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Introduction

Conner-Floyd proved in their book [1] the following theorem which is a
generalization of the classical Borsuk-Ulam theorem: Let /: Sn^>M be a
continuous map of the n-sphere to a differentiable manifold of dimension m, and
T be a fixed point free differentiable involution on Sn. Assume that m^n and

/*: Hn(Sn; Z2)-*Hn(M; Z2) is trivial. Then the covering dimension of A(f)=
{y<=Sn\f(y)=f(Ty)} is at least n—m.

In response to the questions asked in [1, p. 89], Munkholm [4] showed that
in the above theorem all differentiability hypotheses can be eliminated if M is
assumed to be compact. Furthermore he showed in [5] that Sn can be replaced
by a closed manifold which is a mod 2 homology n-sphere if M is the Euclidean
space. In the present paper, we shall show the following theorem which is
more general.

Main Theorem. Let N be a closed topologίcal manifold which is a mod 2
homology n-sphere, and T be a fixed point free involution on N. Let f: N-+M be
a continuous map of N to a compact topologίcal m-manifold M (with or without
boundary). Assume that n^m andf*: Hn(N\ Z2)->Hn(M; Z2) is trivial. Then
the covering dimension of A(f)= {y^N \ f(y)=f(Ty)} is at least n—m.

Let π denote the cyclic group of order 2 generated by T. Denote by JV*
the orbit space of N, and by Nx M2 the orbit space oϊNx M2 on which π acts by

T(y, x, xι) = (Tyy x\ x) (ytΞN, x, X'ΪΞM). Then NxM2 and N«xM are

topological manifolds, andN«xM is embedded in NxM2 by the diagonal map

d: M->M2. Assuming Mis a closed manifold, let θo^Hm(NxM2; Z2) denote

the Poincare dual of i*(w), where we Hn+fn(N X M Z2) is the fundamental class

and iiN^xMczNxM2. Define*: N«-*NxM2by s(y)=(y,f{y)J{Ty)) (y^N).

Then Conner-Floyd [1] and Munkholm [4] proved their theorems by showing
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φ 0. We also follow this principle (see Lemma 6). However our
method of proving s*(#0)φ0 is different from theirs, and is purely homological.

Let N be a sufficiently large dimensional sphere, and T: N-+N be the
antipodal map. Assume that M is triangulable. Then Haefliger [2] proved a
formula giving θ0 in terms of cohomology classes of M. We shall show that
the formula still holds for our N, T and M, and we shall use the formula to
prove s*(ι90)φ0.

The method can be also applied to obtain the Borsuk-Ulam type theorem for
a fixed point free homeomorphism of period p on a mod p homology sphere
(p: odd prime), and a theorem including the result in [5] will be proved (see
Theorem 8 in §9).

1. Generalization of Eilenberg-Zilber theorem

Throughout § 1—§ 3, a principal ideal domain R is fixed, and chain complexes
over R are conisdered. Thus, the singular complex of a topological space X
with coefficients in R is denoted by simply S(X)={Sg(X)}, and the tensor,
product ®R is denoted by simply ®.

Let £ b e a Hausdorff space on which there is given a fixed point free

involution T, and such that the reduced homology group H*(E) is trivial. Then

we have the following generalization of Eilenberg-Zilber theorem.

Theorem 1. There exist chain maps

p : SiExX.xX,) - S(E)®5(^)05^),

p': SiE^SiX^SiX,) -> S(EχXλxX2),

defined for each pair (Xlf X2) of topological spaces, and satisfying the following

conditions:

(i) p and p' are functorial, i.e. for any continuous maps f: X1-^Y1 and

f: X2-> Y2 we have

p/o(Wi#®/2») =

(ii) p and p' are equίvariant in the sense that

where T: S(X1)®S(X2)->S(X2)®S(X1) is given by Ϊ1(έ:1®έr2)=(-l)deβcidββίr2
c2®cly and TxT: EχXλχX2-^EχX2χXλ by (T X T)(e, x» x2)=(Tey x2y xx)
(e<=Ey ^
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(iii) There exist a chain homotopy Φ of pf °p to the identity and a chain
homotopy Φ' of pop' to the identity, which are defined for each pair of topological
spaces and which are functorίal and equivariant in the same sense as in (i), (ii).

Proof. The proof is done by the method of acyclic models.
Define a homomorphism p0: S0(EχX1χX2)-^S0(E)®S0(Xι)®S0(X2) by

ρo(e, x19 x2) = e®x1®x2 (e^E> xλ^Xly X 2 G I 2 ) , and assume inductively that a
homomorphism pr\ Sr(ExX1xX2)-+(S(E)®S(X1)®S(X2))r has been defined
for r<n so that the conditions

i) dropr = pr_1o9r ,

ii) pro

iii)

are satisfied. Take a set {^}\eA °f singular w-simplexes of E such that
{el, T^λlλeΛ is a basis of the module Sn(E). For each λGΛ, define a singular
rc-simplex dn

x\ An-+EχAnxAn by dn

λ(z)=(en

λ(z), zy z) (#<ΞΔM). It holds that
9«-i Pn-βn(d\)=Q (W>1) a n d ^Po9!(rfx)=0 (n=l) for the augmentation ε. Since
the reduced complex of S(E)®S(An)<g)S(An) is acyclic, there exists an w-chain
pn{dl) of S(E)®S{An)®S{An) such that dnPn(dl) = pM^dΛ(d^). The module
Sn(ExX1 X X2) is a free module generated by elements of the form (1 X σxXσ^dl
or (Txσ1Xσ2\dχ, where σ# : Δ

W-»X,. (/—I, 2) is any continuous map. Define
a homomorphism pn: Sn(ExX1xX2)-^S(E)®S(X1)®S(X2))n by

pΛ((l X σx X σ 2 yj) - (1®

Then it is easily checked that the conditions i)—iii) are satisfied for r=n. Thus
there exists a chain map p satisfying the conditions (i) and (ii).

Define a homomorphism pi: S0(E)®S0(X1)®S(X2)-^S0(ExX1xX2) by
pΌ(e®x1®x2)=(e, xly x2) (e^E9 x^Xly x2^X2), and assume inductively that a
homomorphism p'r\ ( S ( £ ) ® 5 ( 1 , ) ® S ( I 2 ) ) r - ^ S , ( £ x I t x I 2 ) has been defined
for r<n so that the conditions

i)' 9rop; = p;_ l O 9 r ,

ii)' (1 Xf Xf2\°p'r =

iϋ)' (ΓxΓ)#op;

are satisfied. Let ik^Sk(Ak) denote the singular simplex given by the identity,
and consider er

λ®is®it^Sr(E)®Ss(As)xSt(At) with r+s+t = n. It holds
that a«_1pi_19 r tK®^®/0=0 (n>l) and βp'odι(er

λ®?®i') = 0 (n=l) . Since
the reduced complex of AS^ZJXΔ^XΔ*) is acyclic, there exists an /z-chain
P^(er

κ®is®it)^Sn(EχAsxAf) such that 9 r t p^®zW)=p^AK®i*®ϊ)
The module (5(JE)®5(X1)®/S'(Jίί2))n is a free module generated by elements
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of the form (1 ®σ l f®σ a)(e r

λ®i β®i f) and {T^®σlfί®σ^)(el®is®i% where
σy. Δ5->X, σ2: Δ'-»-XΓ2 are continuous maps. Define a homomorphism p£:
(S(E)®S(X1)®S(X2))tt^Sn(ExX1xX2) by

Then it is easily checked that the conditions i)'—iii)' are satisfied for r=n. Thus
there exists a chain map p' satisfying the conditions (i) and (ii).

By the similar method we can construct chain homotopies Φ and Φ' in
(iii). This completes the proof of Theorem 1.

The following is obvious from the proof above.

Corollary. Let E' be a subspace of E which is invariant under T and such

that Hq(E')=0 for q<n. Then p and p' can be taken in such a way that

Pg(S(E'xX1xX2))czS(E')®S(X1)®S(X2) and p'q{S{Ef)®S(X1)®S(X2))

CS(E'XX,XX2) for q^n.

2. Algebraic lemmas

Given a chain complex C, the module Z(C) of cycles of C and the homology
module H(C) of C are regarded as chain complexes with trivial boundary operator.
Then the inclusion ξ: Z{C)-+C and the projection η: Z(C)->H(C) are chain
maps.

Let π be a cyclic group of order 2, and T its generator. Let W be a π-
free acyclic complex, and define an action of π on the chain complex C2=C®C
by T(£i®£2)=(— l)de8rcidefif<:2c2®i:1 cu c 2 eC). Consider the diagonal action of π
on W®C2

y and let W®C2 denote the quotient complex.

For the homomorphisms

f*: H(W®Z(C)2) -> H(W®C2),

V*: H(W®Z(C)2) -> H(W®H(C)2)

induced by ξ and η, we have

Lemma 1. If C is a free chain complex such that H(C) is free, then ξ* oη j 1 :
H(W®H(C)2)->H(W®C2) is well defined and is an isomorphism.

Proof. There exist chain maps η': H(C)-*Z(C) and ζ": C-^H(C) such
that VoV'= 1, ξΌξ=v. Put ξ=ξoV': H(C)->C. Then f#: H(C)^H(C) is the
identity, and hence £ is a chain equivalence. Therefore, by a lemma due to
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Steenrod(see [8], p. 125), l®ζ2: W®H(C)2->W®C2 is a chain equivalence,
and we have

£*: H(W®H(C)2) ex H(W®C2).

Since ξ% is the inverse of f *, it follows from ζ*°ξ*=v* that ξ*—ζ*°y*. Since
17^0^=1, η^ is surjective. Thus we have ζ*=ξ*°v*1 which completes the
proof.

Denote by C* the cochain complex dual to a chain complex C. We regard
the module Z(C*) of cocycles of C* and the cohomology module H(C*) as cochain
complexes with trivial coboundary operator.

Define an action of π on the cochain complex C*2=C*®C* by
T(u1®u2)=(—l)de8uίdegu2u2®u1(uly z/2eC*), and consider the cochain complex
HomjC(W, C*2) consisting of equivariant homomorphisms of W to C*2. The
inclusion ξ: Z(C*)->C* and the projection η: Z{C*)^H(C*) induces homomor-
phisms

?*: i/(HomΛ (W, Z(C*)2)) -> //(Horn* (IF, C*2)),

^^: i/(Hom, (W, Z(C*)2)) -> //(Horn, (W, //(C*)2)).

Let μ: C*2->C2* denote the canonical cochain map defined by

® W 2 ) , cx®c2y = u{c^)u2(c2) (uly u2<=C*> cly c2^C).

The cochain map dual to T: C2->C2 defines an action of π on C2*. Then μ is
equivariant, and so it induces a homomorphism

μ*: #(Hom* (W, C*2)) -> //(Horn* (W, C2*)).

Lemma 2. Let C be a free non-negative chain complex such that H(C) is of
finite type and is free. Then ξ*oV£: //(Horn* (W, i/(C*)2))->#(Honv(PF, C*2j)
is well defined, and both μ* snd ξ^^η-1 are isomorphisms.

Proof. There is a free non-negative chain complex C of finite type such that
C and C" are chain equivalent (see [7], p. 246). Let φ: C-+C be a chain
equivalence, and consider the following commutative diagram

#(Hom* (W, H{C'*)2)) -^ί> #(Hom* (W, i/(C*)2))

z(c*)2)) φ*

H(YLom«(Wy C'*2))

, C'2*))

\ Z(C*)2))

r C * 2 ) )

V, C2*))
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Since C * and H(C*') are free, the argument similar to the proof of Lemma 1
shows that 5*07?*1 i n the left side is well defined and is an isomorphism. Since
C" is of finite type and is free, μ: C'*2-»C'2* is an isomorphism, and so is μ*
in the left side. Since φ is a chain equivalence, it follows that φ* in the 3-rd
and the 4-th rows are isomorphisms. Obviously φ* in the 1-st row is also an
isomorphism. Thus we obtain the desired result.

By the definitions, H{W®H{C)2) is the homology group H(π; H(C)2) of
the group π with coefficients in the module H(C)2 on which π acts by T{a®b)
= (-l)άeeadesbb®a {a, b^H(C))y and H(Uom^(Wi #(C*)2)) is the cohomology
group H(π; //(C*)2) of the group π with coefficients in the module H(C*)2

on which π acts by T(a®β)=(—l)deg*de8β β®a (α, β

3. Homology and cohomology of ExX2

Given a topological space Y on which π acts, we denote by Y* the orbit
space. For a topological space X, consider the space ExX2 on which π acts
by T(e, x, x')=(Te, *', x) (e<=E, xy X'ΪΞX). We write {ExX% = ExX2.

For the singular homology group and the singular cohomology group of
ExX2, we have

Theorem 2. (i) There exists a functorίal isomorphism

H*(ExX2),

defined for each topological space X such that H*(X) is free.

(ii) There exists a functorial isomorphism

K: H*(π; H*(X)2) - H*{ExX2),

defined for each topological space X such that H*(X) is of finite type and is free.

Proof, (i) The action of π on Ex X2 makes the singular complex S(ExX2)
a TΓ-complex. Let S(EχX2)jπ denote the quotient complex. Since the
projection p: ExX2^ExX2 is a fibering with discrete fiber, it follows that

/>,: S(EχX2)-*S(EχX2) induces an isomorphism

^ S(ExX2).

Define an action of π on S(E)®S(X)2 by Γ^O^ig^^ί—l)d e g C l d e β €?2Γ t(έ:)(8)

c2®c1 (ίGS(£), c19 f 2 e S ( I ) ) . Then it follows that p ' in Theorem 1 induces

a chain equivalence

S(E)®S(X)2-+ S(ExX2)/π .

Therefore an isomorphism
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X: H(S(E)®S(X)2) - H*(ExX2)

is induced by the chain map ps°p'. Sincep% and p' are functorial, so is X.
Since S(E) is a 7r-free acyclic complex, by Lemma 1 we have

ξ*oη?: H(S(E)®H(X)*)^H(S(E)®S(X)2).

Obviously ξ* and η* are functorial. Therefore the desired isomorphism /c is
given by κ=Xoξ^oV~\

(ii) The cochain complex Horn* (S(E), 5(X)2*) is canonically isomorphic
with the cochain complex (S(E)®S(X)2)*y the above proof of (i) shows that an
isomorphism

X': H(Hom«(S(E), S(X)2*)) ^ H*(ExX2)

is induced by the chain map />#°p'. On the other hand, by Lemma 2 we have

), H*(X)2)) ^ H(Hom*(S(E)y S(X)2*)).

Therefore the desired isomorphism K is given by κ=Xoξ^o^-1 with X=X'°μ*.

This completes the proof of Theorem 2.

Define a pairing of H*{Xf and H*(X)2 to H*(X)2 by

(α®/3) (γ<g)δ) = ( -

Since this pairing is equivariant with respect to the action on i/*(X)2, it gives
rise to a cup product

^ : H*(π; i/*(Z)2)®//*(τr; i/*(X)2) -> H*(π; H*(X)2).

Similarly, an equivariant pairing of H*(X)2 and H*(X)2 to H*{X)2 defined by

{a®β)-{a®b) - (-l)

gives rise to a cap product

Theorem 3. 77?£ isomorphisms K in Theorem 2 preserve the cup products

and the cap products, i.e. the following diagrams are commutative.

H*(π; H*(X)2)®H*(π; #*(X) 2) -X> H*(π; H*(X)2))

\κ®κ \κ

X £ Γ )



430 M. NAKAOKA

H*(rt; *(

\κ

H*(ExX*)®HJEχX2) -^+H(E
ir it

Proof. For C=S(X) and Z{S{X)\ a cup product

^: Horn, (S(E), C*2)®Hom*(S(£), C*2) - Horn* (S(E), C*2)

and a cap product

), C2*)®(S(£)®C2) -

are defined similarly to the above, by using of the cup product and the cap
product for cochains and chains. Then it is obvious that the homomorphisms
ξ* and η* in the proof of Theorem 2 preserve the cup products and the cap
products. Therefore it suffices to prove that the homomorphisms X in the proof
of Theorem 2 preserve the cup products and the cap products.

For any topological space Y, let Δ: S(Y)^S(Y)2 denote the diagonal
approximation (see [7], p. 250). Consider a diagram

Δ®Δ

s(E)®s(xγ ^

S(ExX2)

|| \
S(ExX2) > S{ExX2)2,

where T is the appropriate chain map shuffling factors. Since Δ is functorial,
the lower rectangle is commutative. Regard S(ExX2)2 and (S(E)®S(X)2)2 as
7r-complexes by the diagonal action of the actions of S(ExX2) and S(E)®
S(X)2 respectively. Then it follows that the maps in the 1-st and the 2-nd rows
are equivariant. Furthermore the argument similar to the proof of Theorem 1
shows that there exists a chain homotopy of Δ°p' to p'2oτo(Δ®Δ2) which is
equivariant and functorial. Therefore we have a diagram

S(E)®S(X)2 ( A ® Δ K (S(E)®S(X)2)2

\(P*°PΎ

EX2

\ \

S{ExX2) > S(ExX2)

which is commutative up to chain homotopy.
Recall now the definition of cup product (cap product) in terms of Δ and

cross (slant) product. Then the above diagram yields the desired property.
This completes the proof of Theorem 3.
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4. Steenrod theorem

In §4—§8, we assume that the ground ring R is Z2> the field of integers
mod 2. We assume also that H*{X) is of finite type.

As is well known, a 7r-free acyclic complex W can be constructed as follows:
For each /^0, JFhas one cell e{ and its transform Teiy and d(ei)=ei_1-\-Tei_1

(t>0). Moreover there is a diagonal approximation rf#: W^>W®Wwhich is
given by

= Σ {e2j®ei.2j+e2j+λ®Tei_2j_1).

Therefore we can determine the structure of H*(π; H*(X)2) and H*(π H*(X)2),
and hence by Theorems 2 and 3 the structure of H*{EχX2) and H*(ExX2)

as soon as we know the structure of H*(X). To state the result, we shall first
prepare some notations.

For an element aeH*(X), let Q^a^H^π; H*(X)2) (z^O) denote the
element represented by the cycle e{®a®a^ W®H*(X)2. Given an element
αG£Γ*(Jf) a cocycle φ J G H o m , (Wy H*(X)2) is defined by <X(α), e^=a®a
(i=j)f =0 (iφj). Let ρ /(α)ei/*(τr; £Γ*(X)2) denote the element respresented
by wf.(α).

For two elements a, b<=H*(X), let Q(α, b)<=H*{π\ H*(X)2) denote the
element represented by the cycle eo®a®b^. W®H*(X)2. Given two elements

a, β£ΞH*(X), a cocycle u(a, β)^Homηe(Wy H*(X)2) is defined by <w(α, /3), e>>
=a®β+β®a (i=0), = 0 O'ΦO). Let Q(a, /5)e//*(τr; ίί*(X)2) denote the
element represented by u(a, β).

We shall put

) , P(α, β) = κ{Q{a, β)).

Obviously we have P(ay b) = P(by a), P(a, a) = P0(a)y P(ayβ) = P(β, a) and
P(α, a)=0.

The following theorem is proved easily.

Theorem 4. (i) If {a^j^J} is an ordered basis of the module H*{X),
then {Pi(aj)y P(aJy ak)} i^0>j, k^Jyj>k} is a basis of the module H*(ExX2).

Similarly, if {aj\j^J} is an ordered basis of the module H*(X)y then
P{ajy ak)\i^0y jy k<=Jy j>k} is a basis of the module H*(ExX2).

(ii) For ay βy a'y β'eΞH*(X) and a, beίH*(X)y we have



432 M. NAKAOKA

P(a, β)^P(a', β') =

if i

ifj=O,

P(α, β)^P{a, b) =

where it is to be understood that as^sa=0 if deg α > deg #.

(iii) // {tfy} αwrf {αy} «r^ dual bases, then so are {P(aj), P(aJy ak)} and

,(αy), P(ctj, ak)}.

Define a continuous map d: ExX-^ExX2 by d(y, x)=(y, x, x)
I ) . Then d induces a homomorphism

</*: H*(ExX2) -

We have the following theorem due to Steenrod (see [8], p. 103).

Theorem 5. For a^Hq(X) we have

where ωk^Hk{E^) is the generator, and Sq': Hg(X)->Hq+i(X) is the squaring
operation.

Proof. Let λ: S(E)ξ§S(X)->S(X)2 be a functorial equivariant chain map
defined for each topological space X, and φ: S(ExX)->S(E)®S(X) be a
chain equivalence in the Eilenberg-Zilber theorem. Let M G S ( Z ) * be a cocycle
representing a. Then it follows from the definition of Sqi that φ*X*μ{u®u)

^{S{E)®S(X)Y is an equivariant cocycle representing ^]ωkxSqg~ka^

H2g(E« x X), where μ: S ^ ) * 2 - ^ ^ ) 2 * is the canonical cochain map. Consider
the composition of chain maps

S(E)®S(X) -?U S(EχX) -^-+ S(ExX2)

p

-ί-* s(E)®s(xγ
where φ' is an inverse of φ and 8 is the augmentation. Since each map is
functorial and equivariant, we can take the composition as λ. It is easily
seen that p*(£®l)V (uXu)^S(E xX2)* is an equivariant cocycle representing
P0(a). Therefore we have the desired result.
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Corollary. For a^Hg(X) we have

Proof. Since Pi(a)=Pi{l)^P0(a) by Theorem 4, we have </*P.(α) =
d*Pi(l)^d*P0(a). Let P be a single point, and consider the commutative
diagram

K d*
H*(π H*(P)2) >H*(EχP2) >

H*(π; H*(X)2) -^U H*(EχX2) >

where the vertical maps are induced by the map X-+P. Then it follows that
d*Pi(l)=ωiX 1. Therefore the corollary follows from the theorem.

5. Homology of NxX2

Let Y be a topological space, and consider the suspension SY of Y. We
regard SY as the quotient space of Yx [0, 1], and identify Y with the subspace
Yx 1/2 of SY. If T is an involution on Y, it is extended to an involution T'
on SY by putting

T\y9 s) = (Y(y), l-s) (ye Y, O^s^l).

If T has no fixed point, so does T".
Let N be a compact Hausdorff space having the mod 2 homology of the n-

sphere, and suppose that there is given on N an involution without fixed points.
Define now, for each integer /^0, a compact Hausdorff space N* by

N° = N, Ni = SNi~1 (ί^l),

and let Λ/̂°° denote the inductive limit of the sequence NciN1^! - c i V ' c " .

Then, by the fact stated above, there exists an involution T: N^-^N00 without

fixed points such that Γ(iVί)=iVi" (i^O) and T | iV is the given involution. More-

over, since #,(iVO~#tf_t (ΛΓ)=0 {i>q-n), we have #,(iV~)=lim#,(N')=0

for any q. Thus iV°° has the properties assumed for E.
Assuming next that X is an arcwise connected topological space, we shall

consider the space N°°χX2 and its subspace NxX2.
It It

Theorem 6. The homomorphίsm ί*: HflNxX2)->Hk{NMxX2) induced
by the inclusion is an isomorphism if

Proof. The projection Nc"χX2-^N°° to the first factor defines a fibration
p: N°°xX2->N: with fiber X2

y and we have ρ-\Nί)=N'xX2 for each i.
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Consider the Serre spectral sequence E for the relative fibration^>:
NxX2)->(N~, N«). Then we have

and E~ is the graded module associated to some filtration of H*(N°°xX2, λτxX2).
By the properties of homology, it holds that

Hp(Nl iVr1; {Hq(X2)}) « HACN'-\ N", Hq(X2))

N'-'; Hq{X2)) « Hp_i{N)®Hq{X2)

Hq{X2) if ρ-i=n,

0 if /»—i
r

where ί ί ; 1 and CN' * denote the cone over TV1 \ Therefore the homomorphism
Hp{N(

χ-\ N«; {Hq(X2)})-*Hp(N<, N«; {H^X2)}) is injective if p-iφn-l, and is
surjective if p-iφn. Hence HP(N<, N«; {Hq(X2)})^Hp(Nϊ, iVβ; {Hβ(X2)})
if p-i^n-1. In particular, HP(N«, N«; {Ht(X2)})-^Hp(N:, iV«; [Hq{X>)})
is surjective if p^n, and so we have

i?p% = 0

The usual technique in spectral sequence proves now that Hk(N°°xX2, NxX2)
It It

= 0 for k^n. Thus t # : Hk(NχX2)->Hk(N°°χX2) is bijective if k^n-l, and
is surjective if &=/*.

We shall next prove that ί*: Hn(NxX2)->Hn(N~χX2) is injective.

Since Hn+1(N^)=^0y the homomorphism Hn+1(N^)-^Hn+1(N^fN^) is
injective. On the other hand, Z2^Hn+1(Nl, N«)^Hn+1(N~, N*) is surjective.
Therefore we have Hn+1(N:)^Hn+1(N:, NJ.

Consider the Serre spectral sequence Έ of the fibration p: N°°xX2-+N~.

Then we have Έ2

p>q^Hp(N~ {i/^X2)}), and Έ°° is the graded module associated
with some filtration of H*(N~ X X2). Since H*{N~ X X2)^H*(N: {H*(X2)})

It It

by Theorem 2, the usual technique in spectral sequence proves that Έ\ Q = Έ ~ q .
Consider now the commutative diagram

Hn+1(N~xX2) > Έ2

n+10=Hn+1(N:)

r • i
Hn+1(N°°xX\

it it

Then it follows that the map in the left is surjective. Therefore /*: Hn(NxX2)
->i/w(iV°° X X2) is injective. This completes the proof of Theorem 6.

Lemma 3. Let i^n and a(=H*(X). Then P{(a) is in the image of the
homomorphism **: H*(NxX2)-+H*(N~xX2).
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Proof. Since i^n, we have i/f (iV~, N* {H*(X2)})=0. Hence the homo-
morphism H4(N«; {H*(X2)})->H;(N:; {^(X2)}) is surjective. This shows
that ρf(α) is represented by a cycle of S(N)®S(X)2. Since Bg(N)=0 (i<n)
and T(N)~N, it follows from Corollary to Theorem 1 that P^ά) is represented
by a cycle of S(NχX2). Therefore we get the desired result.

6. The element θ

Let N be a closed topological manifold having the mod 2 homology of the
//-sphere, and let M be a connected closed topological manifold of dimension
m. Suppose that there is given on N an involution without fixed points. Then
NxM2 is a connected closed topological manifold of dimension n+2m. Let

It

μ<=Hm(M) and \(=H2m+n(N xM 2 ) denote the mod 2 fundamental class of M
and NxM2 respectively.

By Lemma 3, Pn(μ)^Hn+2m(N°° X M2) is in the image of the homomorphism

H: Hn+2m{N X M2)->Hn+2m(N~ X M2). Therefore we have
It It

Define a continuous map d0: NxM^NxM2 by dQ(y, x)=(y, x, x)
χ(=M). Then d0 induces a homomorphism d0*: H*(N«xM)^H*(NxM2).
Define

θ0tΞHm(NxM2)

to be the Poincare dual of do*(vnxμ), where vn^Hn{N^) is the generator.
We have

ΘO^X = do*(vn X μ) .

Assume now that m^n. Since *'*: H*(N~ X M2)^H\N X M2) for k^n
It It

by Theorem 6, there exists a unique element θ(=Hm(N°°xM2) such that

i*(θ) = θ0.

For the homomorphism d*: H*(N~xM)->H*(N°°xM2) induced by the
'diagonal* map, we have

ί#,)χ/t) = κω.
In fact,

d*(i*(vn) Xμ) = d*i*{vn x μ)
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Let Uf^H^M) denote the Wu class, i.e. the element defined by

where Sf*: Hm{M)-^Hm_i{M) is the transpose of Stf: Hmi{M)->Hm{M).

Theorem 7. Ifm^n, we have

where δ is a linear combination of elements of the type P(a, β).

Proof. For any a^Hg(M) with 2q^m^q, we have

θt PΛ(jι)>

= <θ, P2«_m(cc^μ)> (by (ϋ) of Theorem 4).

We have also

= <d*PH+m_M(a), i*(pn)Xμ>

= <Σ ω«+--* +' x Sq"-\a), H{VH) X μ>

(by Corollary of Theorem 5)

= <ω" X Sqm-9{a), i*(vH) X /*>

Λ W ) i * ( ) > (by (ii) of Theorem 4).

Therefore we get the desired result by (iii) of Theorem 4.

7. Proof of the main theorem

In this section we shall prove the main theorem.
For a continuous map / : N-*M9 a continuous s: N«-^N x M 2 can be

defined by

s(y) = (y,f(y)J(Ty)) (y^N).

For the homomorphism s*: Hm(N X M*)-^Hm{Nt), we have

Lemma 4. If m<*n and /*: Hn{N)^Hn{M) is trivial, it holds that
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Proof. We have a commutative diagram

Hm(N~ x M2) -?-> Hm(N x M2)
It It

l < l x « *. Is*
Hm{N" x N2) • Hm(N«),

where k: N,,-+N°°xN2 is given by k(y)=(y, y, Ty) (jeiV). Therefore, by
*

Theorem 7 we have
ί*(0β) = s*i*(θ) = A*(l x/2)*(6>)

(£m

From this and the assumption it follows that

If P is a single point and g: N->P is the map, the diagram

P*
Hm(NZ) -> ff "(JV- X P2)

I;* ^ ^ I ( l x g * y
•(JV.) < Hm(N~xN2)

is commutative. Therefore we have

k*(Pm(l)) = k*p*(ωm) = ί*( ω -)φ0 ,

which completes the proof of Lemma 4.
For a continuous map/: N->M, put

Lemma 5. //" f*(0o)=t=O, ίA«ί ^ covering dimension of A(f) is at least
n — m.

Proof. By the Thorn isomorphism, we have

H°{N x M2) s Hn+2m((N x M 2 ) 2 , (iV x MΎ-A(N x M 2 )),
* 7T Λ It

where Δ: JVxM2->(iVxM2)2 is the diagonal map. Let γe# Λ + 2 w (( iVxM 2 ) 2 ,

(iV X M2)2—A(N X M2)) be the generator, and put
7t «

γ2 = γ 14,(JVβ X M) x (N x M2, iV x M2-d0(N« x Λf))
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Write B(f) for the image of A(f) under the projection N^N«. Then the

following commutative diagram holds:

ί.xM)) —^-> Hn+JNxM*)
it

\\Ύ2 .# |\7x

Hm(NxM2,NxM2-dQ(N1txM))-^Hm(NxM2)

y*

where y are the inclusion maps, and \ denotes the slant product (see [7], p. 351).
Since \rγ1 is the inverse of the Poincarά duality isomorphism, the image of
the generator of Hn+m(d0(N^ X M)) under the composition of j * and \rγ1 is
ΘQ. Therefore Lemma 4 implies Hm(NηCy iVΛ-5(/)) Φ 0. Since this shows
HJN«y N«—B(f))Φθ, it follows that the Cech cohomology group Hn-m(B(f))
is not zero (see Theorem 17 in p. 296, Corollary 8 in p. 334 and Corollary 9 in
p. 341 of [7]). Therefore dim (B(J))^n—m, and hence dim (A(f))^n—m.
This complestes the proof of Lemma 5.

We are now ready for proving the main theorem.

Proof of Main Theorem. By Lemma 4 and Lemma 5, we have the main
theorem for a connected closed topological manifold M. From this the result
for any compact manifold M is obtained easily (see [4]).

8. Corollaries of the main theorem

The following corollary is obtained immediately from the main theorem.

Corollary 1. Let N, T and M be the same as in the main theorem, and Tf

be a fixed point free involution on M.
(i) If n>m, there exists no continuous map f: N-+M equivariant with T

and T.
(ii) If n=m and f: N-+M is a continuous map equivariant with T and T',

thenf*: Hn(N)^Hn(M) is not trivial.

The following corollaries are obtained by the same way as in [1], p. 89.

Corollary 2. Let Nbea closed topological manifold which is a mod 2 homology
n-sphere. Then any pair of fixed point free involution Tλ and T2 on N have a
co-incidence.

Corollary 3. If G is a group acting freely on a closed topological manifold
N having the mod 2 homology of the n-sphere. Then any element of G order 2
lies in the center of G.
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REMARK. This corollary was first proved by Milnor [3] in a different
method.

9. The corresponding theorem for ^-actions

The main theorem has the following corresponding result for ^-actions
on mod p homology spheres, where p is an odd prime.

Theorem 8. Let Nbea closed topologίcal manifold which is a modp homology
n-sphere, and T: JV—>iV be a continuous map of period p without fixed points,
where p is an odd prime. Let f: N-+M be a continuous map of N to a compact
orίentable topological manifold of dimension m, where n^>(p—l)m. Then the
covering dimension of

A(f) = {y^N \f(y) =f(Ty) = - =

is at least n—(p— l)m.

REMARK. Munkholm [5] proved this theorem under a hypotheses that / is
a 'nice' map.

Theorem 8 is proved in the similar way to the proof of the main theorem.
We shall give outlines of the proof in the following and leave details to the
reader.

Let E be a Hausdorfϊ space such that H*(E)=09 and T: E-+E be a con-
tinuous map of period p without fixed points. Let π denote the cyclic group
of order p whose generator is T. Then there exist functorial isomorphisms

K: H*(π;

K: H*(π; H*(X)fi) at H*(EχX"),
it

defined for each topological space X such that H*(X) is free and of finite type
(see Theorem 2), and K preserve the cup products and the cap products (see
Theorem 3). In virtue of these results, the elements P t (tf), P(a19 •••, ap)^
H*(ExXp; Zp) can be defined for a, alf •••, ap<=H*(X; Zp), and the elements

P f ( α ) , P(a19 — , ap)(ΞH*(ExXp\ ZP) can be defined for α , a19 •••, ap<=

H*(X; Zp). As for these, the theorem similar to Theorem 4 holds. Let
ωk^Hk(Eie;Zp) be the canonical generator, and </*: H*(ExXp\ Zp)-»

It

; Zp) denote the homomorphism induced by the 'diagonal' map
d: ExX-*ExXp. Then, for a^Hq(X; Zp) we have

d*P0(a) = cq Σ (-^ω^'^-

where (Pf is the p-th reduced power, β is the Bockstein homomorphism, and
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Cg=(— \)q/2 or (— l)cg~υ/2((p—1)/2)! according as q is even or odd (see Theorem

5).

Put N°=N, and define N2ί ( ί = l , 2, •••) inductively to be the join of N2t 2

and S1={z^C\ | s | = l } . We define also JV21"1 ( ί = l , 2, •••) to be a subspace

of N2i consisting of all sy®(l-s)e2rίtkV^/p

y where O^s^l and β=0, 1, — ,/>—1.

Let iV°° be the limit space of the sequence iVcΛPciV'c •••. There exists

a continuous map T: N^^N00 of period p without fixed points such that

T(Ni)dNt (i=0, 1, 2, ..-) and T \ N is the given map T: N^N. In fact, such

a map T is defined by

where Γ = T \ N2i and ί, t e [0, 1], It follows that Λ/"00 has the properties assumed
for E, and that z*: Hk(NχXp; Zp)-^Hk(N°°xXp\ Zp) is an isomorphism if
A^w (see Theorem 6).

Let d0*: i / Λ + w (Λ^χM; Zp)->Hn+m(NxMp; Zp) be the homomorphism

induced by the 'diagonal' map, and θo^.Hcp~l:>m(NxMp; Zp) be the Poincarά

dual of </0*(λ), where \<=Hn+m(N«xM; Zp) is the fundamental class. If
(p—l)m^n, there exists a unique Θ^Hcp~^m{N°° X Mp\ Zp) such that θ \Nx Mp

=ΘQ. Similarly to Theorem 7, we have

where δ is a linear combination of elements of the type P(aly •••, ap)y and
UjtΞHW^M; Zp) is the "Wu class' defined in terms of <?'.

Consider now a continuous map s: N*-+NxMp defined by s(y)=(y,f(y),

Aτy\ ~'J(TP~ly)) {y^N\ a n d proceed as in §7. Then we see that ί*(<90)Φθ
and hence dim A(f)^n—(p—l)m.
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