Nakaoka, M.
Osaka J. Math.
7 (1970), 423-441

GENERALIZATIONS OF BORSUK-ULAM THEOREM

Dedicated to Professor Keizo Asano on his 60th birthday

Minoru NAKAOKA

(Received April 10, 1970)

Introduction

Conner-Floyd proved in their book [1] the following theorem which is a generalization of the classical Borsuk-Ulam theorem: Let $f: S^{n} \rightarrow M$ be a continuous map of the n-sphere to a differentiable manifold of dimension m, and T be a fixed point free differentiable involution on S^{n}. Assume that $m \leqq n$ and $f_{*}: H_{n}\left(S^{n} ; \boldsymbol{Z}_{2}\right) \rightarrow H_{n}\left(M ; \boldsymbol{Z}_{2}\right)$ is trivial. Then the covering dimension of $A(f)=$ $\left\{y \in S^{n} \mid f(y)=f(T y)\right\}$ is at least $n-m$.

In response to the questions asked in [1, p. 89], Munkholm [4] showed that in the above theorem all differentiability hypotheses can be eliminated if M is assumed to be compact. Furthermore he showed in [5] that S^{n} can be replaced by a closed manifold which is a mod 2 homology n-sphere if M is the Euclidean space. In the present paper, we shall show the following theorem which is more general.

Main Theorem. Let N be a closed topological manifold which is a mod 2 homology n-sphere, and T be a fixed point free involution on N. Let $f: N \rightarrow M$ be a continuous map of N to a compact topological m-manifold M (with or without boundary). Assume that $n \geqq m$ and $f_{*}: H_{n}\left(N ; \boldsymbol{Z}_{2}\right) \rightarrow H_{n}\left(M ; \boldsymbol{Z}_{2}\right)$ is trivial. Then the covering dimension of $A(f)=\{y \in N \mid f(y)=f(T y)\}$ is at least $n-m$.

Let π denote the cyclic group of order 2 generated by T. Denote by N_{π} the orbit space of N, and by $N \times{ }_{\pi}^{2}$ the orbit space of $N \times M^{2}$ on which π acts by $T\left(y, x, x^{1}\right)=\left(T y, x^{\prime}, x\right)\left(y \in N, x, x^{\prime} \in M\right)$. Then $N \times M_{\pi}^{2}$ and $N_{\pi} \times M$ are topological manifolds, and $N_{\pi} \times M$ is embedded in $N \times M_{\pi}^{2}$ by the diagonal map $d: M \rightarrow M^{2}$. Assuming M is a closed manifold, let $\theta_{0} \in H^{m}\left(N \times M_{\pi}^{2} ; \boldsymbol{Z}_{2}\right)$ denote the Poincaré dual of $i^{*}(w)$, where $w \in H_{n+m}\left(N \times M ; \boldsymbol{Z}_{2}\right)$ is the fundamental class and $i: N_{\pi} \times M \subset N \underset{\pi}{\times} M^{2}$. Define $s: N_{\pi} \rightarrow N \times{ }_{\pi} M^{2}$ by $s(y)=(y, f(y), f(T y))(y \in N)$. Then Conner-Floyd [1] and Munkholm [4] proved their theorems by showing
$s^{*}\left(\theta_{0}\right) \neq 0$. We also follow this principle (see Lemma 6). However our method of proving $s^{*}\left(\theta_{0}\right) \neq 0$ is different from theirs, and is purely homological.

Let N be a sufficiently large dimensional sphere, and $T: N \rightarrow N$ be the antipodal map. Assume that M is triangulable. Then Haefliger [2] proved a formula giving θ_{0} in terms of cohomology classes of M. We shall show that the formula still holds for our N, T and M, and we shall use the formula to prove $s^{*}\left(\theta_{0}\right) \neq 0$.

The method can be also applied to obtain the Borsuk-Ulam type theorem for a fixed point free homeomorphism of period p on a $\bmod p$ homology sphere (p : odd prime), and a theorem including the result in [5] will be proved (see Theorem 8 in §9).

1. Generalization of Eilenberg-Zilber theorem

Throughout $\S 1-\S 3$, a principal ideal domain R is fixed, and chain complexes over R are conisdered. Thus, the singular complex of a topological space X with coefficients in R is denoted by simply $S(X)=\left\{S_{q}(X)\right\}$, and the tensor product \otimes_{R} is denoted by simply \otimes.

Let E be a Hausdorff space on which there is given a fixed point free involution T, and such that the reduced homology group $\widetilde{H}_{*}(E)$ is trivial. Then we have the following generalization of Eilenberg-Zilber theorem.

Theorem 1. There exist chain maps

$$
\begin{aligned}
& \rho: S\left(E \times X_{1} \times X_{2}\right) \rightarrow S(E) \otimes S\left(X_{1}\right) \otimes S\left(X_{2}\right), \\
& \rho^{\prime}: S(E) \otimes S\left(X_{1}\right) \otimes S\left(X_{2}\right) \rightarrow S\left(E \times X_{1} \times X_{2}\right),
\end{aligned}
$$

defined for each pair $\left(X_{1}, X_{2}\right)$ of topological spaces, and satisfying the following conditions:
(i) ρ and ρ^{\prime} are functorial, i.e. for any continuous maps $f_{1}: X_{1} \rightarrow Y_{1}$ and $f: X_{2} \rightarrow Y_{2}$ we have

$$
\begin{aligned}
& \left(1 \otimes f_{1 \sharp} \otimes f_{2 \sharp}\right) \circ \rho=\rho \circ\left(1 \times f_{1} \times f_{2}\right)_{\sharp} \\
& \rho^{\prime} \circ\left(1 \otimes f_{1 \sharp} \otimes f_{2 \sharp}\right)=\left(1 \times f_{1} \times f_{2}\right)_{\sharp} \circ \rho^{\prime} .
\end{aligned}
$$

(ii) ρ and ρ^{\prime} are equivariant in the sense that

$$
\begin{aligned}
& \left(T_{\ddagger} \otimes T\right) \circ \rho=\rho \circ(T \times T)_{\sharp} \\
& \rho^{\prime} \circ\left(T_{\sharp} \otimes T\right)=(T \times T)_{\sharp} \circ \rho,
\end{aligned}
$$

where $T: S\left(X_{1}\right) \otimes S\left(X_{2}\right) \rightarrow S\left(X_{2}\right) \otimes S\left(X_{1}\right)$ is given by $T\left(c_{1} \otimes c_{2}\right)=(-1)^{\operatorname{deg} c_{1} \operatorname{deg} c_{2}}$ $c_{2} \otimes c_{1}$, and $T \times T: E \times X_{1} \times X_{2} \rightarrow E \times X_{2} \times X_{1}$ by $(T \times T)\left(e, x_{1}, x_{2}\right)=\left(T e, x_{2}, x_{1}\right)$ $\left(e \in E, x_{1} \in X_{1}, x_{2} \in X_{2}\right)$.
(iii) There exist a chain homotopy Φ of $\rho^{\prime} \circ \rho$ to the identity and a chain homotopy Φ^{\prime} of $\rho \circ \rho^{\prime}$ to the identity, which are defined for each pair of topological spaces and which are functorial and equivariant in the same sense as in (i), (ii).

Proof. The proof is done by the method of acyclic models.
Define a homomorphism $\rho_{0}: S_{0}\left(E \times X_{1} \times X_{2}\right) \rightarrow S_{0}(E) \otimes S_{0}\left(X_{1}\right) \otimes S_{0}\left(X_{2}\right)$ by $\rho_{0}\left(e, x_{1}, x_{2}\right)=e \otimes x_{1} \otimes x_{2}\left(e \in E, x_{1} \in X_{1}, x_{2} \in X_{2}\right)$, and assume inductively that a homomorphism $\rho_{r}: S_{r}\left(E \times X_{1} \times X_{2}\right) \rightarrow\left(S(E) \otimes S\left(X_{1}\right) \otimes S\left(X_{2}\right)\right)_{r}$ has been defined for $r<n$ so that the conditions
i) $\partial_{r} \circ \rho_{r}=\rho_{r-1} \circ \partial_{r}$,
ii) $\rho_{r} \circ\left(1 \times f_{1} \times f_{2}\right)_{\sharp}=\left(1 \otimes f_{1 \sharp} \otimes f_{z \sharp}\right) \circ \rho_{r}$,
iii) $\left(T_{\sharp} \otimes T\right) \circ \rho_{r}=\rho_{r} \circ(T \times T)_{\#}$
are satisfied. Take a set $\left\{e_{\left.\lambda_{\lambda}\right\}_{\in \Lambda}}\right.$ of singular n-simplexes of E such that $\left\{e_{\lambda}^{n}, T_{*} e_{\lambda}^{n}\right\}_{\lambda \in \Lambda}$ is a basis of the module $S_{n}(E)$. For each $\lambda \in \Lambda$, define a singular n-simplex $d_{\lambda}^{n}: \Delta^{n} \rightarrow E \times \Delta^{n} \times \Delta^{n}$ by $d_{\lambda}^{n}(z)=\left(e_{\lambda}^{n}(z), z, z\right)\left(z \in \Delta^{n}\right)$. It holds that $\partial_{n-1} \rho_{n-1} \partial_{n}\left(d_{\lambda}^{n}\right)=0(n>1)$ and $\varepsilon \rho_{0} \partial_{1}\left(d_{\lambda}^{n}\right)=0(n=1)$ for the augmentation ε. Since the reduced complex of $S(E) \otimes S\left(\Delta^{n}\right) \otimes S\left(\Delta^{n}\right)$ is acyclic, there exists an n-chain $\rho_{n}\left(d_{\lambda}^{n}\right)$ of $S(E) \otimes S\left(\Delta^{n}\right) \otimes S\left(\Delta^{n}\right)$ such that $\partial_{n} \rho_{n}\left(d_{\lambda}^{n}\right)=\rho_{n-1} \partial_{n}\left(d_{\lambda}^{n}\right)$. The module $S_{n}\left(E \times X_{1} \times X_{2}\right)$ is a free module generated by elements of the form $\left(1 \times \sigma_{1} \times \sigma_{2}\right)_{\#} d_{\lambda}^{n}$ or $\left(T \times \sigma_{1} \times \sigma_{2}\right)_{t} d_{\lambda}^{n}$, where $\sigma_{i}: \Delta^{n} \rightarrow X_{i}(i=1,2)$ is any continuous map. Define a homomorphism $\left.\rho_{n}: S_{n}\left(E \times X_{1} \times X_{2}\right) \rightarrow S(E) \otimes S\left(X_{1}\right) \otimes S\left(X_{2}\right)\right)_{n}$ by

$$
\begin{aligned}
& \rho_{n}\left(\left(1 \times \sigma_{1} \times \sigma_{2}\right)_{\sharp} d_{\lambda}^{n}\right)=\left(1 \otimes \sigma_{1 \sharp} \otimes \sigma_{2 \xi}\right) \rho_{n}\left(d_{\lambda}^{n}\right), \\
& \rho_{n}\left(\left(T \times \sigma_{1} \times \sigma_{2}\right)_{\sharp} d_{\lambda}^{n}\right)=\left(T_{\ddagger} \otimes T\right)\left(1 \otimes \sigma_{2 \sharp} \otimes \sigma_{1 \xi}\right) \rho_{n}\left(d_{\lambda}^{n}\right) .
\end{aligned}
$$

Then it is easily checked that the conditions i)-iii) are satisfied for $r=n$. Thus there exists a chain map ρ satisfying the conditions (i) and (ii).

Define a homomorphism $\rho_{0}^{\prime}: S_{0}(E) \otimes S_{0}\left(X_{1}\right) \otimes S\left(X_{2}\right) \rightarrow S_{0}\left(E \times X_{1} \times X_{2}\right)$ by $\rho_{0}^{\prime}\left(e \otimes x_{1} \otimes x_{2}\right)=\left(e, x_{1}, x_{2}\right)\left(e \in E, x_{1} \in X_{1}, x_{2} \in X_{2}\right)$, and assume inductively that a homomorphism $\rho_{r}^{\prime}:\left(S(E) \otimes S\left(X_{1}\right) \otimes S\left(X_{2}\right)\right)_{r} \rightarrow S_{r}\left(E \times X_{1} \times X_{2}\right)$ has been defined for $r<n$ so that the conditions

$$
\begin{aligned}
\text { i) } & \partial_{r} \circ \rho_{r}^{\prime}=\rho_{r-1}^{\prime} \circ \partial_{r}, \\
\text { ii) } & \left(1 \times f_{1} \times f_{2}\right)_{\star} \circ \rho_{r}^{\prime}=\rho_{r}^{\prime} \circ\left(1 \otimes f_{\sharp} \otimes f_{2 \xi}\right), \\
\text { iii) } & (T \times T)_{\sharp} \circ \rho_{r}^{\prime}=\rho_{r}^{\prime} \circ\left(T_{\ddagger} \otimes T\right)
\end{aligned}
$$

are satisfied. Let $i^{k} \in S_{k}\left(\Delta^{k}\right)$ denote the singular simplex given by the identity, and consider $e_{\lambda}^{r} \otimes i^{s} \otimes i^{t} \in S_{r}(E) \otimes S_{s}\left(\Delta^{s}\right) \times S_{t}\left(\Delta^{t}\right)$ with $r+s+t=n$. It holds that $\partial_{n-1} \rho_{n-1}^{\prime} \partial_{n}\left(e_{\lambda}^{r} \otimes i^{s} \otimes i^{t}\right)=0 \quad(n>1)$ and $\varepsilon \rho_{0}^{\prime} \partial_{1}\left(e_{\lambda}^{r} \otimes i^{s} \otimes i^{t}\right)=0 \quad(n=1)$. Since the reduced complex of $S\left(E \times \Delta^{s} \times \Delta^{t}\right)$ is acyclic, there exists an n-chain $\rho_{n}^{\prime}\left(e_{\lambda}^{r} \otimes i^{s} \otimes i^{t}\right) \in S_{n}\left(E \times \Delta^{s} \times \Delta^{t}\right)$ such that $\partial_{n} \rho_{n}^{\prime}\left(e_{\lambda}^{n} \otimes i^{s} \otimes i^{t}\right)=\rho_{n-1}^{\prime} \partial_{n}\left(e_{\lambda}^{r} \otimes i^{s} \otimes i^{t}\right)$. The module $\left(S(E) \otimes S\left(X_{1}\right) \otimes S\left(X_{2}\right)\right)_{n}$ is a free module generated by elements
of the form $\left(1 \otimes \sigma_{1 \sharp} \otimes \sigma_{2 \xi}\right)\left(e_{\lambda}^{r} \otimes i^{s} \otimes i^{t}\right)$ and $\left(T_{\sharp} \otimes \sigma_{1 \ddagger} \otimes \sigma_{2 \xi}\right)\left(e_{\lambda}^{r} \otimes i^{s} \otimes i^{t}\right)$, where $\sigma_{1}: \Delta^{s} \rightarrow X, \sigma_{2}: \Delta^{t} \rightarrow X_{2}$ are continuous maps. Define a homomorphism ρ_{n}^{\prime} : $\left(S(E) \otimes S\left(X_{1}\right) \otimes S\left(X_{2}\right)\right)_{n} \rightarrow S_{n}\left(E \times X_{1} \times X_{2}\right)$ by

$$
\begin{aligned}
& \rho_{n}^{\prime}\left(1 \otimes \sigma_{1 \sharp} \otimes \sigma_{2 \ddagger}\right)\left(e_{\lambda}^{r} \otimes i^{s} \otimes i^{t}\right) \\
= & \left(1 \times \sigma_{1} \times \sigma_{2}\right)_{\sharp} \rho_{n}^{\prime}\left(e_{\lambda}^{r} \otimes i^{s} \otimes i^{t}\right), \\
& \rho_{n}^{\prime}\left(T_{\sharp} \otimes \sigma_{1 \sharp} \otimes \sigma_{2 \ddagger}\right)\left(e_{\lambda}^{r} \otimes i^{s} \otimes i^{t}\right) \\
= & (-1)^{s t}(T \times T)_{\sharp}\left(1 \times \sigma_{2} \times \sigma_{1}\right)_{\sharp} \rho_{n}^{\prime}\left(e_{\lambda}^{r} \otimes i^{s} \otimes i^{t}\right) .
\end{aligned}
$$

Then it is easily checked that the conditions i)'-iii)' are satisfied for $r=n$. Thus there exists a chain map ρ^{\prime} satisfying the conditions (i) and (ii).

By the similar method we can construct chain homotopies Φ and Φ^{\prime} in (iii). This completes the proof of Theorem 1.

The following is obvious from the proof above.
Corollary. Let E^{\prime} be a subspace of E which is invariant under T and such that $\widetilde{H}_{q}\left(E^{\prime}\right)=0$ for $q<n$. Then ρ and ρ^{\prime} can be taken in such a way that $\rho_{q}\left(S\left(E^{\prime} \times X_{1} \times X_{2}\right)\right) \subset S\left(E^{\prime}\right) \otimes S\left(X_{1}\right) \otimes S\left(X_{2}\right)$ and $\rho_{q}^{\prime}\left(S\left(E^{\prime}\right) \otimes S\left(X_{1}\right) \otimes S\left(X_{2}\right)\right)$ $\subset S\left(E^{\prime} \times X_{1} \times X_{2}\right)$ for $q \leqq n$.

2. Algebraic lemmas

Given a chain complex C, the module $Z(C)$ of cycles of C and the homology module $H(C)$ of C are regarded as chain complexes with trivial boundary operator. Then the inclusion $\xi: Z(C) \rightarrow C$ and the projection $\eta: Z(C) \rightarrow H(C)$ are chain maps.

Let π be a cyclic group of order 2 , and T its generator. Let W be a π free acyclic complex, and define an action of π on the chain complex $C^{2}=C \otimes C$
 on $W \otimes C^{2}$, and let $W \underset{\pi}{\otimes} C^{2}$ denote the quotient complex.

For the homomorphisms

$$
\begin{aligned}
& \xi_{*}: H\left(W \underset{\pi}{\otimes} Z(C)^{2}\right) \rightarrow H\left(W \underset{\pi}{\otimes} C^{2}\right), \\
& \eta_{*}: H\left(W \underset{\pi}{\otimes} Z(C)^{2}\right) \rightarrow H\left(W \underset{\pi}{\otimes} H(C)^{2}\right)
\end{aligned}
$$

induced by ξ and η, we have
Lemma 1. If C is a free chain complex such that $H(C)$ is free, then $\xi_{*} \circ \eta_{*}^{-1}$: $H\left(W \otimes_{\pi} H(C)^{2}\right) \rightarrow H\left(W \otimes_{\pi} C^{2}\right)$ is well defined and is an isomorphism.

Proof. There exist chain maps $\eta^{\prime}: H(C) \rightarrow Z(C)$ and $\zeta^{\prime}: C \rightarrow H(C)$ such that $\eta \circ \eta^{\prime}=1, \zeta^{\prime} \circ \xi=\eta$. Put $\zeta=\xi \circ \eta^{\prime}: H(C) \rightarrow C$. Then $\zeta_{*}: H(C) \rightarrow H(C)$ is the identity, and hence ζ is a chain equivalence. Therefore, by a lemma due to

Steenrod (see [8], p. 125), $1 \otimes \zeta^{2}: W \underset{\pi}{\otimes} H(C)^{2} \rightarrow W \otimes_{\pi} C^{2}$ is a chain equivalence, and we have

$$
\zeta_{*}: H\left(W \otimes_{\pi}^{\otimes} H(C)^{2}\right) \cong H\left(W \underset{\pi}{\otimes} C^{2}\right)
$$

Since ζ_{*}^{\prime} is the inverse of ζ_{*}, it follows from $\zeta_{*}^{\prime} \circ \xi_{*}=\eta_{*}$ that $\xi_{*}=\zeta_{*} \circ \eta_{*}$. Since $\eta_{*} \circ \eta_{*}^{\prime}=1, \eta_{*}$ is surjective. Thus we have $\zeta_{*}=\xi_{*} \circ \eta_{*}^{-1}$ which completes the proof.

Denote by C^{*} the cochain complex dual to a chain complex C. We regard the module $Z\left(C^{*}\right)$ of cocycles of C^{*} and the cohomology module $H\left(C^{*}\right)$ as cochain complexes with trivial coboundary operator.

Define an action of π on the cochain complex $C^{* 2}=C^{*} \otimes C^{*}$ by
 $\operatorname{Hom}_{\pi}\left(W, C^{* 2}\right)$ consisting of equivariant homomorphisms of W to $C^{* 2}$. The inclusion $\xi: Z\left(C^{*}\right) \rightarrow C^{*}$ and the projection $\eta: Z\left(C^{*}\right) \rightarrow H\left(C^{*}\right)$ induces homomorphisms

$$
\begin{aligned}
& \xi_{*}: H\left(\operatorname{Hom}_{\pi}\left(W, Z\left(C^{*}\right)^{2}\right)\right) \rightarrow H\left(\operatorname{Hom}_{\pi}\left(W, C^{* 2}\right)\right), \\
& \eta_{*}: H\left(\operatorname{Hom}_{\pi}\left(W, Z\left(C^{*}\right)^{2}\right)\right) \rightarrow H\left(\operatorname{Hom}_{\pi}\left(W, H\left(C^{*}\right)^{2}\right)\right) .
\end{aligned}
$$

Let $\mu: C^{* 2} \rightarrow C^{2 *}$ denote the canonical cochain map defined by

$$
\left\langle\mu\left(u_{1} \otimes u_{2}\right), c_{1} \otimes c_{2}\right\rangle=u\left(c_{1}\right) u_{2}\left(c_{2}\right) \quad\left(u_{1}, u_{2} \in C^{*}, c_{1}, c_{2} \in C\right) .
$$

The cochain map dual to $T: C^{2} \rightarrow C^{2}$ defines an action of π on $C^{2 *}$. Then μ is equivariant, and so it induces a homomorphism

$$
\mu_{*}: H\left(\operatorname{Hom}_{\pi}\left(W, C^{* 2}\right)\right) \rightarrow H\left(\operatorname{Hom}_{\pi}\left(W, C^{2 *}\right)\right) .
$$

Lemma 2. Let C be a free non-negative chain complex such that $H(C)$ is of finite type and is free. Then $\xi_{*} \circ \eta_{*}^{-1}: H\left(\operatorname{Hom}_{\pi}\left(W, H\left(C^{*}\right)^{2}\right)\right) \rightarrow H\left(\operatorname{Hom}_{\pi}\left(W, C^{* 2}\right)\right)$ is well defined, and both μ^{*} snd $\xi_{*} \circ \eta_{*}^{-1}$ are isomorphisms.

Proof. There is a free non-negative chain complex C^{\prime} of finite type such that C and C^{\prime} are chain equivalent (see [7], p. 246). Let $\varphi: C \rightarrow C^{\prime}$ be a chain equivalence, and consider the following commutative diagram

Since $C^{* *}$ and $H\left(C^{* \prime}\right)$ are free, the argument similar to the proof of Lemma 1 shows that $\xi_{*} \circ \eta_{*}^{-1}$ in the left side is well defined and is an isomorphism. Since C^{\prime} is of finite type and is free, $\mu: C^{* 2} \rightarrow C^{\prime 2 *}$ is an isomorphism, and so is μ_{*} in the left side. Since φ is a chain equivalence, it follows that φ_{*} in the 3-rd and the 4 -th rows are isomorphisms. Obviously φ_{*} in the 1 -st row is also an isomorphism. Thus we obtain the desired result.

By the definitions, $H\left(W \otimes H(C)^{2}\right)$ is the homology group $H\left(\pi ; H(C)^{2}\right)$ of the group π with coefficients in the module $H(C)^{2}$ on which π acts by $T(a \otimes b)$ $=(-1)^{\operatorname{deg} a \operatorname{deg} b} b \otimes a(a, b \in H(C))$, and $H\left(\operatorname{Hom}_{\pi}\left(W, H\left(C^{*}\right)^{2}\right)\right)$ is the cohomology group $H\left(\pi ; H\left(C^{*}\right)^{2}\right)$ of the group π with coefficients in the module $H\left(C^{*}\right)^{2}$ on which π acts by $T(\alpha \otimes \beta)=(-1)^{\operatorname{deg} \alpha \operatorname{deg} \beta} \beta \otimes \alpha\left(\alpha, \beta \in H\left(C^{*}\right)\right)$.

3. Homology and cohomology of $E \times X^{2}$

Given a topological space Y on which π acts, we denote by Y_{π} the orbit space. For a topological space X, consider the space $E \times X^{2}$ on which π acts by $T\left(e, x, x^{\prime}\right)=\left(T e, x^{\prime}, x\right)\left(e \in E, x, x^{\prime} \in X\right)$. We write $\left(E \times X^{2}\right)_{\pi}=E \times X^{2}$.

For the singular homology group and the singular cohomology group of $E \times X^{2}$, we have

Theorem 2. (i) There exists a functorial isomorphism

$$
\kappa: H_{*}\left(\pi ; H_{*}(X)^{2}\right) \cong H_{*}\left(E \times X_{\pi}^{2}\right),
$$

defined for each topological space X such that $H_{*}(X)$ is free.
(ii) There exists a functorial isomorphism

$$
\kappa: H^{*}\left(\pi ; H^{*}(X)^{2}\right) \cong H^{*}\left(E \underset{\pi}{\times} X^{2}\right)
$$

defined for each topological space X such that $H_{*}(X)$ is of finite type and is free.
Proof. (i) The action of π on $E \times X^{2}$ makes the singular complex $S\left(E \times X^{2}\right)$ a π-complex. Let $S\left(E \times X^{2}\right) / \pi$ denote the quotient complex. Since the projection $p: E \times X^{2} \rightarrow E \times X^{2}$ is a fibering with discrete fiber, it follows that $p_{q}: S\left(E \times X^{2}\right) \rightarrow S\left(E \times X^{2}\right)$ induces an isomorphism

$$
S\left(E \times X^{2}\right) / \pi \cong S\left(E \times \underset{\pi}{ } X^{2}\right) .
$$

Define an action of π on $S(E) \otimes S(X)^{2}$ by $T\left(c \otimes c_{1} \otimes c_{2}\right)=(-1)^{\operatorname{deg} c_{1} \operatorname{deg} c_{2}} T_{\sharp}(c) \otimes$ $c_{2} \otimes c_{1}\left(c \in S(E), c_{1}, c_{2} \in S(X)\right)$. Then it follows that ρ^{\prime} in Theorem 1 induces a chain equivalence

$$
S(E) \otimes_{\pi}^{\otimes} S(X)^{2} \rightarrow S\left(E \times X^{2}\right) / \pi
$$

Therefore an isomorphism

$$
\chi: H\left(S(E) \otimes_{\pi}^{\otimes} S(X)^{2}\right) \cong H_{*}\left(E \underset{\pi}{\times} X^{2}\right)
$$

is induced by the chain map $p_{\ddagger} \circ \rho^{\prime}$. Since p_{ξ} and ρ^{\prime} are functorial, so is χ.
Since $S(E)$ is a π-free acyclic complex, by Lemma 1 we have

$$
\xi_{*} \circ \eta_{*}^{-1}: H\left(S(E) \otimes_{\pi} H(X)^{2}\right) \simeq H\left(S(E) \otimes_{\pi}^{\otimes} S(X)^{2}\right) .
$$

Obviously ξ_{*} and η_{*} are functorial. Therefore the desired isomorphism κ is given by $\kappa=\chi_{\circ} \xi_{*} \circ \eta_{*}^{-1}$.
(ii) The cochain complex $\operatorname{Hom}_{\pi}\left(S(E), S(X)^{2 *}\right)$ is canonically isomorphic with the cochain complex $\left(S(E) \otimes S(X)^{2}\right)^{*}$, the above proof of (i) shows that an isomorphism

$$
\chi^{\prime}: H\left(\operatorname{Hom}_{\pi}\left(S(E), S(X)^{2 *}\right)\right) \cong H^{*}\left(E \times X^{2}\right)
$$

is induced by the chain map $p_{\sharp} \circ \rho^{\prime}$. On the other hand, by Lemma 2 we have

$$
\mu_{*} \circ \xi_{*} \circ \eta_{*}^{-1}: H\left(\operatorname{Hom}_{\pi}\left(S(E), H^{*}(X)^{2}\right)\right) \cong H\left(\operatorname{Hom}_{\pi}\left(S(E), S(X)^{2 *}\right)\right) .
$$

Therefore the desired isomorphism κ is given by $\kappa=\chi_{\circ} \xi_{*} \circ \eta_{*}^{-1}$ with $\chi=\chi^{\prime} \circ \mu_{*}$. This completes the proof of Theorem 2.

Define a pairing of $H^{*}(X)^{2}$ and $H^{*}(X)^{2}$ to $H^{*}(X)^{2}$ by

$$
\begin{aligned}
(\alpha \otimes \beta) \cdot(\gamma \otimes \delta)=(-1)^{\operatorname{deg} \beta \operatorname{deg} \gamma}(\alpha \smile \gamma) \otimes & (\beta \smile \delta) \\
& \left(\alpha, \beta, \gamma, \delta \in H^{*}(X)\right) .
\end{aligned}
$$

Since this pairing is equivariant with respect to the action on $H^{*}(X)^{2}$, it gives rise to a cup product

$$
\smile: H^{*}\left(\pi ; H^{*}(X)^{2}\right) \otimes H^{*}\left(\pi ; H^{*}(X)^{2}\right) \rightarrow H^{*}\left(\pi ; H^{*}(X)^{2}\right) .
$$

Similarly, an equivariant pairing of $H^{*}(X)^{2}$ and $H_{*}(X)^{2}$ to $H_{*}(X)^{2}$ defined by

$$
\begin{array}{r}
(\alpha \otimes \beta) \cdot(a \otimes b)=(-1)^{\operatorname{deg} \alpha(\operatorname{deg} b-\operatorname{deg} \beta)}(\alpha \frown \alpha) \otimes(\beta \frown b) \\
\left(\alpha, \beta \in H^{*}(X), a, b \in H_{*}(X)\right)
\end{array}
$$

gives rise to a cap product

$$
\frown: H^{*}\left(\pi ; H^{*}(X)^{2}\right) \otimes H_{*}\left(\pi ; H_{*}(X)^{2}\right) \rightarrow H_{*}\left(\pi ; H_{*}(X)^{2}\right) .
$$

Theorem 3. The isomorphisms κ in Theorem 2 preserve the cup products and the cap products, i.e. the following diagrams are commutative.

Proof. For $C=S(X)$ and $Z(S(X))$, a cup product
$\smile: \operatorname{Hom}_{\pi}\left(S(E), C^{* 2}\right) \otimes \operatorname{Hom}_{\pi}\left(S(E), C^{* 2}\right) \rightarrow \operatorname{Hom}_{\pi}\left(S(E), C^{* 2}\right)$
and a cap product

$$
\frown: \operatorname{Hom}_{\pi}\left(S(E), C^{2 *}\right) \otimes\left(S(E) \otimes_{\pi} C^{2}\right) \rightarrow S(E) \otimes_{\pi} C^{2}
$$

are defined similarly to the above, by using of the cup product and the cap product for cochains and chains. Then it is obvious that the homomorphisms ξ_{*} and η_{*} in the proof of Theorem 2 preserve the cup products and the cap products. Therefore it suffices to prove that the homomorphisms χ in the proof of Theorem 2 preserve the cup products and the cap products.

For any topological space Y, let $\Delta: S(Y) \rightarrow S(Y)^{2}$ denote the diagonal approximation (see [7], p. 250). Consider a diagram

where τ is the appropriate chain map shuffling factors. Since Δ is functorial, the lower rectangle is commutative. Regard $S\left(E \times X^{2}\right)^{2}$ and $\left(S(E) \otimes S(X)^{2}\right)^{2}$ as π-complexes by the diagonal action of the actions of $S\left(E \times X^{2}\right)$ and $S(E) \otimes$ $S(X)^{2}$ respectively. Then it follows that the maps in the 1 -st and the 2 -nd rows are equivariant. Furthermore the argument similar to the proof of Theorem 1 shows that there exists a chain homotopy of $\Delta \circ \rho^{\prime}$ to $\rho^{\prime 2} \circ \tau \circ\left(\Delta \otimes \Delta^{2}\right)$ which is equivariant and functorial. Therefore we have a diagram

which is commutative up to chain homotopy.
Recall now the definition of cup product (cap product) in terms of Δ and cross (slant) product. Then the above diagram yields the desired property. This completes the proof of Theorem 3.

4. Steenrod theorem

In $\S 4 \S 8$, we assume that the ground ring R is \boldsymbol{Z}_{2}, the field of integers $\bmod 2$. We assume also that $H_{*}(X)$ is of finite type.

As is well known, a π-free acyclic complex W can be constructed as follows: For each $i \geqq 0, W$ has one cell e_{i} and its transform $T e_{i}$, and $\partial\left(e_{i}\right)=e_{i-1}+T e_{i-1}$ $(i>0)$. Moreover there is a diagonal approximation $d_{\ddagger}: W \rightarrow W \otimes W$ which is given by

$$
d_{\ddagger}\left(e_{i}\right)=\sum_{j=0}^{[i / 2]}\left(e_{2 j} \otimes e_{i-2 j}+e_{2 j+1} \otimes T e_{i-2 j-1}\right) .
$$

Therefore we can determine the structure of $H_{*}\left(\pi ; H_{*}(X)^{2}\right)$ and $H^{*}\left(\pi ; H^{*}(X)^{2}\right)$, and hence by Theorems 2 and 3 the structure of $H_{*}\left(E \times X^{2}\right)$ and $H_{*}\left(E \times X^{2}\right)$ as soon as we know the structure of $H_{*}(X)$. To state the result, we shall first prepare some notations.

For an element $a \in H_{*}(X)$, let $Q_{i}(a) \in H_{*}\left(\pi ; H_{*}(X)^{2}\right)(i \geqq 0)$ denote the element represented by the cycle $e_{i} \otimes a \otimes a \in W \otimes H_{*}(X)^{2}$. Given an element $\alpha \in H^{*}(X)$ a cocycle $u_{i}(\alpha) \in \operatorname{Hom}_{\pi}\left(W, H^{*}(X)^{2}\right)$ is defined by $\left\langle u_{i}(\alpha), e_{j}\right\rangle=\alpha \otimes \alpha$ $(i=j),=0(i \neq j)$. Let $Q_{i}(\alpha) \in H^{*}\left(\pi ; H^{*}(X)^{2}\right)$ denote the element respresented by $u_{i}(\alpha)$.

For two elements $a, b \in H_{*}(X)$, let $Q(a, b) \in H_{*}\left(\pi ; H_{*}(X)^{2}\right)$ denote the element represented by the cycle $e_{0} \otimes a \otimes b \in W \otimes_{\pi} H_{*}(X)^{2}$. Given two elements $\alpha, \beta \in H_{*}(X)$, a cocycle $u(\alpha, \beta) \in \operatorname{Hom}_{\pi}\left(W, H^{*}(X)^{2}\right)$ is defined by $\left\langle u(\alpha, \beta), e_{j}\right\rangle$ $=\alpha \otimes \beta+\beta \otimes \alpha(j=0),=0(j \neq 0)$. Let $Q(\alpha, \beta) \in H^{*}\left(\pi ; H^{*}(X)^{2}\right)$ denote the element represented by $u(\alpha, \beta)$.

We shall put

$$
\begin{array}{ll}
P_{i}(a)=\kappa\left(Q_{i}(a)\right), & P(a, b)=\kappa(Q(a, b)), \\
P_{i}(\alpha)=\kappa\left(Q_{i}(\alpha)\right), & P(\alpha, \beta)=\kappa(Q(\alpha, \beta)) .
\end{array}
$$

Obviously we have $P(a, b)=P(b, a), P(a, a)=P_{0}(a), P(\alpha, \beta)=P(\beta, \alpha)$ and $P(\alpha, \alpha)=0$.

The following theorem is proved easily.
Theorem 4. (i) If $\left\{a_{j} \mid j \in J\right\}$ is an ordered basis of the module $H_{*}(X)$, then $\left.\left\{P_{i}\left(a_{j}\right), P\left(a_{j}, a_{k}\right)\right\} i \geqq 0, j, k \in J, j>k\right\}$ is a basis of the module $H_{*}\left(E \times X_{\pi}^{2}\right)$. Similarly, if $\left\{\alpha_{j} \mid j \in J\right\}$ is an ordered basis of the module $H^{*}(X)$, then $\left\{P_{i}\left(\alpha_{j}\right)\right.$, $\left.P\left(\alpha_{j}, \alpha_{k}\right) \mid i \geqq 0, j, k \in J, j>k\right\}$ is a basis of the module $H^{*}\left(E \times X^{2}\right)$.
(ii) For $\alpha, \beta, \alpha^{\prime}, \beta^{\prime} \in H^{*}(X)$ and $a, b \in H_{*}(X)$, we have

$$
\begin{aligned}
& P_{i}(\alpha) \smile P_{j}(\beta)=P_{i+j}(\alpha \smile \beta) ; \\
& P_{i}(\alpha) \smile P\left(\alpha^{\prime}, \beta^{\prime}\right)= \begin{cases}P\left(\alpha \smile \alpha^{\prime}, \alpha \smile \beta^{\prime}\right) & \text { if } i=0 \\
0 & \text { if } i>0\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& P(\alpha, \beta) \smile P\left(\alpha^{\prime}, \beta^{\prime}\right)=P\left(\alpha \smile \alpha^{\prime}, \beta \smile \beta^{\prime}\right)+P\left(\alpha \smile \beta^{\prime}, \beta \smile \alpha^{\prime}\right), \\
& P_{j}(\alpha) \frown P_{i}(a)= \begin{cases}P_{i-j}(\alpha \frown a) & \text { if } i \geqq j, \\
0 & \text { if } i<j ;\end{cases} \\
& P(\alpha, \beta) \frown P_{i}(a)=0 ; \\
& P_{j}(\alpha) \frown P(a, b)= \begin{cases}P(\alpha \frown a, \alpha \frown b) & \text { if } j=0, \\
0 & \text { if } j>0 ;\end{cases} \\
& P(\alpha, \beta) \frown P(a, b)=P(\alpha \frown a, \beta \frown b)+P(\beta \frown a, \alpha \frown b),
\end{aligned}
$$

where it is to be understood that $\alpha \frown a=0$ if $\operatorname{deg} \alpha>\operatorname{deg} a$.
(iii) If $\left\{a_{j}\right\}$ and $\left\{\alpha_{j}\right\}$ are dual bases, then so are $\left\{P\left(a_{j}\right), P\left(a_{j}, a_{k}\right)\right\}$ and $\left\{P_{i}\left(\alpha_{j}\right), P\left(\alpha_{j}, \alpha_{k}\right)\right\}$.

Define a continuous map $d: E \times X \rightarrow E \times X^{2}$ by $d(y, x)=(y, x, x) \quad(y \in E$, $x \in X$). Then d induces a homomorphism

$$
d^{*}: H^{*}\left(E \times \underset{\pi}{\times} X^{2}\right) \rightarrow H^{*}\left(E_{\pi} \times X\right)
$$

We have the following theorem due to Steenrod (see [8], p. 103).
Theorem 5. For $\alpha \in H^{q}(X)$ we have

$$
d^{*} P_{0}(\alpha)=\sum_{k=0}^{q} \omega^{k} \times S q^{q-k} \alpha,
$$

where $\omega^{k} \in H^{k}\left(E_{\pi}\right)$ is the generator, and $S q^{i}: H^{q}(X) \rightarrow H^{q+i}(X)$ is the squaring operation.

Proof. Let $\lambda: S(E) \otimes S(X) \rightarrow S(X)^{2}$ be a functorial equivariant chain map defined for each topological space X, and $\varphi: S(E \times X) \rightarrow S(E) \otimes S(X)$ be a chain equivalence in the Eilenberg-Zilber theorem. Let $u \in S(X)^{*}$ be a cocycle representing α. Then it follows from the definition of $S q^{i}$ that $\varphi^{\sharp} \lambda^{\sharp} \mu(u \otimes u)$ $\in(S(E) \otimes S(X))^{*}$ is an equivariant cocycle representing $\sum_{k=0}^{q} \omega^{k} \times S q^{q_{-k}} \alpha \in$ $H^{2 q}\left(E_{\pi} \times X\right)$, where $\mu: S(X)^{* 2} \rightarrow S(X)^{2 *}$ is the canonical cochain map. Consider the composition of chain maps

$$
\begin{aligned}
S(E) \otimes S(X) & \xrightarrow{\phi^{\prime}} S(E \times X) \xrightarrow{d_{\sharp}} S\left(E \times X^{2}\right) \\
& \xrightarrow{\rho} S(E) \otimes S(X)^{2} \xrightarrow{\varepsilon \otimes 1} S(X)^{2},
\end{aligned}
$$

where φ^{\prime} is an inverse of φ and ε is the augmentation. Since each map is functorial and equivariant, we can take the composition as λ. It is easily seen that $\rho^{\sharp}(\varepsilon \otimes 1)^{*} \mu(u \times u) \in S\left(E \times X^{2}\right)^{*}$ is an equivariant cocycle representing $P_{0}(\alpha)$. Therefore we have the desired result.

Corollary. For $\alpha \in H^{q}(X)$ we have

$$
d^{*} P_{i}(\alpha)=\sum_{k=0}^{q} \omega^{k+i} \times S q^{q-k} \alpha
$$

Proof. Since $P_{i}(\alpha)=P_{i}(1) \smile P_{0}(\alpha)$ by Theorem 4, we have $d * P_{i}(\alpha)=$ $d^{*} P_{i}(1) \smile d * P_{0}(\alpha)$. Let P be a single point, and consider the commutative diagram

$$
\begin{gathered}
H^{*}\left(\pi ; H^{*}(P)^{2}\right) \xrightarrow{\kappa} H^{*}\left(E \times{ }_{\pi}^{2}\right) \xrightarrow{d^{*}} H^{*}\left(E_{\pi} \times P\right) \\
{ }^{\downarrow}\left(\pi ; H^{*}(X)^{2}\right) \xrightarrow{\kappa} H^{*}\left(\underset{\pi}{\downarrow} \times X^{2}\right) \xrightarrow{d^{*}} H^{*}\left(\underset{E_{\pi}}{\downarrow} \times X\right),
\end{gathered}
$$

where the vertical maps are induced by the map $X \rightarrow P$. Then it follows that $d^{*} P_{i}(1)=\omega^{i} \times 1$. Therefore the corollary follows from the theorem.

5. Homology of $\boldsymbol{N} \times \boldsymbol{X}^{2}$

Let Y be a topological space, and consider the suspension $S Y$ of Y. We regard $S Y$ as the quotient space of $Y \times[0,1]$, and identify Y with the subspace $Y \times 1 / 2$ of $S Y$. If T is an involution on Y, it is extended to an involution T^{\prime} on $S Y$ by putting

$$
T^{\prime}(y, s)=(Y(y), 1-s) \quad(y \in Y, 0 \leqq s \leqq 1) .
$$

If T has no fixed point, so does T^{\prime}.
Let N be a compact Hausdorff space having the mod 2 homology of the n sphere, and suppose that there is given on N an involution without fixed points. Define now, for each integer $i \geqq 0$, a compact Hausdorff space N^{i} by

$$
N^{0}=N, \quad N^{i}=S N^{i-1} \quad(i \geqq 1)
$$

and let N^{∞} denote the inductive limit of the sequence $N \subset N^{1} \subset \cdots \subset N^{i} \subset \cdots$. Then, by the fact stated above, there exists an involution $T: N^{\infty} \rightarrow N^{\infty}$ without fixed points such that $T\left(N^{i}\right)=N^{i}(i \geqq 0)$ and $T \mid N$ is the given involution. Moreover, since $\widetilde{H}_{q}\left(N^{i}\right) \cong \widetilde{H}_{q-i}(N)=0(i>q-n)$, we have $\widetilde{H}_{q}\left(N^{\infty}\right)=\lim _{\rightarrow} \widetilde{H}_{q}\left(N^{i}\right)=0$ for any q. Thus N^{∞} has the properties assumed for E.

Assuming next that X is an arcwise connected topological space, we shall consider the space $N^{\infty} \times X^{2}$ and its subspace $N \underset{\pi}{N} X^{2}$.

Theorem 6. The homomorphism $i_{*}: H_{k}\left(N \times \underset{\pi}{x} X^{2}\right) \rightarrow H_{k}\left(N^{\infty} \underset{\pi}{\times} X^{2}\right)$ induced by the inclusion is an isomorphism if $k \leqq n$.

Proof. The projection $N^{\infty} \times X^{2} \rightarrow N^{\infty}$ to the first factor defines a fibration $p: N^{\infty} \underset{\pi}{\times} X^{2} \rightarrow N_{\pi}^{\infty}$ with fiber X^{2}, and we have $p^{-1}\left(N_{\pi}^{i}\right)=N^{i} \underset{\pi}{\times} X^{2}$ for each i.

Consider the Serre spectral sequence E for the relative fibration $p:\left(N_{\pi}^{\infty} \times X^{2}\right.$, $\left.N \times X^{2}\right) \rightarrow\left(N_{\pi}^{\infty}, N_{\pi}\right)$. Then we have

$$
E_{p, q}^{2} \cong H_{p}\left(N_{\pi}^{\infty}, N_{\pi} ;\left\{H_{q}\left(X^{2}\right)\right\}\right),
$$

and E^{∞} is the graded module associated to some filtration of $H_{*}\left(N^{\infty} \times X^{2}, N \underset{\pi}{\times} X^{2}\right)$. By the properties of homology, it holds that

$$
\begin{aligned}
& H_{p}\left(N_{\pi}^{\imath}, N_{\pi}^{i-1} ;\left\{H_{q}\left(X^{2}\right)\right\}\right) \cong H_{p}\left(C N^{i-1}, N^{i-1}, H_{q}\left(X^{2}\right)\right) \\
\cong & \widetilde{H}_{p-1}\left(N^{i-1} ; H_{q}\left(X^{2}\right)\right) \cong \widetilde{H}_{p-i}(N) \otimes H_{q}\left(X^{2}\right) \\
\cong & \begin{cases}H_{q}\left(X^{2}\right) & \text { if } p-i=n, \\
0 & \text { if } p-i \neq n,\end{cases}
\end{aligned}
$$

where $i \geqq 1$ and $C N^{i-1}$ denote the cone over N^{i-1}. Therefore the homomorphism $H_{p}\left(N_{\pi}^{t-1}, N_{\pi} ;\left\{H_{q}\left(X^{2}\right)\right\}\right) \rightarrow H_{p}\left(N_{\pi}^{i}, N_{\pi} ;\left\{H_{q}\left(X^{2}\right)\right\}\right)$ is injective if $p-i \neq n-1$, and is surjective if $p-i \neq n$. Hence $H_{p}\left(N_{\pi}^{i}, N_{\pi} ;\left\{H_{q}\left(X^{2}\right)\right\}\right) \cong H_{p}\left(N_{\pi}^{\infty}, N_{\pi} ;\left\{H_{q}\left(X^{2}\right)\right\}\right)$ if $p-i \leqq n-1$. In particular, $H_{p}\left(N_{\pi}, N_{\pi} ;\left\{H_{q}\left(X^{2}\right)\right\}\right) \rightarrow H_{p}\left(N_{\pi}^{\infty}, N_{\pi} ;\left\{H_{q}\left(X^{2}\right)\right\}\right)$ is surjective if $p \leqq n$, and so we have

$$
E_{p, Q}^{2}=0 \quad(p \leqq n)
$$

The usual technique in spectral sequence proves now that $H_{k}\left(N^{\infty} \underset{\pi}{\times} X^{2}, N \underset{\pi}{N} X^{2}\right)$ $=0$ for $k \leqq n$. Thus $i_{*}: H_{k}\left(N \times X^{2}\right) \rightarrow H_{k}\left(N_{\pi}^{\infty} \times X^{2}\right)$ is bijective if $k \leqq n-1$, and is surjective if $k=n$.

We shall next prove that $i_{*}: H_{n}\left(N \times X^{2}\right) \rightarrow H_{n}\left(N^{\infty} \times X^{2}\right)$ is injective.
Since $H_{n+1}\left(N_{\pi}\right)=0$, the homomorphism $H_{n+1}\left(N_{\pi}^{\infty}\right) \rightarrow H_{n+1}\left(N_{\pi}^{\infty}, N_{\pi}\right)$ is injective. On the other hand, $\boldsymbol{Z}_{2} \cong H_{n+1}\left(N_{\pi}^{1}, N_{\pi}\right) \rightarrow H_{n+1}\left(N_{\pi}^{\infty}, N_{\pi}\right)$ is surjective. Therefore we have $H_{n+1}\left(N_{\pi}^{\infty}\right) \cong H_{n+1}\left(N_{\pi}^{\infty}, N_{\pi}\right)$.

Consider the Serre spectral sequence ' E of the fibration $p: N_{\pi}^{\infty} \times X^{2} \rightarrow N_{\pi}^{\infty}$. Then we have ' $E_{p, q}^{2} \cong H_{p}\left(N_{\pi}^{\infty} ;\left\{H_{q}\left(X^{2}\right)\right\}\right)$, and ${ }^{\prime} E^{\infty}$ is the graded module associated with some filtration of $H_{*}\left(N^{\infty} \underset{\pi}{\times} X^{2}\right)$. Since $H_{*}\left(N^{\infty} \underset{\pi}{\times} X^{2}\right) \cong H_{*}\left(N_{\pi}^{\infty} ;\left\{H_{*}\left(X^{2}\right)\right\}\right)$ by Theorem 2, the usual technique in spectral sequence proves that ${ }^{\prime} E_{p, q}^{2}={ }^{\prime} E_{p, q}^{\infty}$.

Consider now the commutative diagram

Then it follows that the map in the left is surjective. Therefore $i_{*}: H_{n}\left(N \times X^{2}\right)$ $\rightarrow H_{n}\left(N^{\infty} \times X^{2}\right)$ is injective. This completes the proof of Theorem 6.

Lemma 3. Let $i \leqq n$ and $a \in H_{*}(X)$. Then $P_{i}(a)$ is in the image of the homomorphism $i_{*}: H_{*}\left(N \underset{\pi}{N} X^{2}\right) \rightarrow H_{*}\left(N^{\infty} \underset{\pi}{\times} X^{2}\right)$.

Proof. Since $i \leqq n$, we have $H_{i}\left(N_{\pi}^{\infty}, N_{\pi} ;\left\{H_{*}\left(X^{2}\right)\right\}\right)=0$. Hence the homomorphism $H_{i}\left(N_{\pi} ;\left\{H_{*}\left(X^{2}\right)\right\}\right) \rightarrow H_{i}\left(N_{\pi}^{\infty} ;\left\{H_{*}\left(X^{2}\right)\right\}\right)$ is surjective. This shows that $Q_{i}(a)$ is represented by a cycle of $S(N) \otimes S(X)^{2}$. Since $\tilde{H}_{i}(N)=0(i<n)$ and $T(N)=N$, it follows from Corollary to Theorem 1 that $P_{i}(a)$ is represented by a cycle of $S\left(N \times X^{2}\right)$. Therefore we get the desired result.

6. The element θ

Let N be a closed topological manifold having the mod 2 homology of the n-sphere, and let M be a connected closed topological manifold of dimension m. Suppose that there is given on N an involution without fixed points. Then $N \times \underset{\pi}{ } M^{2}$ is a connected closed topological manifold of dimension $n+2 m$. Let $\mu \in H_{m}(M)$ and $\lambda \in H_{2 m+n}\left(N \underset{\pi}{\times} M^{2}\right)$ denote the $\bmod 2$ fundamental class of M and $N \underset{\pi}{\times} M^{2}$ respectively.

By Lemma 3, $P_{n}(\mu) \in H_{n+2 m}\left(N^{\infty} \times M^{2}\right)$ is in the image of the homomorphism $i_{*}: H_{n+2 m}\left(N \underset{\pi}{\times} M^{2}\right) \rightarrow H_{n+2 m}\left(N^{\infty} \underset{\pi}{\times} M^{2}\right)$. Therefore we have

$$
P_{n}(\mu)=i_{*}(\lambda)
$$

Define a continuous map $d_{0}: N \times M \rightarrow N \times M^{2}$ by $d_{0}(y, x)=(y, x, x)(y \in N$, $x \in M)$. Then d_{0} induces a homomorphism $d_{0 *}: H_{*}\left(N_{\pi} \times M\right) \rightarrow H_{*}\left(N \times M_{\pi}^{2}\right)$. Define

$$
\theta_{0} \in H^{m}\left(N \underset{\pi}{\times} M^{2}\right)
$$

to be the Poincare dual of $d_{0 *}\left(\nu_{n} \times \mu\right)$, where $\nu_{n} \in H_{n}\left(N_{\pi}\right)$ is the generator. We have

$$
\theta_{0} \frown \lambda=d_{0 *}\left(\nu_{n} \times \mu\right) .
$$

Assume now that $m \leqq n$. Since $i^{*}: H^{k}\left(N_{\pi}^{\infty} \times M^{2}\right) \cong H^{k}\left(N \underset{\pi}{\times} M^{2}\right)$ for $k \leqq n$ by Theorem 6, there exists a unique element $\theta \in H^{m}\left(N_{\pi}^{\infty} \times M^{2}\right)$ such that

$$
i^{*}(\theta)=\theta_{0}
$$

For the homomorphism $d_{*}: H_{*}\left(N_{\pi}^{\infty} \times M\right) \rightarrow H_{*}\left(N^{\infty} \times M^{2}\right)$ induced by the 'diagonal' map, we have

$$
d_{*}\left(i_{*}\left(\nu_{n}\right) \times \mu\right)=\theta \frown P_{n}(\mu) .
$$

In fact,

$$
\begin{aligned}
& d_{*}\left(i_{*}\left(\nu_{n}\right) \times \mu\right)=d_{*} i_{*}\left(\nu_{n} \times \mu\right) \\
= & i_{*} d_{0 *}\left(\nu_{n} \times \mu\right)=i_{*}\left(\theta_{0} \frown \lambda\right) \\
= & i_{*}\left(i^{*}(\theta) \frown \lambda\right)=\theta \frown i_{*}(\lambda) \\
= & \theta \frown P_{n}(\mu) .
\end{aligned}
$$

Let $U_{i} \in H^{i}(M)$ denote the $W u$ class, i.e. the element defined by

$$
U_{i} \cap \mu=S q^{i *}(\mu)
$$

where $S q^{i *}: H_{m}(M) \rightarrow H_{m-i}(M)$ is the transpose of $S q^{i}: H^{m-i}(M) \rightarrow H^{m}(M)$.
Theorem 7. If $m \leqq n$, we have

$$
\theta=\sum_{i=0}^{[m / 2]} P_{m-2 i}\left(U_{i}\right)+\delta,
$$

where δ is a linear combination of elements of the type $P(\alpha, \beta)$.
Proof. For any $\alpha \in H^{q}(M)$ with $2 q \geqq m \geqq q$, we have

$$
\begin{aligned}
& \left\langle P_{n+m-2 q}(\alpha), d_{*}\left(i_{*}\left(\nu_{n}\right) \times \mu\right)\right\rangle \\
= & \left\langle P_{n+m-2 q}(\alpha), \theta \frown P_{n}(\mu)\right\rangle \\
= & \left\langle P_{n+m-2 q}(\alpha) \smile \theta, P_{n}(\mu)\right\rangle \\
= & \left\langle\theta, P_{n+m-2 q}(\alpha) \frown P_{n}(\mu)\right\rangle \\
= & \left\langle\theta, P_{2 q-m}(\alpha \frown \mu)\right\rangle \quad \text { (by (ii) of Theorem 4). }
\end{aligned}
$$

We have also

$$
\begin{aligned}
& \left\langle P_{n+m-2 q}(\alpha), d_{*}\left(i_{*}\left(\nu_{n}\right) \times \mu\right)\right\rangle \\
= & \left\langle d^{*} P_{n+m-2 q}(\alpha), i^{*}\left(\nu_{n}\right) \times \mu\right\rangle \\
= & \left\langle\sum_{i=0}^{q} \omega^{n+m-2 q+i} \times S q^{q-i}(\alpha), i_{*}\left(\nu_{n}\right) \times \mu\right\rangle \\
& \quad \text { (by Corollary of Theorem 5) } \\
= & \left\langle\omega^{n} \times S q^{m-q}(\alpha), i_{*}\left(\nu_{n}\right) \times \mu\right\rangle \\
= & \left\langle S q^{m-q}(\alpha), \mu\right\rangle=\left\langle\alpha, U_{m-q} \frown \mu\right\rangle \\
= & \left\langle U_{m-q}, \alpha \frown \mu\right\rangle \\
= & \left\langle\sum_{i=0}^{[m / 2]} P_{m-2 i}\left(U_{i}\right), P_{2 q-m}(\alpha \frown \mu)\right\rangle \quad \text { (by (ii) of Theorem 4). }
\end{aligned}
$$

Therefore we get the desired result by (iii) of Theorem 4.

7. Proof of the main theorem

In this section we shall prove the main theorem.
For a continuous map $f: N \rightarrow M$, a continuous $s: N_{\pi} \rightarrow N \underset{\pi}{\times} M^{2}$ can be defined by

$$
s(y)=(y, f(y), f(T y)) \quad(y \in N)
$$

For the homomorphism $s^{*}: H^{m}\left(N \times M^{2}\right) \rightarrow H^{m}\left(N_{\pi}\right)$, we have
Lemma 4. If $m \leqq n$ and $f_{*}: H_{n}(N) \rightarrow H_{n}(M)$ is trivial, it holds that $s^{*}\left(\theta_{0}\right) \neq 0$.

Proof. We have a commutative diagram

$$
\begin{aligned}
& H^{m}\left(N_{\pi}^{\infty} \times M^{2}\right) \xrightarrow{i^{*}} H^{m}\left(N \underset{\pi}{\times} M^{2}\right) \\
& \underset{H^{m}\left(N^{\infty} \times N^{2}\right)}{\stackrel{k^{\pi}}{\left(1 \times f^{2}\right)}} \xrightarrow{k^{*}} H^{m}\left(N_{\pi}\right),
\end{aligned}
$$

where $k: N_{\pi} \rightarrow N^{\infty} \times N^{2}$ is given by $k(y)=(y, y, T y)(y \in N)$. Therefore, by Theorem 7 we have

$$
\begin{aligned}
& s^{*}\left(\theta_{0}\right)=s^{*} i^{*}(\theta)=k^{*}\left(1 \times f^{2}\right)^{*}(\theta) \\
= & k^{*}\left(1 \times f^{2}\right)^{*}\left(\sum_{i=0}^{[m / 2]} P_{m-2 i}\left(U_{i}\right)+\delta\right) .
\end{aligned}
$$

From this and the assumption it follows that

$$
s^{*}\left(\theta_{0}\right)=k^{*}\left(P_{m}(1)\right) .
$$

If P is a single point and $g: N \rightarrow P$ is the map, the diagram

is commutative. Therefore we have

$$
k^{*}\left(P_{m}(1)\right)=k^{*} p^{*}\left(\omega^{m}\right)=i^{*}\left(\omega^{m}\right) \neq 0,
$$

which completes the proof of Lemma 4.
For a continuous map $f: N \rightarrow M$, put

$$
A(f)=\{y \in N \mid f(y)=f(T y)\}
$$

Lemma 5. If $s^{*}\left(\theta_{0}\right) \neq 0$, then the covering dimension of $A(f)$ is at least $n-m$.

Proof. By the Thom isomorphism, we have

$$
H^{0}\left(N \times M_{\pi}^{2}\right) \cong H^{n+2 m}\left(\left(N \underset{\pi}{N} M^{2}\right)^{2},\left(N \underset{\pi}{\left.\left.\times M^{2}\right)^{2}-\Delta\left(N \times M_{\pi}^{2}\right)\right), ~}\right.\right.
$$

where $\Delta: N \underset{\pi}{N} M^{2} \rightarrow\left(N \underset{\pi}{\times} M^{2}\right)^{2}$ is the diagonal map. Let $\gamma \in H^{n+2 m}\left(\left(N \times{ }_{\pi} M^{2}\right)^{2}\right.$, $\left.\left(N \times M^{2}\right)^{2}-\Delta\left(N \underset{\pi}{N} M^{2}\right)\right)$ be the generator, and put

$$
\begin{aligned}
& \gamma_{1}=\gamma \mid\left(N \times M^{2}\right)^{2}, \\
& \gamma_{2}=\gamma \mid d_{0}\left(N_{\pi} \times M\right) \times\left(N \times M_{\pi}^{2}, N \underset{\pi}{\times} M^{2}-d_{0}\left(N_{\pi} \times M\right)\right) .
\end{aligned}
$$

Write $B(f)$ for the image of $A(f)$ under the projection $N \rightarrow N_{\pi}$. Then the following commutative diagram holds:

where j are the inclusion maps, and \backslash denotes the slant product (see [7], p. 351). Since $\backslash \gamma_{1}$ is the inverse of the Poincare duality isomorphism, the image of the generator of $H_{n+m}\left(d_{0}\left(N_{\pi} \times M\right)\right.$) under the composition of j_{*} and $\backslash \gamma_{1}$ is θ_{0}. Therefore Lemma 4 implies $H^{m}\left(N_{\pi}, N_{\pi}-B(f)\right) \neq 0$. Since this shows $H_{m}\left(N_{\pi}, N_{\pi}-B(f)\right) \neq 0$, it follows that the Čech cohomology group $\check{H}^{n-m}(B(f))$ is not zero (see Theorem 17 in p. 296, Corollary 8 in p. 334 and Corollary 9 in p. 341 of [7]). Therefore $\operatorname{dim}(B(f)) \geqq n-m$, and hence $\operatorname{dim}(A(f)) \geqq n-m$. This complestes the proof of Lemma 5.

We are now ready for proving the main theorem.
Proof of Main Theorem. By Lemma 4 and Lemma 5, we have the main theorem for a connected closed topological manifold M. From this the result for any compact manifold M is obtained easily (see [4]).

8. Corollaries of the main theorem

The following corollary is obtained immediately from the main theorem.
Corollary 1. Let N, T and M be the same as in the main theorem, and T^{\prime} be a fixed point free involution on M.
(i) If $n>m$, there exists no continuous map $f: N \rightarrow M$ equivariant with T and T^{\prime}.
(ii) If $n=m$ and $f: N \rightarrow M$ is a continuous map equivariant with T and T^{\prime}, then $f_{*}: H_{n}(N) \rightarrow H_{n}(M)$ is not trivial.

The following corollaries are obtained by the same way as in [1], p. 89.
Corollary 2. Let N be a closed topological manifold which is a mod 2 homology n-sphere. Then any pair of fixed point free involution T_{1} and T_{2} on N have a co-incidence.

Corollary 3. If G is a group acting freely on a closed topological manifold N having the mod 2 homology of the n-sphere. Then any element of G order 2 lies in the center of G.

Remark. This corollary was first proved by Milnor [3] in a different method.

9. The corresponding theorem for $\boldsymbol{Z}_{\boldsymbol{p}}$-actions

The main theorem has the following corresponding result for \boldsymbol{Z}_{p}-actions on $\bmod p$ homology spheres, where p is an odd prime.

Theorem 8. Let N be a closed topological manifold which is a mod p homology n-sphere, and $T: N \rightarrow N$ be a continuous map of period p without fixed points, where p is an odd prime. Let $f: N \rightarrow M$ be a continuous map of N to a compact orientable topological manifold of dimension m, where $n \geqq(p-1) m$. Then the covering dimension of

$$
A(f)=\left\{y \in N \mid f(y)=f(T y)=\cdots=f\left(T^{p-1} y\right)\right\}
$$

is at least $n-(p-1) m$.
Remark. Munkholm [5] proved this theorem under a hypotheses that f is a 'nice' map.

Theorem 8 is proved in the similar way to the proof of the main theorem. We shall give outlines of the proof in the following and leave details to the reader.

Let E be a Hausdorff space such that $\widetilde{H}_{*}(E)=0$, and $T: E \rightarrow E$ be a continuous map of period p without fixed points. Let π denote the cyclic group of order p whose generator is T. Then there exist functorial isomorphisms

$$
\begin{aligned}
& \kappa: H_{*}\left(\pi ; H_{*}(X)^{p}\right) \cong H_{*}\left(E \times X^{p}\right), \\
& \kappa: H^{*}\left(\pi ; H^{*}(X)^{p}\right) \cong H^{*}\left(E \times X^{p}\right),
\end{aligned}
$$

defined for each topological space X such that $H_{*}(X)$ is free and of finite type (see Theorem 2), and κ preserve the cup products and the cap products (see Theorem 3). In virtue of these results, the elements $P_{i}(a), P\left(a_{1}, \cdots, a_{p}\right) \in$ $H_{*}\left(E \times X^{p} ; \boldsymbol{Z}_{p}\right)$ can be defined for $a, a_{1}, \cdots, a_{p} \in H_{*}\left(X ; \boldsymbol{Z}_{p}\right)$, and the elements $P_{i}(\alpha), P\left(\alpha_{1}, \cdots, \alpha_{p}\right) \in H^{*}\left(E \times X^{p} ; \boldsymbol{Z}_{p}\right)$ can be defined for $\alpha, \alpha_{1}, \cdots, \alpha_{p} \in$ $H^{*}\left(X ; \boldsymbol{Z}_{p}\right)$. As for these, the theorem similar to Theorem 4 holds. Let $\omega^{k} \in H^{k}\left(E_{\boldsymbol{\pi}} ; \boldsymbol{Z}_{p}\right)$ be the canonical generator, and $d^{*}: H^{*}\left(E \times X^{p} ; \boldsymbol{Z}_{p}\right) \rightarrow$ $H^{*}\left(E_{\boldsymbol{\pi}} \times X ; \boldsymbol{Z}_{p}\right)$ denote the homomorphism induced by the 'diagonal' map $d: E \times X \rightarrow E \times X^{p}$. Then, for $\alpha \in H^{q}\left(X ; \boldsymbol{Z}_{p}\right)$ we have

$$
d^{*} P_{0}(\alpha)=c_{q} \sum_{i}(-1)^{i}\left(\omega^{(p-1)(q-2 i)} \times \mathcal{P}^{i}(\alpha)-\omega^{(p-1)(q-2 i)-1} \times \beta \mathcal{P}^{i}(\alpha)\right),
$$

where \mathcal{P}^{i} is the p-th reduced power, β is the Bockstein homomorphism, and
$c_{q}=(-1)^{q / 2}$ or $(-1)^{(q-1) / 2}((p-1) / 2)!$ according as q is even or odd (see Theorem 5).

Put $N^{0}=N$, and define $N^{2 i}(i=1,2, \cdots)$ inductively to be the join of $N^{2 i-2}$ and $S^{1}=\{z \in \boldsymbol{C}| | z \mid=1\}$. We define also $N^{2 i-1}(i=1,2, \cdots)$ to be a subspace of $N^{2 i}$ consisting of all $s y \oplus(1-s) e^{2 \pi k \sqrt{-1} / p}$, where $0 \leqq s \leqq 1$ and $k=0,1, \cdots, p-1$. Let N^{∞} be the limit space of the sequence $N \subset N^{1} \subset N^{2} \subset \cdots$. There exists a continuous map $T: N^{\infty} \rightarrow N^{\infty}$ of period p without fixed points such that $T\left(N^{i}\right) \subset N_{t}(i=0,1,2, \cdots)$ and $T \mid N$ is the given map $T: N \rightarrow N$. In fact, such a map T is defined by

$$
T_{i}\left(s y \oplus(1-s) e^{2 \pi \sqrt{-1} t}\right)=s\left(T_{i-1} y\right) \otimes(1-s) e^{2 \pi v=-1(t+1 / p)}
$$

where $T=T \mid N^{2 i}$ and $s, t \in[0,1]$. It follows that N^{∞} has the properties assumed for E, and that $i_{*}: H_{k}\left(N \underset{\pi}{\times} X^{p} ; \boldsymbol{Z}_{p}\right) \rightarrow H_{k}\left(N^{\infty} \times \underset{\pi}{\times} X^{p} ; \boldsymbol{Z}_{p}\right)$ is an isomorphism if $k \leqq n$ (see Theorem 6).

Let $d_{0 *}: H_{n+m}\left(N_{\boldsymbol{\pi}} \times M ; \boldsymbol{Z}_{p}\right) \rightarrow H_{n+m}\left(N \times M^{p} ; \boldsymbol{Z}_{p}\right)$ be the homomorphism induced by the 'diagonal' map, and $\theta_{0} \in H^{(p-1) m}\left(N \times M^{p} ; \boldsymbol{Z}_{p}\right)$ be the Poincare dual of $d_{0 *}(\lambda)$, where $\lambda \in H_{n+m}\left(N_{\pi} \times M ; \boldsymbol{Z}_{p}\right)$ is the fundamental class. If $(p-1) m \leqq n$, there exists a unique $\theta \in H^{(p-1) m}\left(N_{\pi}^{\infty} \times M^{p} ; \boldsymbol{Z}_{p}\right)$ such that $\theta \mid N \underset{\pi}{\times} M^{p}$ $=\theta_{0}$. Similarly to Theorem 7, we have

$$
\theta=c_{m}\left(\sum_{j}(-1)^{j} P_{(p-1)(m-2 j p)}\left(U_{j}\right)\right)+\delta
$$

where δ is a linear combination of elements of the type $P\left(\alpha_{1}, \cdots, \alpha_{p}\right)$, and $U_{j} \in H^{2 j(p-1)}\left(M ; \boldsymbol{Z}_{p}\right)$ is the "Wu class' defined in terms of \mathcal{P}^{j}.

Consider now a continuous map $s: N_{\pi} \rightarrow N \times M^{p}$ defined by $s(y)=(y, f(y)$, $\left.f(T y), \cdots, f\left(T^{p-1} y\right)\right)(y \in N)$, and proceed as in $\S 7$. Then we see that $s^{*}\left(\theta_{0}\right) \neq 0$ and hence $\operatorname{dim} A(f) \geqq n-(p-1) m$.

Osaka University

References

[1] P.E. Conner and E.E. Floyd: Differentiable Periodic Maps, Springer-Verlag, Berlin, 1964.
[2] A. Heafliger: Points multiples d'une application et produit cyclique reduit, Amer. J. Math. 83 (1961), 57-70.
[3] J. Milnor: Groups which act on S^{n} without fixed points, Amer. J. Math. 79 (1957), 623-630.
[4] H.J. Munkhom: A Borsuk-Ulam theorem for maps from a sphere to a compact topological manifold, Illinois J. Math. 13 (1969), 116-124.
[5] H.J. Munkholm: Borsuk-Ulam type theorems for proper Z_{p}-actions on (mod p homology) n-spheres, Math. Scand. 24 (1969), 167-185.
[6] M. Nakaoka: Homology of the infinite symmetric group, Ann. of Math. 73 (1961), 229-257.
[7] E.H. Spanier: Algebraic Topology, McGraw-Hill, New York, 1966.
[8] N.E. Steenrod and D.B.A. Epstein: Cohomology Operations, Princeton Univ. Press, 1962.

