A NOTE ON THE FORMAL GROUP LAW OF UNORIENTED COBORDISM THEORY

Katsuyuki SHIBATA

(Received May, 9, 1972)

Introduction

This is a continuation of the author's previous work [6] on the cobordism generators defined by J.M. Boardman in [1]. Previously we have used the Landweber-Novikov operations to calculate the coefficients $z_{2 i}$ and $z_{4 i+1}$ of a primitive element

$$
P=W_{1}+z_{2} W_{1}^{3}+z_{4} W_{1}^{5}+z_{5} W_{1}^{6}+z_{6} W_{1}^{7}+z_{7} W_{1}^{8}+\cdots
$$

in $\mathfrak{R}^{*}(B O(1))$.
This time we use the Steenrod-tom Dieck operations in the unoriented cobordism theory ([2], [8]) to deduce that the coefficient z_{i-1} for the "canonical primitive element" P_{0} is represented by the "iterated Dold manifold" $\left(R_{1}\right)^{a}\left(P_{2 b}\right)$ for $i=2^{a}(2 b+1)$, where $R_{1}(M)=S^{1} \times(M \times M) / a \times T$ (Theorem 3.2).

In other words, let $L=Z_{2}\left[e_{i-1}: i \neq 2^{k}\right]$ be the Lazard ring of characteristic 2 and $F(x, y)=g^{-1}(g(x)+g(y))$ with $g(x)=\sum_{i \geqslant 1} e_{i-1} x^{i}\left(e_{0}=1, e_{2^{k}-1}=0\right)$ be the universal formal group law. Then the canonical ring isomorphism of Quillen [5] $\varphi: L \rightarrow \mathfrak{N}^{*}$ sends the generator e_{i-1} to $\left[\left(R_{1}\right)^{a}\left(P_{2 b}\right)\right]$ for $i=2^{a}(2 b+1)$.

We also study the behaviour of the Dold-tom Dieck homomorphism $R_{j}: \mathfrak{N}_{*} \rightarrow \mathfrak{N}_{2 *+j}$ defined by $R_{j}([M])=\left[S^{j} \times(M \times M) / a \times T\right]$. In particular, we present the following product formula (Lemma 2.2);

$$
R_{j}(x y)=\sum_{j \geqslant k+m \geqslant 0}\left(\sum_{i \geqslant 0}\left[P_{2 n_{i}}\right]^{]^{i}}\right) R_{k}(x) R_{m}(y) .
$$

In the final section, we examine the relation between the algebra structure of $\mathfrak{\Re}_{*}(B O(1)) \cong \mathfrak{N}_{*}\left(Z_{2}\right)$ and the coalgebra structure of $\mathfrak{N}^{*}(B O(1))$. As an application, we obtain the following formulas for the Smith homomorphism Δ ([3]);

$$
\begin{gathered}
\Delta\left(\left[S^{m}, a\right] \cdot\left[S^{n}, a\right]\right)=\sum_{i, j \geqslant 0} a_{i, j} \Delta^{i}\left[S^{m}, a\right] \Delta^{j}\left[S^{n}, a\right] \\
=\left(\Delta\left[S^{m}, a\right]\right)\left[S^{n}, a\right]+\left[S^{m}, \mathrm{a}\right]\left(\Delta\left[S^{n}, a\right]\right)+\left[P_{2}\right]\left(\Delta\left[S^{m}, a\right] \Delta^{2}\left[S^{n}, a\right]\right. \\
\left.+\Delta^{2}\left[S^{m}, a\right] \Delta\left[S^{n}, a\right]\right)+\cdots, \text { and } \\
\Delta^{2 k}\left(\left[S^{m}, a\right] \cdot x\right)=\left[S^{m}, a\right] \cdot \Delta^{2 k}(x)
\end{gathered}
$$

for $2^{k}>m \geqslant 0$ (Corollary 4.3). The former equation would be an answer to a question of J.C. Su [7] on the relation between Δ and the multiplication in $\mathfrak{N}_{*}\left(Z_{2}\right)$. The latter formula for $k \leqslant 3$ was first proved by Uchida [9] utilizing the multiplicative structures of S^{1}, S^{3} and S^{7}.

In the appendix, we state brief comments on the unrestricted bordism ring of involution $I_{*}\left(Z_{2}\right)$ ([3], IV 28). We define the "switching involution" homomorphism $S: \mathfrak{N}_{*} \rightarrow I_{2 *}\left(Z_{2}\right)$, which is a ring monomorphism with a left inverse. We see, by definition, that $R_{j}=K_{j}{ }^{\circ} S$ with K_{j} the \mathfrak{R}_{*}-homomorphism studied by Conner-Floyd in [4], and thus give a proof for the well-definedness of the Dold-tom Dieck homomorphism R_{j}.

The author would like to acknowledge stimulating conversation with Professor Tammo tom Dieck. The author also wishes to express his gratitude to Professor Larry Siebenmann for cordial and constant encouragement.

1. Formal group law in the unoriented cobordism theory

As in [6], let

$$
\mu^{*}: \mathfrak{R}^{*}(B O(1)) \rightarrow \mathfrak{R}^{*}(B O(1)){\underset{\mathfrak{R}}{ }}_{\otimes}^{\mathfrak{R}^{*}}(B O(1))
$$

be the comultiplication defined by the H-space map.
The cobordism first Stiefel-Whitney class W_{1} is mapped by μ^{*} to a formal power series

$$
\begin{gather*}
\mu^{*}\left(W_{1}\right)=W_{1} \otimes 1+1 \otimes W_{1}+\sum_{i, j \geqslant 1} a_{i, j}\left(W_{1}\right)^{i} \otimes\left(W_{1}\right)^{j} \tag{1.1}\\
\left(a_{i, j}=a_{j, i} \in \mathfrak{M}_{i+j-1}\right) .
\end{gather*}
$$

The formal power series defined by these coefficients

$$
\begin{equation*}
F(x, y)=x+y+\sum_{i, j \geqslant 1} a_{i, j} x^{i} y^{j} \tag{1.2}
\end{equation*}
$$

is a commutative formal group law [5]; it satisfies the following properties

$$
\begin{align*}
& \text { (1) } F(x, 0)=0, \tag{1.3}\\
& \text { (2) } \\
& \text { (3) } \\
& \text { (F } \\
& F(x, y)=F(x, y), z)=F(x, F(y, z))
\end{align*}
$$

The following lemma explains the relation of primitive elements in \mathfrak{N}^{1} $(B O(1))$ to the formal group law $F(x, y)$ of (1.2).

Lemma 1.4. An element $g\left(W_{1}\right)=W_{1}+\sum_{i \geqslant 2} z_{i-1} W_{1}{ }^{i}$ of $\mathfrak{R}^{1}(B O(1))$ is primitive if and only if $F(x, y)=g^{-1}(g(x)+g(y))$, where $g^{-1}(x)$ is the inverse of $g(x) ; g\left(g^{-1}(x)\right)$ $=g^{-1}(g(x))=x$.

Proof, If $g\left(W_{1}\right)$ is primitive, then

$$
\begin{aligned}
& F\left(W_{1} \otimes 1,1 \otimes W_{1}\right)=\mu_{1}^{*} W_{1}=\mu^{*} g^{-1}\left(g\left(W_{1}\right)\right)=g^{-1}\left(\mu^{*} g\left(W_{1}\right)\right) \\
= & g^{-1}\left(g\left(W_{1}\right) \otimes 1+1 \otimes g\left(W_{1}\right)\right)=g^{-1}\left(g\left(W_{1} \otimes 1\right)+g\left(1 \otimes W_{1}\right)\right) .
\end{aligned}
$$

Conversely, if $F(x, y)=g^{-1}(g(x)+g(y))$, then

$$
\begin{aligned}
& \mu^{*} g\left(W_{1}\right)=g\left(\mu^{*} W_{1}\right)=g\left(F\left(W_{1} \otimes 1,1 \otimes W_{1}\right)\right)=g\left(W_{1} \otimes 1\right)+g\left(1 \otimes W_{1}\right) \\
= & g\left(W_{1}\right) \otimes 1+1 \otimes g\left(W_{1}\right) .
\end{aligned}
$$

Lemma 1.5. Concerning the coefficients of the formal group law (1.2), we have the following formulas for every integer $k \geqslant 1$.
(1) $a_{1,2 k-1}=0$.
(2) $\sum_{k>j \geqslant 0} a_{1,2 j}\left[P_{2(k-j)}\right]=0$.
(3) $\sum_{\substack{k>j \gg \\ k-j>1,2 j}} a_{k-j}\left[P^{2}=\left[P_{2 k}\right]\right.$.

In the above formulas, P_{i} denotes the real projective space of dimension i.
Proof. Putting $m=1$ in (3.4) of [2] (p. 190), we obtain

$$
[H(1, n)]=\sum_{i, j \geq 0} a_{i, j}\left[P_{1-i}\right]\left[P_{n-j}\right],
$$

where $H(1, n)$ is Milnor's hypersurface in $P_{1} \times P_{n}$. But $\left[P_{2 i-1}\right]=0$ and $[H(1, n)]$ $=0$ for every $n \geqslant 1$ ([1]). So $\sum_{j \geqslant 0} a_{1, j}\left[P_{n-j}\right]=0$. Letting $n=2 k-1$, we have $\sum_{k \geqslant j \geqslant 1} a_{1,2 j-1}\left[P_{2(k-j)}\right]=0$ and part (1) follows by induction on k. Analogously letting $n=2 k \geqslant 2$, part (2) follows. Now, from part (2).

So

$$
\begin{gathered}
a_{1,2 k}+\left[P_{2 k}\right]=\sum_{k>j>0} a_{1,2 j}\left[P_{2(k-j)}\right] . \\
{\left[P_{2 k}\right]=a_{1,2 k}+\sum_{k>j>0}\left(\sum_{j>m \geqslant 0} a_{1,2 m}\left[P_{2(j-m)}\right]\right)\left[P_{2(k-j)}\right]} \\
=a_{1,2 k}+\sum_{k-2>j \geqslant 0} a_{1,2 j}\left(\sum_{k-j-1 \geqslant i>1}\left[P_{2 i}\right]\left[P_{2(k-i-j}\right]\right) .
\end{gathered}
$$

This yields part (3) since \mathfrak{n}^{*} is a Z_{2}-vector space.

2. Steenrod-tom Dieck operations

T. tom Dieck has defined in [8] the stable cohomology operations

$$
R^{i}: \mathfrak{N}^{*}(X) \rightarrow \mathfrak{N}^{*+i}(X) \quad(-\infty<i<\infty)
$$

such that
(2.1) (a) For $x \in \mathfrak{R}^{i}(X), R^{i}(x)=x^{2}$.
(b) For $x \in \mathfrak{R}^{i}(X)$ and $j>i, R^{j}(x)=0$.
(c) $R^{k}(x y)=\sum_{i=-\infty}^{\infty} R^{i}(x) R^{k-i}(y)$.
(d) For the natural transformation $\mu=\mathfrak{R}^{*}(\quad) \rightarrow H^{*}\left(\quad ; Z_{2}\right)$ it holds that $\mu \circ R^{k}=S_{q}{ }^{k} \circ \mu,\left(S_{q}{ }^{k}\right.$: Steenrod operation, $S_{q}{ }^{k}=0$ for $\left.K<0\right)$.

On the other hand, tom Dieck has also defined in [8] the following mapping $R_{j}: \mathfrak{N}_{*} \rightarrow \mathfrak{N}_{2 *+j}$ for $j \geqslant 0$; for a closed differentiable manifold M, let $R_{j}(M)$ be the orbit space of the free involution $\left(S^{j} \times(M \times M), a \times T\right)$, where a is the antipodal involution and T is the switching map. It was proved in [8] that, if M is bordant to M^{\prime}, then $R_{j}(M)$ is bordant to $R_{j}\left(M^{\prime}\right)$ and that this construction yields consequently a mapping of the bordism set $R_{j}: \mathfrak{R}_{*} \rightarrow \mathfrak{N}_{2 *+j}$.

The mappings R_{j} are expressed by the operations on $\mathfrak{R}^{*}(p t)$

$$
R^{i}: \mathfrak{N}^{*}(p t) \rightarrow \mathfrak{N}^{*+i}(p t)
$$

and vice versa as in the following lemma. (Recall that we are always identifying \mathfrak{R}_{i} with \mathfrak{N}^{-i} via the Atiyah-Poincaré duality.)

Lemma 2.2.

(1) For $x \in \mathfrak{R}_{m}, R_{i}(x)=\sum_{i \geqslant j \geqslant 0}\left[P_{i-j}\right] R^{-m-j}(x)$, and consequently,
(2) $R_{j}(x+y)=R_{j}(x)+R_{j}(y)$.
(3) $R_{j}(x y)=\sum_{j \geqslant k+m \geqslant 0}\left(\sum_{i \geqslant 0}\left[P_{2 n_{i}}\right]^{{ }^{i}}\right) R_{k}(x) R_{m}(y)$,
where the latter summation runs through all the sequences of non-negative integers $\left(n_{0}, n_{1}, \cdots, n_{i}, \cdots\right)$ such that $\sum_{i \geqslant 0} 2^{i+1} n_{i}=j-(k+m)$.

Proof. Part (1) follows easily from (14.1) of [8]. Since the R^{i} are stable cohomology operations, they are additive and so part (2) follows from (1). For $x \in \mathfrak{N}_{m}$ and $y \in \mathfrak{N}_{n}$,

$$
\begin{equation*}
R_{j}(x y)=\sum_{j \geqslant 2 i \geqslant 0}\left[P_{2 i}\right]\left(\sum_{k+q \geqslant j-2 i} R^{-m-k}(x) R^{-n-q}(y)\right) \tag{2.3}
\end{equation*}
$$

by part (1) and 2.1 (c). On the other hand,

$$
\begin{aligned}
& \sum_{j \geqslant 2 i \geqslant 0}\left[P_{2 i}\right]\left(\sum_{k+q=j-2 i} R_{k}(x) R_{q}(y)\right) \\
= & \sum_{a, b}\left[P_{a}\right]\left[P_{b}\right]\left(\sum_{j \geqslant 2 i \geqslant 0}\left[P_{2 i}\right]\left(\sum_{s+t=(j=a-b)-2 i} R^{-m-s}(x) R^{-n-t}(y)\right)\right) \quad \text { by (1) } \\
= & \sum_{a, b}\left[P_{2 a}\right]\left[P_{2 b}\right] R_{j-2(a+b)}(x y) \quad \text { by }(2.3) \\
= & \sum_{a \geqslant 0}\left[P_{2 a}\right]^{2} R_{j-4 a}(x y) . \\
& \text { So } R_{j}(x y)=\sum_{j \geqslant 2 i \geqslant 0}\left[P_{2 i}\right]\left(\sum_{k+m=j-2 i} R_{k}(x) R_{m}(y)\right)+\sum_{a \geqslant 1}\left[P_{2 a}\right]^{2} R_{j-4 a}(x y) .
\end{aligned}
$$

Substituting repeatedly the latter part of the right hand side, we obtain part (3).
Remark 2.4. In 2.4 below, we give a complete description of the mapping R_{1} with respect to the "canonical ring generators" of \mathfrak{R}^{*}. This would be a partial answer to a question of tom Dieck ([8]) on the behaviour of the mappings
$\boldsymbol{R}_{\boldsymbol{j}}$.
Corollary 2.5. Let $1=[p t] \in \mathfrak{R}^{*}$ be the unit element. Then, for $-\infty<j$ $<\infty$,

$$
R^{j}(1)= \begin{cases}1 & (j=0) \\ 0 & (j \neq 0)\end{cases}
$$

Proof. For $j \geqslant 0$, the assertion is clear by 2.1 (a) and (b). So let $j=-i$ $(i<0)$. Then $R_{i}(1)=\left[P_{i}\right]$ by definition. On the other hand, by 2.2 (1),

$$
R_{i}(1)=\left[P_{i}\right]+R^{-i}(1)-\sum_{i>j>0}\left[P_{i-j}\right] R^{-j}(1) .
$$

So $R^{-i}(1)=\sum_{i>j>0}\left[P_{i-j}\right] R^{-j}(1)$ and the assertion follows by induction on i. (Of course, this result can also be obtained directly from the definition of the operation R^{j}.)

Corollary 2.6. Let $P=W_{1}+\sum_{i \geqslant 2} z_{i-1} W_{1}{ }^{i}$ be a primitive element in $\mathfrak{R}^{1}(B O(1))$. Then, for every integer $j(-\infty<j \leqslant 1), R^{j}(P)$ is also primitive.

$$
\begin{aligned}
\text { Proof. } & \mu^{*} R^{j}(P)=R^{j}\left(\mu^{*}(P)\right)=R^{j}(P \times 1+1 \times P) \\
& =\sum_{i=-\infty}^{\infty}\left(R^{i}(P) \times R^{j-i}(1)+R^{i}(1) \times R^{j-i}(P)\right) \quad \text { by } 2.1(\mathrm{c}) \\
& =R^{j}(P) \times 1+1 \times R^{j}(P) \quad \text { by } 2.5
\end{aligned}
$$

Lemma 2.7. Let $X=\sum_{i \geqslant 1} x_{i-1} W_{1}{ }^{i}$ be an arbitrary element of $\mathfrak{R}^{1}(B O(1))$.
Then

$$
R^{0}(X)=\sum_{i \geqslant 1}\left(\sum_{2 k+j=1}\left(x_{2 k}\right)^{2} a_{1,2 j}\right) W_{1}^{2 i+1}+\sum_{i \geqslant 0} R_{1}\left(x_{i-1}\right) W_{1}^{2 i},
$$

where the $a_{1,2 j}$ are the coefficients in (1.1).

$$
\begin{aligned}
\text { Proof. } \quad & R^{0}\left(\sum_{i \geqslant 1} x_{i-1} W_{1}^{i}\right)=\sum_{i \geqslant 1} R^{0}\left(x_{i-1} W_{1}^{i}\right) \\
& =\sum_{i \geqslant 1} \sum_{j=-\infty}^{\infty} R^{-j}\left(x_{i-1}\right) R^{j}\left(W_{1}^{i}\right) \quad \text { by } 2.1 \text { (c) } \\
& =\sum_{i \geqslant 1} \sum_{i \geqslant j \geqslant i-1} R^{-j}\left(x_{i-1}\right) R^{j}\left(W_{1}^{i}\right) \quad \text { by } 2.1 \text { (b) } \\
= & \sum_{i \geqslant 1}\left\{\left(x_{i-1}\right)^{2} R^{i-1}\left(W_{1}^{i}\right)+R^{-i}\left(x_{i-1}\right) W_{1}^{2 i}\right\} \quad \text { by } 2.1 \text { (a) } \\
& =\sum_{i \geqslant 1}\left(x_{i-1}\right)^{2}(i) W_{1}^{2(i-1)} R^{0}\left(W_{1}\right)+\sum_{i \geqslant 1} R^{-i}\left(x_{i-1}\right) W_{1}^{2 i} \\
& =\sum_{i \geqslant 1}\left(x_{2 i}\right)^{2} W_{1}^{4 i} R^{0}\left(W_{1}\right)+\sum_{i \geqslant 1} R^{-i}\left(x_{i-1}\right) W_{1}^{2 i} .
\end{aligned}
$$

It was observed in [2](p. 141) that $R^{\circ}\left(W_{1}\right)=W_{1}+\sum_{j \geqslant 1} a_{1, j} W_{1}{ }^{j+1}\left(=\sum_{j \geqslant 0} a_{1,2 j} W_{1}^{2 j+1}\right.$ by $1.5(1))$, and $R^{-i}\left(x_{i-1}\right)=R_{1}\left(x_{i-1}\right)$ by 2.2 (1). Therefore the lemma follows.

3. Determination of Boardman's generators

Let $P_{0}=W_{1}+\sum_{i \geq 2} z_{i-1} W_{1}{ }^{i} \in \mathfrak{N}^{1}(B O(1))$ be the (unique) primitive element such that $z_{2^{k}-1}=0(k \geqslant 1)$ (see [1], [6] Introduction).
Then we have
Lemma 3.1 $R^{0}\left(P_{0}\right)=P_{0}$.
Proof. By 2.6, $R^{0}\left(P_{0}\right)$ is primitive, and by 2.7, $R^{0}\left(P_{0}\right)$ is of the form $W_{1}+$ $\sum_{i \geqslant 2} x_{i-1} W_{1}^{i}$, with $x_{2^{k}-1}=R_{1}\left(x_{2^{k-1}-1}\right)=0(k \geqslant 1)$. So, by the uniqueness of such a primitive element ([1]), the lemma follows.

Theorem 3.2 The coefficient z_{i-1} of the canonical primitive element $P_{0}=W_{1}+\sum_{i \geqslant 2} z_{i-1} W_{1}^{i} \in \mathfrak{R}^{1}(B O(1))$ with $z_{2^{k-1}}=0(k \geqslant 1)$ is the cobordism class of the "iterated Dold manifold" $\left(R_{1}\right)^{a}\left(P_{2 b}\right)=R_{1}\left(\cdots\left(R_{1}\left(P_{2 b}\right)\right) \cdots\right)$ for $i=2^{a}(2 b+1)(a \geqslant 0, b$ $\geqslant 1$).

Proof. We prove by induction on $a \geqslant 0$, using 3.1 and 2.7.
(1) In case $a=0$. By 3.1 and 2.7, we have

$$
z_{2 b}=\sum_{2 k+j=b}\left(z_{2 k}\right)^{2} a_{1,2 j} .
$$

So $z_{2}=\left(z_{0}\right)^{2} a_{1,2}=\left[P_{2}\right]$ by 1.5 (2), and inductively on b we can deduce, by 1.5 (3), that $z_{2 b}=\sum_{2 k+j=b}\left[P_{2 k}\right]^{2} a_{1,2 j}=\left[P_{2 b}\right]$.
(2) If we suppose that the theorem holds for $a-1 \geqslant 0$, then for $i=2^{a}(2 b+1)$, 3.1 and 2.7 imply that $z_{i-1}=R_{1}\left(z_{j-1}\right)$ with $j=2^{a-1}(2 b+1)$. So, by induction hypothesis, $z_{i-1}=R_{1}\left(\left[\left(R_{1}\right)^{a-1}\left(P_{2 b}\right)\right]\right)=\left[\left(R_{1}\right)^{a}\left(P_{2 b}\right)\right]$ as desired.

Corollary 3.4.

(1) The cobordism class $\left[\left(R_{1}\right)^{a}\left(P_{2 b}\right)\right.$] can be taken as a ring generator of \mathfrak{R}_{*} in dimension $2^{a}(2 b+1)-1$.
(2) Denoting $\left[\left(R_{1}\right)^{a}\left(P_{2 b}\right)\right]$ by $X(a, b)$, an additive basis for \Re_{*} is given by $\left\{\prod_{a \geqslant 0, b \geqslant 1} X\right.$ $(a, b)^{2 \lambda(a, b)+\varepsilon(a, b)} ; \lambda(a, b) \geqslant 0,1 \geqslant \varepsilon(a, b) \geqslant 0, \lambda(a, b)=\varepsilon(a, b)=0$ except for a finite number of pairs $(a, b)\}$.
(3) With respect to this basis, the additive homomorphism

$$
R_{1}: \mathfrak{N}_{*} \rightarrow \mathfrak{N}_{2 *+1}
$$

is determined by the following formula;

$$
\begin{aligned}
& R_{1}\left(\prod_{a \geqslant 0, b \geqslant 1} X(a, b)^{2 \lambda(a, b)+\varepsilon(a, b)}\right) \\
&=\sum_{a, b}\left\{\varepsilon(a, b)\left(\prod_{(c, a) \neq(a, b),(a+1, b)} X(c, d)^{4 \lambda(c, a)+2 \varepsilon(c, a)}\right)\right. \\
&\left.\quad \cdot X(a, b)^{4 \lambda(a, b)} X(a+1, b)^{4 \lambda(a+1, b)+2 \varepsilon(a+1, b)+1}\right\}
\end{aligned}
$$

Proof. Part (1) and (2) are the consequence of the fact that the coefficients z_{i-1} of the primitive element P_{0} are indecomposable in \mathfrak{N}_{*} ([1]). Part (3) follows from 2.2 (3) and the definition of the $X(a, b)$.

4. Bordism algebra of free involutions

In this section we consider the relation between the algebra $\mathfrak{N}_{*}(B O(1))$ with the multiplication

$$
\mu_{*}: \mathfrak{N}_{*}(B O(1)) \otimes_{\mathfrak{N}_{*}} \mathfrak{N}_{*}(B O(1)) \rightarrow \mathfrak{N}_{*}(B O(1))
$$

and the coalgebra $\mathfrak{R}^{*}(B O(1))$ with the comultiplication

$$
\mu^{*}: \mathfrak{R}^{*}(B O(1)) \rightarrow \mathfrak{N}^{*}(B O(1)) \underset{\mathfrak{R}^{*}}{\otimes} \mathfrak{N}^{*}(B O(1)
$$

via the cap product ([2] p. 186)

$$
\cap: \tilde{\mathfrak{N}}^{i}(X) \otimes \tilde{\mathfrak{N}}_{n}(X) \rightarrow \tilde{\mathfrak{N}}_{n-i}(X) .
$$

Let $\eta_{n}: P_{n} \rightarrow B O(1)$ be a classifying map of the canonical line bundle over P_{n}, and denote by $\{n\}$ the singular bordism class $\left[P_{n}, \eta_{n}\right] \in \mathfrak{N}_{n}(B O(1))$. It is well-known that $\mathfrak{I}_{*}(B O(1))$ is a free \mathfrak{N}_{*}-module with basis $\{\{0\},\{1\}, \cdots,\{n\}, \cdots\}$.

Let $\alpha_{k}(m, n) \in \mathfrak{N}_{m+n-k}$ be the element such that

$$
\{m\} \cdot\{n\}=\sum_{k} \alpha_{k}(m, n)\{k\}
$$

It is equivalent to define $\left[S^{m}, a\right] \cdot\left[S^{n}, a\right]=\sum \alpha_{k}(m, n)\left[S^{k}, a\right]$ in $\Re_{*}\left(Z_{2}\right)([9])$.

Theorem 4.1.

(1) $\alpha_{k+1}(m, n)=\sum_{i, j \geqslant 0} a_{i, j} \alpha_{k}(m-i, n-j)$, where the $a_{i, j}$ are the coefficients in (1.1).
(2) $\sum_{i \geq 0} z_{i-1} \alpha_{k+i}(m, n)=\sum_{i \geqslant 0} z_{i-1}\left(\alpha_{k}(m-i, n)+\alpha_{k}(m, n-i)\right)$, where the z_{i-1} are the coefficients of a primitive element P (Uchida [9])).
(3) $\sum_{i \geq 0} \alpha_{2 i+1}(m, n)\left[P_{2 i}\right]=[H(m, n)]$, where $H(m, n)$ denotes Milnor's hypersurface in $P_{m} \times \mathrm{P}_{n}$.

Proof. The proof of [2] XIII (3.3) shows that

$$
\begin{aligned}
W_{1} \cap \mu_{*}(\{m\} \otimes\{n\}) & =W_{1} \cap\left(\sum_{k+1} \alpha_{k+1}(m, n)\{k+1\}\right)=\sum_{k} \alpha_{k+1}(m, n)\{k\} \\
& \left.=\mu_{*}\left(\mu^{*} W_{1} \cap\{m\} \otimes\{n\}\right)=\mu_{*}\left(\sum_{i, j \geqslant 0} a_{i, j} W_{1}{ }^{i} \otimes W_{1}^{j}\right) \cap\{m\} \otimes\{n\}\right) \\
& =\sum_{i, j \geq 0} a_{i, j} \mu_{*}(\{m-i\} \otimes\{n-j\})=\sum_{i, j \geqslant 0} a_{i, j}\left(\sum_{k} \alpha_{k}(m-i, n-j)\{k\}\right) \\
& =\sum_{k}\left(\sum_{i, j \geqslant 0} a_{i, j} \alpha_{k}(m-i, n-j)\right)\{k\} .
\end{aligned}
$$

Comparing the coefficient of $\{k\}$, part (1) follows. Analogously,

$$
\begin{aligned}
P \cap \mu_{*}(\{m\} \otimes\{n\}) & =\sum_{k}\left(\sum_{i} z_{i-1} \alpha_{k+i}(m, n)\right)\{k\} \\
& =\mu_{*}\left(\mu^{*}(P) \cap\{m\} \otimes\{n\}\right)=\mu_{*}((P \otimes 1+1 \otimes P) \cap\{m\} \otimes\{n\}) \\
& =\sum_{k}\left(\sum_{i} z_{i-1} \alpha_{k}(m-i, n)+\alpha_{k}(m, n-i)\right)\{k\}
\end{aligned}
$$

Part (3) follows from the proof of [2], XII (3.3).
Corollary 4.2. In $\mathfrak{R}_{*}\left(Z_{2}\right)$, the following multiplicative relations hold.
(1) $\left[S^{1}, a\right]\left[S^{2 n}, a\right]=\sum_{i \geqslant 0} a_{1,2 i}\left[S^{2 n-2 i+1}, a\right]$, where the $a_{1,2 j}$ are determined by the formula 1.5 (2).

$$
\left[S^{2 n+1}, a\right]\left[S^{2 n+1}, a\right]=0
$$

(Uchida [9])
(2) $\left[S^{2}, a\right]\left[S^{2 n}, a\right]=\sum_{i \geqslant 0} a_{2,2 i}\left[S^{2 n-2 i+1}, a\right]$

$$
+\sum_{i \geqslant 0}\left(\alpha_{0}(2,2 i-2)+\varepsilon(n+1-i)\left(a_{1, i}\right)^{2}\right)\left[S^{2 n+2-2 i}, a\right]
$$

$$
\left[S^{2}, a\right]\left[S^{2 n-1}, a\right]=\sum_{i \geqslant 0}\left\{\alpha_{0}(2,2 i-2)+\varepsilon(n-i)\left(a_{1, i}\right)^{2}+a_{2,2 i-1}\right\}\left[S^{2 n-2 i+1}, a\right]
$$

where $\varepsilon(n-i)=0(n-i$: even $),=1(n-i$: odd $)$, and

$$
\begin{aligned}
\alpha_{0}(2,2 i)=\left[P_{2}\right]\left[P_{2 i}\right] & +\varepsilon(i) \sum_{j \geqslant 0}\left[P_{4 j+2}\right]\left(a_{1, i-2 j}\right)^{2} \\
& +\sum_{j \geqslant 1}\left[P_{2 j}\right] \alpha_{0}(2,2 i-2 j) \text { with } \alpha_{0}(2,0)=0 .
\end{aligned}
$$

Proof. Letting $m=1$ in 4.1 (1), we have

$$
\alpha_{k+1}(1, n)=\alpha_{k}(1, n-1)+a_{1, n-k} .
$$

This yields, by induction on k, the former part of (1) and $\left[S^{1}, a\right]\left[S^{2 n+1}, a\right]=0$. Together with 5.1 (2), this in turn gives $\left[S^{1}, a\right]\left(\sum_{j \geqslant 0}\left[P_{2 j}\right]\left[S^{2 n-2 j}, a\right]\right)=\sum_{k \geqslant 0}\left(\sum_{i+j=k}\left[P_{2 j}\right]\right.$ $\left.a_{1,2 i}\right)\left[S^{2 n-2 k+1}, a\right]=\left[S^{2 n+1}, a\right] . \quad$ So $\left[S^{2 m+1}, a\right]\left[S^{2 n+1}, a\right]=\left[S^{1}, a\right]\left[S^{2 n+1}, a\right]\left(\sum_{j \geqslant 0}\left[P_{2 j}\right]\right.$ $\left.\left[S^{2 m-2 j}, a\right]\right)=0$.

Analogously, letting $m=2$ in 4.1 (2), part (2) follows.
Corollary 4.3. Concerning the Smith homomorphism Δ, we have the following formulas.
(1) $\Delta\left(\left[S^{m}, a\right] \cdot\left[S^{n}, a\right]\right)=\sum_{i, j \geqslant 0} a_{i, j} \Delta^{i}\left[S^{m}, a\right] \cdot \Delta^{j}\left[S^{n}, a\right]$

$$
=\left(\Delta\left[S^{m}, a\right]\right)\left[S^{n}, a\right]+\left[S^{m}, a\right]\left(\Delta\left[S^{n}, a\right]\right)
$$

$$
+\left[P_{2}\right]\left(\Delta\left[S^{m}, \mathrm{a}\right] \Delta^{2}\left[S^{n}, a\right]+\Delta^{2}\left[S^{m}, a\right] \Delta\left[S^{n}, a\right]\right)+\cdots
$$

(2) $\quad \Delta^{2 k}\left(\left[S^{m}, a\right] \cdot x\right)=\left[S^{m}, a\right] \cdot \Delta^{2 k}(x)$ for $2^{k}>m \geqslant 0$.
(3) $\Delta^{2 k}\left(\left[S^{2 k}, a\right] \cdot x\right)=\left[S^{2 k}, a\right] \cdot \Delta^{2 k}(x)+x+\sum_{j \geqslant 1}\left(a_{1,2 j}\right)^{2 k} \Delta^{2^{k+1} j}(x)$.

Proof. Part (1) is a paraphrase of 4.1 (1).
Substituting repeatedly the second factor in the right side of 4.1 (1), we obtain

$$
\begin{aligned}
\alpha_{s+2^{k}}(m, n) & \left.=\sum_{1 \leqslant g \leqslant 2^{k}} a_{i q, j q}\right) \alpha_{s}\left(m-\sum_{q} i_{q}, n-\sum_{q} j_{q}\right) \\
& =\sum_{i, j \geqslant 0}\left(a_{i, j}\right)^{2 k} \alpha_{s}\left(m-2^{k} i, \mathrm{n}-2^{k} j\right) \\
& =\alpha_{s}\left(m, n-2^{k}\right)+\sum_{i \geqslant 1, j \geqslant 0}\left(a_{i, j}\right) 2^{2^{k}} \alpha_{s}\left(m-2^{k} i, n-2^{k} j\right) .
\end{aligned}
$$

This yields part (2) and (3).

Appendix. Unrestricted bordism algebra of involutions

In this appendix, we consider the unrestricted bordism module of all involutions (admitting fixed point sets). The basic notations are found in Conner-Floyd [3], IV 28.

The unrestricted bordism group of involution $I_{*}\left(Z_{2}\right)$ has an \mathfrak{N}_{*}-algebra structure via the cartesian product. The direct sum $\sum_{m} \mathscr{N}_{*}(B O(m))$ also admits a multiplicative structure by the formula $[M, \xi] \cdot[N, \eta]=\left[M \times N, p_{1}{ }^{*} \xi \oplus p_{2}{ }^{*} \eta\right]$.

Lemma 1. There is the well-defined ring homomorphism

$$
\tau: \mathfrak{N}_{*} \rightarrow \sum_{m} \mathfrak{N}_{*}(B O(m))
$$

defined by $\tau[M]=\left[M, \tau_{M}\right]$, where τ_{M} denotes the tangent bundle of M.
Proof. Let W be a manifold giving the bordant relation of M to $N ; \partial W=$ $M \cup N$. Then $\partial\left(W, \tau_{W}\right)=\left(M, \tau_{M} \oplus 1\right) \cup\left(N, \tau_{N} \oplus 1\right)$. So we have

$$
\left(i_{n, n+1}\right) *\left[M, \tau_{M}\right]=\left(i_{n, n+1}\right) *\left[N, \tau_{N}\right]
$$

where $i_{n, n+1}: B O(n) \rightarrow B O(n+1)$ is the canonical map (up to homotopy). But $\left(i_{n, n+1}\right)_{*}: \mathfrak{N}_{n}(B O(n)) \rightarrow \mathfrak{N}_{n}(B O(n+1))$ is a monomorphism ([3], 26.3). So [$\left.M, \tau_{M}\right]$ $=\left[N, \tau_{N}\right]$. The assertion that τ is a ring homomorphism is clear from the definitions.

Corollary 2. There is the ring homomorphism

$$
S: \mathfrak{N}_{*} \rightarrow I_{2 *}\left(Z_{2}\right)
$$

defined by $S([M])=[M \times M, T]$, where $T(x, y)=(y, x)$.
Proof. Consider the ring monomorphism $i_{*}: I_{*}\left(Z_{2}\right) \rightarrow \sum_{m} \mathfrak{N}_{*}(B O(m))$ of [3] (28.1). By the definition of i_{*} and the proof of [3] (24.3), $i_{*}([M \times M, T])=[M$, $\left.\tau_{M}\right]$ and $i_{*}\left(\left[N \times N, \tau_{N}\right]\right)=\left[N, \tau_{N}\right]$. Therefore by the preceding lemma, $[M \times M$, $T]=[N \times N, T]$ if $[M]=[N]$. Next we show that S is additive. $S([M]+[N])$ $=[(M \cup N) \times(M \cup N), T]=S([M])+S([N])+[(M \times N) \cup(N \times M), T]$. Since
any free involution bords in $I_{*}\left(Z_{2}\right),[(M \times N) \cup(N \times M), T]=0$ and S is additive. The multiplicativity of S is clear by difinition.

Corollary 3. $R_{j}=K_{j} \circ S$, i.e. the following diagram commutes

where R_{j} is the Dold-tom Dieck homomorphism of (2.2) and K_{j} is the \Re_{*}-homomorphism defined by $K_{j}([M, \mu])=\left[S^{j} \times M / a \times \mu\right]$ (Conner-Floyd [4]).

The proof is obvious from the definitions.
Corollary 4. As a ring, $I_{*}\left(Z_{2}\right)$ contains the polynomial subalgebra $Z_{2}\left[S\left(z_{i-1}\right)\right.$: $\left.i-1 \neq 2^{k}-1\right]$ as a direct summand.

Proof. Let $\varepsilon: \sum_{m} \mathfrak{M}_{*}(B O(m)) \rightarrow \mathfrak{N}_{*}$ be the augmentation homomorphism induced by the constant map. Then $\varepsilon \circ i_{*} \circ S=\mathrm{id}: \mathfrak{N}_{*} \rightarrow \mathfrak{N}_{*}$ and ε, i_{*} and S are all ring homomorphisms. So the corollary follows.

Osaka University and Université de Paris (Orsay)

References

[1] J.M. Boardman: Stable Homotopy Theory, Ch. IV, (mimeographed) Warwick Univ., 1967.
[2] T. Bröcker-T. tom Dieck: Kobordismentheorie, Springer-Verlag, 1970.
[3] P.E. Conner-E.E. Floyd: Differentiable Periodic Maps, Springer-Verlag, 1964.
[4] —: Fibering within a cobordism class, Michigan Math. J. 12 (1965), 33 -47.
[5] D. Quillen: On the formal group laws of unoriented and complex cobordism theory, Bull. Amer. Math. Soc. 75 (1969), 1293-1298.
[6] K. Shibata: On Boardman's generating sets of the unoriented bordism theory, Osaka J. Math. 8 (1971), 219-232.
[7] J.C. Su: A note on the bordism algebra of involutions, Michigan Math. J. 12 (1965), 25-31.
[8] T. tom Dieck: Steenrod Operationen in Kobordismen-Theorie, Math. Z, 107 (1968), 380-401.
[9] F. Uchida: Bordism algebra of involutions, Proc. Japan Acad. 46 (1970), 615-619.

