \times \{1\} = g$ is also G-cellular. Then, F gives a homotopy connecting the chain maps, f^* and $g^*: C^*_G(Y, B; M_G) \rightarrow C^*_G(X, A; M_G)$ and hence $f^* = g^*: H^*_G(Y, B; M_G) \rightarrow H^*_G(X, A; M_G)$. Therefore, even if f is not a G-cellular map the induced map $f^*: H^*_G(Y, B; M_G) \rightarrow H^*_G(X, A; M_G)$ is welldefined and satisfies the G-homotopy axiom.

q.e.d.

4. Spectral sequence of Atiyah-Hirzebruch type

Suppose that (X, A) is a fixed pair of G-finite G-CW complexes. Put $H(p, q) = \sum h_G^n(X^{q-1}, X^{p-1} \cup A)$. Then, the collection of H(p, q)'s satisfies the axioms (S.P. 1)-(S.P. 5) of Cartan-Eilenberg [5. p.334] and hence induces a spectral sequence resulting to $h_G^*(X, A)$. The E_1 -term and the 1st differential of the spectral sequence are easily calculated as follows:

$$E_1^{p,q} = h_G^{p+q}(X^p, X^{p-1} \cup A)$$

$$d_1 = \delta: h_G^{p+q}(X^p, X^{p-1} \cup A) \to h_G^{p+q+1}(X^{p+1}, X^p \cup A)$$

where δ is the coboundary homomorphism.

Lemma 4.1.

(i) $h_G^{p+q}(X^p, X^{p-1} \cup A) = \tilde{h}_G^{p+q}(X^p/X^{p-1} \cup A)$ is decomposed into the direct product $\prod \tilde{h}_G^{p+q}(G\sigma/G\partial\sigma)$, where σ ranges over representatives of all p-dimensional G-cells of X/A.

(ii) And for each direct factor, there are isomorphisms, $\tilde{h}_{G}^{p+q}(G\sigma/G\partial\sigma) = h_{G}^{p+q}(G\sigma, G\partial\sigma) \simeq h_{G}^{p+q}(G/H_{\sigma} \times \Delta^{p}, G/H_{\sigma} \times \partial \Delta^{p}) \simeq h_{G}^{q}(G/H_{\sigma}).$

Proof of (i). Since $X^{p}/X^{p-1} \cup A = \bigvee (G\sigma/G\partial\sigma)$ is the one point union of finite $(G\sigma/G\partial\sigma)$'s we get the decomposition by the usual argument.

Proof of (ii). The 2nd isomorphism is induced by the G-characteristic map, Gf_{σ} : $(G/H_{\sigma} \times \Delta^{p}, G/H_{\sigma} \times \partial \Delta^{p}) \rightarrow (G\sigma, G\partial\sigma)$, which is a relative G-homeomorphism. Now we shall prove the last isomorphism. Put $H=H_{\sigma}$. Since the inclusion, $G/H \times (\partial \Delta^{p} - \Delta^{p-1}) \rightarrow G/H \times \Delta^{p}$, has a G-equivariant deformation retraction, we get the isomorphism,

$$h_G^{p+q}(G|H \times \Delta^p, G|H \times \partial \Delta^p) \stackrel{\delta}{\simeq} h_G^{p+q-1}(G|H \times \partial \Delta^p, G|H \times (\partial \Delta^p - \Delta^{p-1}))$$

in the exact sequence of a triple $(G/H \times \Delta^p, G/H \times \partial \Delta^p, G/H \times (\partial \Delta^p - \Delta^{p-1}))$. By the existion axiom, we get the isomorphism,

$$h_{G}^{p+q-1}(G/H \times \partial \Delta^{p}, G/H \times (\partial \Delta^{p} - \Delta^{p-1})) \stackrel{\simeq}{\leftarrow} h_{G}^{p+q-1}(G/H \times \Delta^{p-1}, G/H \times \partial \Delta^{p-1}).$$

Combining the isomorphisms of these two types repeatedly, we get

$$h_{G}^{p+q}(G/H \times \Delta^{p}, G/H \times \partial \Delta^{p}) \stackrel{\simeq}{\leftarrow} h_{G}^{p+q-1}(G/H \times \Delta^{p-1}, G/H \times \partial \Delta^{p-1})$$
$$\cdots \stackrel{\simeq}{\leftarrow} h_{G}^{q}(G/H \times \Delta^{0}, G/H \times \partial \Delta^{0}) = h_{G}^{q}(G/H) .$$
q.e.d.

We shall consider the difference of taking another representative $g\sigma$ instead of σ , as a representative of a *p*-dimensional *G*-cell $G\sigma$. Put $H=H_{\sigma}$. Then gHg^{-1} $=H_{g\sigma}$. Since we may identify agH-orbit of σ with $agHg^{-1}$ -orbit of $g\sigma$ in $G\sigma$, a canonical right translation $\hat{g}: G/gHg^{-1} \ni agHg^{-1} \mapsto agH \in G/H$ induces a required isomorphism, $h_G^q(\hat{g}): h_G^q(G/H_{\sigma}) \rightarrow h_G^q(G/H_{g\sigma})$. This shows that $h_G^{p+q}(X^p, X^{p-1} \cup A)$ $\cong C_G^p(X^p, X^{p-1} \cup A; h_G^q)$.

Theorem 4.2. The $E_2^{*,q}$ -term of the Atiyah-Hirzebruch spectral sequence for a G-cohomology theory, h_G^* , on G-finite G-CW complexes, is a classical Gcohomology theory with coefficients in h_G^q .

Proof. By the result above we can identify $E_1^{p,q} = h_G^{p+q}(X^p, X^{p-1} \cup A)$ with $C_G^p(X, A; h_G^q)$. And the coboundary homomorphisms are induced from ∂ in the Puppe sequence in both cases.

q.e.d.

Assume that the G-cohomology theory $h_G^n(\cdot)$ is defined also on (not G-finite) G-CW complexes, and satisfies the additivity axiom:

(3) The inclusions, $i_{\alpha}: X_{\alpha} \rightarrow \coprod X_{\alpha}$, induce an isomorphism,

$$\prod h_G^n(i_{\alpha}) \colon \prod h_G^n(X_{\alpha}) \stackrel{\cong}{\leftarrow} h_G^n(\coprod X_{\alpha})$$

Then, Lemma 4.1 and Theorem 4.2 are also valid for a pair of (not G-finite) G-CW complexes.

The classical G-cohomology theory is defined on G-CW complexes and satisfies the additivity axiom. Therefore, we get as usual

Theorem 4.3. The classical G-cohomology theory is characterized to be

the G-cohomology theory defined on G-CW complexes which satisfies also the additivity axiom and the dimension axiom.

Here we mean by dimension axiom,

(4) $h_G^n(G/H) = 0$ for $n \neq 0$ and all closed subgroup H of G.

The aditivity axiom and the dimension axiom are as follows, for the reduced G-cohomology theory.

(3)' The inclusions, $i_{\alpha}: X_{\alpha} \to \bigvee X_{\alpha}$, induce an isomorphism,

$$\prod \tilde{h}_{G}^{n}(i_{\sigma}) \colon \prod \tilde{h}_{G}^{u}(X_{\sigma}) \stackrel{\approx}{\leftarrow} \tilde{h}_{G}^{n}(\vee X_{\sigma}) .$$

(4)' $\tilde{h}^n_G(G/H)^+ = 0$ for $n \neq 0$ and all H.

5. G-obstruction theory

Let Y be a G-space with a base point. Then in the classical G-cohomology group $H^*_G(\cdot; \omega_n(Y))$, we can make a G-obstruction theory similar to that of Bredon [3].

Let $n \ge 1$ be a fixed integer and A be a G-subcomplex of a G-CW complex X. We shall assume, for simplicity, that the pointwise fixed subspace Y^H of Y by H is non-empty, arcwise connected and *n*-simple for each closed subgroup H of G which appears as an isotropy subgroup at a point of X.

Assume that we are given a G-map $\varphi: X^n \cup A \to Y$. Let σ be an (n+1)-cell of X and let $f_{\sigma}: \partial \Delta^{n+1} \to X^n$ be the characteristic attaching map of σ and $H_{\sigma} = H$. Because the image of $\partial \Delta^{n+1}$ by $\varphi \circ f$ is pointwise fixed by H, we get a map: $\partial \Delta^{n+1} \to Y^H$. We define $c_{\varphi}(\sigma) \in \pi_n(Y^H, *) = \omega_n(Y)(G/H)$ to be the unique base point preserving homotopy class which is free homotopic to the above map $(\pi_n(Y^H, *) \cong [S^n; Y^H]$ because Y^H is *n*-simple). Since φ is a G-map, we get $c_{\varphi}(g\sigma)$ $= g \cdot c_{\varphi}(\sigma) \in \pi_n(Y^{g^Hg^{-1}}, *) = \omega_n(Y)(G/gHg^{-1})$ and hence $c_{\varphi} \in C_G^{n+1}(X, A; \omega_n(Y))$.

Lemma 5.1. $\delta c_{\varphi} = 0 \in C_G^{n+2}(X, A; \omega_n(Y)).$

Proof. Let τ be an (n+2)-cell of (X, A) and $i: (G\tau, G\partial\tau) \rightarrow (X, A)$ be the inclusion. Then $i*\delta c_{\varphi} = \delta i*c_{\varphi}$ and $i*C_{\varphi} \in C_{G}^{n+1}(G\tau, G\partial\tau; \omega_{n}(Y))$. According to our definition of $C_{G}^{n+1}(\cdot; \omega_{n}(Y))$ on G-CW complexes, $C_{G}^{n+1}(G\tau, G\partial\tau; \omega_{n}(Y)) = 0$. Therefore, $i*c_{\varphi} = 0$ and hence $i*\delta c_{\varphi} = 0$, that is, $c_{\varphi}(\tau) = 0$ for any (n+2)-cell τ of (X, A).

q.e.d.

Now identifying the G-homotpy classes of G-maps: $G/H \times \partial \Delta^{n+1} \to Y$ and the homotopy classes of maps: $\partial \Delta^{n+1} \to Y^H$, we can reduce the proof of the following lemmas to the ordinary obstruction theory as Bredon did.

Lemma 5.2. $c_{\varphi}=0$ if and only if φ is extendable equivariantly on $X^{n+1} \cup A$.

Lemma 5.3. Let $d \in C^n_G(X, A; \omega_n(Y))$. Then, there is a G-map $\theta: X^n \cup A \to Y$, coinciding with φ on $X^{n+1} \cup A$ such that $d_{\theta,\varphi} = d$.

Here the difference cochain $d_{\theta,\varphi}$ is defined to be the class which corresponds to $c_{\theta*\varphi}$ by the isomorphism, $C^n_G(X, A; \omega_n(Y)) \rightarrow C^{n+1}_G(X \times I, A \times I \cup X \times \partial I; \omega_n(Y))$. $\theta*\varphi$ is a G-map: $(X \times I)^n \cup A \times I \rightarrow Y$ which is φ on $X^n \times \{0\} \cup X^{n-1} \times I$ and θ on $X^n \times \{1\}$.

Combining these three lemmas, we get

Theorem 5.4. Let $\varphi: X^n \cup A \to Y$ be a G-map. Then $\varphi \mid X^{n-1} \cup A$ can be extended to G-map: $X^{n+1} \cup A \to Y$ if and only if the G-cohomology class of c_{φ} in $H_G^{n+1}(X, A; \omega_n(Y))$ vanishes.

Also the argument of Bredon in 'primary obstructions' [3, II.5.2] is valid to this case. In particular, we get

Proposition 5.5. Let $n \ge 1$ be a fixed integer and let Y be a G-space with base point such that Y^H is non-empty, arcwise connected and n-simple for every closed subgroup H of G. Suppose that $\omega_k(Y)$ vanishes for $k \ne n$, then a primary obstruction map,

$$a: [X; Y]_G \xrightarrow{\cong} H^n_G(X; \omega_n(Y))$$

is an isomorphism for any G-CW complex X.

Proposition 5.5.' Under the assumption above, a primary obstruction map,

 $a': [X, Y]_{G,0} \xrightarrow{\cong} H^n_G(X; \omega_n(Y))$

is an isomorphism for any G-CW complex X with base point.

6. Representation theorem of E. Brown

We shall prove the following representation theorem as an application of E.Brown's abstract homotopy theory [4].

Theorem 6.1. If a reduced G-cohomology group \tilde{h}_G^n on G-CW complexes with base point satisfies the additivity axiom, then \tilde{h}_G^n is representable, that is, there is a G-space Y_n with base point and a natural transformation $T: [\cdot; Y_n]_{G,0} \rightarrow \tilde{h}_G^n(\cdot)$ such that T is an isomorphism for any G-CW complex with base point, where $[\cdot; \cdot]_{G,0}$ stands for the set of base point preserving G-homotopy classes of base point preserving G-maps.

Let C be the category of G-CW complexes with base point such that the H-stationary subspace is arcwise connected for each H, and base point preserving G-homotopy classes of base point preserving G-maps. In C there is a (not unique) sequential direct limit by approximating G-maps by G-cellular maps and making their telescope. Also we get a (not unique) 'push out' as a double mapping cylinder in C. If we choose one representative for each class of conjugate closed subgroups, $\{(G/H \times \Delta^p)/(G/H \times \partial \Delta^p); H$ representative, 0 is a

small subcategory of C.

Let \mathcal{C}_0 be a minimal subcategory which contains $(G/H \times \Delta^p)/(G/H \times \partial \Delta^p)$'s $(0 and their 'push out'. Then <math>\mathcal{C}_0$ is a small, full subcategory of \mathcal{C} and also a subcategory of G-finite G-CW complexes with base point and we get

Proposition 6.2. A pair (C, C_0) is a homotopy category in the sense of E.Brown.

Proof of Theorem 6.1. Since reduced G-cohomology theory has a Mayer-Vietoris exact sequence, \hat{h}_G^n (restricted on C) with the additivity axiom is a homotopy functor in the sense of E.Brown. Moreover, we get $\overline{C}_0 = C$ by an equivariant version of J.H.C.Whitehead's theorem. (See Proposition 0.4.). Therefore, by Theorem 2.8 of [4], we get a $Y'_n \in C$ unique up to G-homotopy equivalence and a natural transformation T: $[\cdot; Y'_n]_{G,0} \rightarrow \tilde{h}_G^n(\cdot)$ such that T is an isomorphism for each $X \in C$.

Define $Y_n = \Omega Y'_{n+1}$. For any G-CW complex X with base point, $SX \in \mathcal{C}$. Therefore, we get

$$[X, Y_n]_{G,0} \qquad \tilde{h}^n_G(X)$$

$$\simeq \downarrow \qquad \qquad \downarrow \simeq$$

$$[SX, Y'_{n+1}]_{G,0} \stackrel{\cong}{\to} \tilde{h}^{n+1}_G(SX)$$

$$q.e.d.$$

REMARK. Even when \tilde{h}_G^n is defined only on *G*-finite *G*-CW complexes, by the method of Adams [2], we get a reduced *G*-cohomology theory on *G*-CW complexes which satisfies the additivity axiom and coincides with \tilde{h}_G^n on *G*-finite *G*-CW complexes.

Let $Y'_{n+1} \in \mathbb{C}$ be a representing space of \tilde{h}_G^n in the category of \mathbb{C} . Then, the isomorphism: $h_G^{n+1}(X) \xrightarrow{\cong} h_G^{n+2}(SX)$ induces a G-map $h'_{n+1}: Y'_{n+1}: \rightarrow \Omega Y'_{n+2}$ which is a weak G-homotopy equivalence, that is, $(h'_{n+1})_*: \pi_i(Y'_{n+1})^H) \xrightarrow{\cong} \pi_i((\Omega Y'_{n+2})^H)$ for any i and any H. Hence, taking their loop spaces, we get also a weak G-homotpy equivalence, $h_n: Y_n \rightarrow \Omega Y_{n+1}$. Then, $Y = \{Y_n, h_n; -\infty < n < \infty\}$ forms a weak Ω -spectrum for \tilde{h}_G^* . This fact is used in §7 to make a spectral sequence of C.Maunder.

7. Killing the elements of the G-homotopy groups and C.Maunder's spectral sequence

Let Y be a G-space with base point y_0 such that Y^H is arcwise connected for each closed subgroup H of G. An element in the *n*-th homotopy group $\pi_n(Y^H, y_0)$ of H-stationary subspace Y^H is called to be an element of G-*n*-homotopy groups of Y. An element $[f] \in \pi_n(Y^H, y_0)$ with $f: S^n = \Delta^n / \partial \Delta^n \to Y^H$ is killed by attaching a $G_{-}(n+1)$ -cell represented by an (n+1)-cell σ which has f as its charac-

Т. Матимото

teristic attaching map and H as its isotropy subgroup, that is, $H_{\sigma}=H$. If we fix n and kill all the elements of G-n-homotopy groups, we get a relative G-CW complex \tilde{Y} such that $\tilde{Y}^{-1}=Y$. Then, $i_*:\pi_n(Y^H, y_0) \rightarrow \pi_n(\tilde{Y}^H, y_0)$ is a zero map for any closed subgroup H, where $i: Y^H \rightarrow \tilde{Y}^H$. On the other hand, by the G-cellular approximation theorem we get $\pi_k(\tilde{Y}^H, Y^H, y_0)$ vanishes for k < n and any H, that is, $i_*:\pi_k(Y^H, y_0) \rightarrow \pi_k(\tilde{Y}^H, y_0)$ is an isomorphism for k < n and a surjection for k=n. Therefore, $\pi_k(\tilde{Y}^H, y_0)$ is canonically isomorphic with $\pi_k(Y^H, y_0)$ for k < n and vanishes for k=n. By this reason we call \tilde{Y} a G-space obtained of Y by killing the elements of G-n-homotopy groups.

Let Y(1, p) be a G-space obtained of Y by killing the elements of G-homotopy groups of dimensions $\geq (p+1)$ one after the other. Then, Y(1, p) is uniquely determined up to G-homotopy types rel. Y by the usual argument on (relative) G-CW complexes. For $p \leq q$, Y(p, q) denotes the mapping track of i(p, q): $Y(1, q) \rightarrow Y(1, p-1)$. Moreover, let $Y^{(r)}(p, q)$ denote the mapping track of $i^{(r)}(p, q)$: $Y(r, q) \rightarrow Y(r, p-1)$ for r . Then, it is easily seen that the $natural G-map: <math>Y^{(r)}(p, q) \rightarrow Y(p, q)$ has a G-homotopy inverse. Therefore, by taking mapping tracks repeatedly, we get a following G-fibering sequence of Gspaces. (The G-spaces are determined up to G-homotopy types.)

$$\Omega Y(r, t) \to \Omega Y(r, s) \xrightarrow{\delta} Y(s+1, t) \to Y(r, t) \to Y(r, s), \qquad r \leq s < t.$$

Here, that $X \to Y \to Z$ is a G-fibering stands for that $X^H \to Y^H \to Z^H$ is a fibering for any H. In particular, $\pi_k(Y(p, q)^H, y_0)$ is isomorphic with $\pi_k(Y^H, y_0)$ for $p \leq k \leq q$ and vanishes otherwise.

In §6 we have obtained a weak Ω -spectrum for a *G*-cohomology theory \tilde{h}_{G}^{*} . Let *X* be a *G*-finite *G*-CW complex and put $\bar{H}(p, q) = \sum_{n} [S(X^{+}); Y'_{n+1}(p+2, q)]_{G,0}$. Then, by the *G*-fibering sequence above, we get a spectral sequence resulting to $h_{G}^{*}(X) = \sum [S(X^{+}); Y'_{n+1}]_{G,0}$. The E_{2} -term, $\bar{E}_{2}^{p,q} = [S(X^{+}); Y'_{p+n+1}(p+1, p+1)]_{G,0}$ is isomorphic with $H_{G}^{p+1}(S(X^{+}); \pi_{p+1}(Y'_{p+q+1})) = H_{G}^{p}(X; h_{G}^{q})$ by Proposition 5.5'. Moreover, since $[S((X^{p+1})^{+}); Y'_{p+q+1}(1, p+1)]_{G,0} \cong [S(X^{+}); Y'_{p+q+1}(1, p+1)]_{G,0}$ and $[S(X^{p}/X^{p-1}); Y'_{p+q+1}]_{G,0} \cong [S(X^{p}/X^{p-1}); Y'_{p+q+1}]_{G,0} \cong [S(X^{p}/X^{p-1}); Y'_{p+q+1}]_{G,0} \cong [S(X^{p}/X^{p-1}); Y'_{p+q+1}]_{G,0}$ the Maunder's argument using exact couples [11] is also valid in this case. Hence, we get

Theorem 7.1 Let h_G^* be G-cohomology theory. Then, the spectral sequence above is isomorphic with the Atiyah-Hirzebruch spectral sequence except the E_1 -term for any G-finite G-CW complex X.

Proposition 7.2. The r-th differential \bar{d}_r ; $\bar{E}_r^{p,q} \rightarrow \bar{E}_r^{p+r,q-r+1}$ in the Maunder's spectral sequence is induced from the 'higher cohomology operation' determined by the G-homotopy class of

$$\delta_{r} = \delta \circ h'_{p+q+1}: Y'_{p+q+1}(p+1, (p+r-1) \xrightarrow{h'_{p+q+1}} \Omega Y'_{p+q+2}(p+2, p+r)$$

$$\stackrel{\delta}{\rightarrow} Y'_{p+q+2}(p+r+1, p+r+1).$$

Remark that $[\delta_r] \in H_G^{p+r+1}(Y'_{p+q+1}(p+1, p+r-1), \omega_{p+q+1}(Y'_{p+q+2})).$

Corollary 7.3. $E_r^{p,q} = \overline{E}_r^{p,q} (r \ge 2)$ together with the differentials d_r are G-homotopy type invariant.

This is also proved from Theorem 4.2 and comparison of spectral sequences.

8. Applications to the equivariant K^* -theory

In this section G denotes a compact Lie group. We shall applicate our results to K_G^* -theory.

Theorem 8.1. Let X be a G-finite G-CW complex. There exists a spectral sequence $E_r^{p,q}(r \ge 1, -\infty < p, q < \infty)$ with

$$E_1^{p,q} \cong C_G^p(X, K_G^q)$$

 d_1 being the coboundary homomorphism.

$$E_{2}^{p,q} \cong H_{G}^{p}(X, K_{G}^{q}),$$

$$E_{\infty}^{p,q} \cong G_{p} K_{G}^{p+q}(X) = K_{G,p}^{p+q}(X) / K_{G,p+1}^{p+q}(X)$$

where $K_{G,p}^{n}(X) = Kernel(K_{G}^{n}(X) \rightarrow K_{G}^{n}(X^{p-1}))$. The G-coefficient system, $K_{G}^{q}(G|H)$ is isomorphic with $K_{G}(G|H)$ for q even and vanishes for q odd (See [13]).

This is a special case of Theorem 4.2.

A. Collapsing theorems

If r is even, the r-th differential is a zero map, because d_r is a map of $E_r^{p,q}$ into $E_r^{p+r,q-r+1}$ where one of the domain or the image vanishes. Therefore, we get

Theorem 8.2. If one of the following conditions is satisfied, then the above spectral sequence collapses :

- (i) $H^{p}_{G}(X; K_{G})$ vanishes for every odd p.
- (ii) $H_G^p(X; K_G)$ vanishes for every $p \ge 3$.

For the reduced K_G^* -theory, we get

Theorem 8.2'. If X has a base point, then the spectral sequence,

$$\tilde{H}^{p}_{G}(X; K^{q}_{G}) \Rightarrow \tilde{K}^{p+q}_{G}(X)$$

collapses if:

- (i) $\tilde{H}_{G}^{p}(X; K_{G})$ vanishes for every odd p or for every even p, or
- (ii) $\tilde{H}_G^p(X; K_G)$ vanishes except p=r, r+1, r+2 for some r.

B. On E_2 -term

We consider the classical G-cohomology theory with coefficients in K_G .

 $K_G(G/H)$ is canonically isomorphic with R(H), where R(H) is the Grothendieck group of the isomorphic classes of complex representations of H.

Remark that $K_G(\hat{g})$; $K_G(G/G) \to K_G(G/G)$ is an identity isomorphism for any $g \in G$, because any inner automorphism of G induces an identity isomorphism on R(G). Therefore, if we assume that the restriction maps $i^* \colon R(G) \to$ R(H) is surjective, then $K_G(\hat{g}) = K_G(\hat{g}') \colon K_G(G/H) \to K_G(G/H')$ for any elements g, g' of N(H', H). Hence, by Remark 3.5 we shall get

Proposition 8.3. Let X be a G-finite G-CW complex whose isotropy subgroups satisfy the condition:

(*) the restriction map: $R(G) \rightarrow R(H)$ is a surjection for any closed subgroup H which appears as an isotropy subgroup at a point of X.

Then, $H_G^p(X; K_G)$ can be calculated by considering only the orbit type decomposition of the orbit space.

Proof. As we remark above, by the condition (*), $K_G(\hat{g})$: $K_G(G/H) \rightarrow K_G(G/H')$ is independent of the choice of $g \in N(H', H)$ for any isotropy subgroups H, H'. So, we may write this map by $K_G(H \rightarrow H')$. Then, we get the formula:

$$(\delta\varphi)(\sigma) = \sum_{\tau} \sum_{\lambda(\sigma,\tau)} [\sigma, g_{\lambda(\sigma,\tau)}\tau] K_G(H_{\sigma} \leftarrow H_{\tau}) \varphi(\tau) \,.$$

On the other hand, it is easy to see that

$$\sum_{\lambda(\sigma,\tau)} [\sigma, g_{\lambda(\sigma,\tau)}\tau] = [\sigma/G, \tau/G] \in Z$$

where σ/G and τ/G are the induced cells on X/G.

q.e.d.

REMARK 8.4. We call an O(n)-manifold to be a regular O(n)-manifold if each isotropy subgroup is conjugate to O(k) $(k \le n)$. Then any regular O(n)-manifold satisfies the condition (*) above, because the restriction map ρ_n : $R(O(n)) \rightarrow$ R(O(n-1)) is a surjection. This fact is easily checked by the classical representation theory as in [14], but we refer the reader to [12].

C. A conclusion

Combining these results with Proposition 0.5, we get

Proposition 8.5. For a compact regular O(n) manifold X, if dim $X/G \leq 2$, then, $K^{0}_{G}(X)/K^{0}_{G,2}(X)$, $K^{0}_{G,2}(X)$ and $K^{1}_{G}(X)$ depend only on the orbit type decomposition of the orbit space.

D. Examples

Now we shall calculate $K^*_{\mathcal{C}}(X)$ for some regular O(n)-manifolds.

(i) Hirzebruch-Mayer O(n)-manifold $W^{2n-1}(d)$ for $n \ge 2$ [7]: The orbit

space is a 2-disk D^2 the orbit type of whose interior is (O(n-2)) and the boundary (O(n-1)).

Define a presheaf \mathfrak{F} on the orbit space D^2 by $\Gamma(U, \mathfrak{F}) = \Gamma(U, U \times R(O(n-2)))$ if $U \subset \operatorname{Int} D^2$ and by $\Gamma(U, \mathfrak{F}) = \Gamma(U, U \times R(O(n-1)))$ if $U \cap \partial D^2 \neq \phi$. Then, by Proposition 8.3, $H^*_{\mathfrak{G}}(W^{2n-1}(d); K_G) \cong H^*(D^2, \mathfrak{F})$. Remark that \mathfrak{F} forms a sheaf. Define \mathfrak{G} and \mathfrak{F} by \mathfrak{G} =constant sheaf Ker ρ_{n-1} on ∂D^2 which is considered to be a sheaf over D^2 and \mathfrak{F} =constant sheaf R(O(n-2)) on whole D^2 . Then, since $\rho_{n-1}: R(O(n-1)) \to R(O(n-2))$ is surjective, we get an exact sequence of sheaves,

$$0 \to \mathfrak{G} \to \mathfrak{F} \to \mathfrak{H} \to 0$$

The following notation is simpler and reasonable to denote this exact sequence.

$$\begin{array}{c} S^{1} \\ \cap : 0 \rightarrow \begin{pmatrix} \operatorname{Ker} \rho_{n-1} \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} R(O(n-1)) \\ R(O(n-2)) \end{pmatrix} \rightarrow \begin{pmatrix} R(O(n-2)) \\ R(O(n-2)) \end{pmatrix} \rightarrow 0 \end{array}$$

From the associated long exact sequence, we get

$$H^0_G \cong R(O(n-1)), H^1_G \cong \text{Ker } \rho_{n-1} \text{ and } H^2_G \cong \text{Coker } \rho_{n-1} = 0.$$

Therefore,

$$K_G^0 \cong R(O(n-1) \text{ and } K_G^1 \cong \text{Ker } \rho_{n-1}.$$

(ii) Jänich knot O(n)-manifold for $n \ge 3$ [8]: Let $S^1 \subset S^3$ be a knot. The orbit space is a 4-disk D^4 where the orbit type of each difference domain of $D^4 \supset S^3 \supset S^1$ is (O(n-2)), (O(n-1)), (O(n)) respectively.

As in (i), we consider the following exact sequence of sheaves.

$$\begin{array}{cccc}
S^{1} & & \\
& \cap \\
S^{3} & O \\
& & \\
D^{4} & & \\
\end{array} \xrightarrow{K} \left(\begin{array}{c}
\mathsf{Ker} & \rho_{n} \\
0 & & & \\
& & \\
0 & & & \\
\end{array} \xrightarrow{K} \left(\begin{array}{c}
\mathsf{R}(O(n)) \\
\mathsf{R}(O(n-1)) \\
\mathsf{R}(O(n-1)) \\
\mathsf{R}(O(n-1)) \\
\mathsf{R}(O(n-2)) \\
\end{array} \right) \xrightarrow{K} \left(\begin{array}{c}
\mathsf{R}(O(n-1)) \\
\mathsf{R}(O(n-1)) \\
\mathsf{R}(O(n-2)) \\
\mathsf{R}(O(n-2)) \\
\end{array} \right) \xrightarrow{K} \left(\begin{array}{c}
\mathsf{R}(O(n-1)) \\
\mathsf{R}(O(n-2)) \\
\mathsf{R}(O(n-2)) \\
\mathsf{R}(O(n-2)) \\
\mathsf{R}(O(n-2)) \\
\mathsf{R}(O(n-2)) \\
\end{array} \right) \xrightarrow{K} \left(\begin{array}{c}
\mathsf{R}(O(n-1)) \\
\mathsf{R}(O(n-1)) \\
\mathsf{R}(O(n-2)) \\
\mathsf{$$

Then, $H_G^* = H_G^*(X; K) \cong H^*(D^4; \mathfrak{F}')$ is calculated as follows:

$$H_G^0 \cong R(O(n)), H_G^1 \cong \text{Ker } \rho_n, H_G^2 \equiv 0, H_G^3 \cong \text{Ker } \rho_{n-1} \text{ and } H_G^4 \equiv 0.$$

In particular, if we consider that the O(n)-manifold has a base point, then $\hat{H}_G^0 = 0$ and \tilde{H}_G^* satisfies the condition (ii) of Theorem 8.2'. Therefore, we get

$$\tilde{K}_G^0 = 0$$
, that is, $K_G^0 \simeq R(O(n))$

and

$$0 \to \operatorname{Ker} \rho_{n-1} \to K^1_G \to \operatorname{Ker} \rho_n \to 0$$

is exact.

KYOTO UNIVERSITY

References

- [1] M. Atiyah and F. Hirzebruch: Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math. 3 (1961), 7-38.
- [2] J.F. Adams: A variant of E.H. Brown's representability theorem, Topology 10 (1971), 185–198.
- [3] G. Bredon: Equivariant Cohomology Theories, Lecture Notes in Math. 34, Springer-Verlag, 1967.
- [4] E. Brown: Abstract homotopy theory, Trans. Amer. Math. Soc. 119 (1965), 79-85.
- [5] H. Cartan and S. Eilenberg: Homological Algebra, Princeton Univ. Press, 1956.
- [6] S. Eilienberg and N. Steenrod: Foundations of Algebraic Topology, Princeton Univ. Press, 1952.
- [7] R. Hirzebruch and K. Mayer: O(n)-Mannigfaltigkeiten, Exotische Sphären und Singularitäten, Lecture Notes in Math. 57, Springer-Verlag, 1968.
- [8] K. Jänich: Differenzierbare Mannigfaltigkeiten mit Rand als Orbiträume differenzierbarer G-Mannigfaltigkeiten ohne Rand, Topology 5 (1966), 301–320.
- T. Matumoto: Equivariant K-theory and Fredholm operators, J. Fac. Sci. Univ. Tokyo Sect. I. 18 (1971), 109-125.
- [10] ———: On G-CW complexes and a theorem of J.H.C. Whitehead, J. Fac. Sci. Univ. Tokyo Sect. I. 18 (1971) 363-374.
- [11] C. Maunder: The spectral sequence of an extraordinary cohomology theory, Proc. Cambridge Philos. Soc. 59 (1963), 567-574.
- [12] H. Minami: The representation rings of orthogonal groups, Osaka J. Math. 8 (1971), 243–250.
- [13] G. Segal (and M. Atiyah): Equivariant K-theory, Lecture Note, Warwick, 1965.
- [14] H. Weyl The Classical Groups, Princeton Univ. Press, 1946.