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The complex bordism group U,(BU(1)) consists of the bordism classes of
the pair (M*, £), [1], where M*# is a k-dimensional U-manifold and £ is a complex
line bundle over M* We define the multiplication in Uy(BU(1)) as follows,

[M*, )N, 7] = [M*x N, £@],
where £ @)7) is the external tensor product of £ and ». In this paper, we study
the ring structure of U,(BU(1)) with this multiplication.
1. The relation formula in U.(BU(1))

At first we recall the Mischenko series [3], which is essential in the deter-
mination of the relation formula in U(BU(1)).

Theorem 1.1 (Mischenko). For a complex line bundle & over a CW
complex X, define a series g(c,(£)) by

SIS B+ *
6(8) = 5 24 @ VIR0,

where x,, is the class of 2k-dimensional complex projective space CP*, and c,(£) is a
cobordism 1-st Chern class of £. This satisfies, for line bundles & and 7, the
relation

#(e(EQm) = gla() X 1+1xg(e ()
Denote by 7, the canonical line bundle over the 2n-dimensional complex

projective space CP". It is well known that U,(BU(1)) is a free U, module
with a basis {{CP", 7,], n=1,2,..-}. We put

{n} = [CP", n,].
Consider the duality isomorphism

D: U*(CP*x M™) — U(CP"x M™),
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where M™ is a 2m-dimensional U-manifold. The classifying map f of 77,,(/8\)1 M
where 1,, is the trivial complex line bundle over M™, induces the homomorphism

fx:Ux(CP*XM™) — U (BU(1)).
Then, we have the following
Lemma 1.2. f,D(c,(n,)¢x 1) = {n—k}[M™].
Proof. It is obtained immediately that
D(cy(na)e x 1) = [N"=5Fx M™, jxid], [N"7%, j] = D(c(na)") -

And it is obtained in parallel with the case of the lens space, [2], that D(c,(7,)*)
=[CP"~*, i], where i: CP"~* —CP" is the inclusion map. Therefore, f«([CP"~*
X M™, ixid))={n—k}[M™]. q.e.d.

Consider the duality isomorphism
D:U*(CP™ X CP") — Uy(CP™x CP"),
and the homomorphism
f 7 Uy(CP"x CP") — Uy(BU(1)),
where f™ " is the classifying map of %,@’7"- Noting that
v "[CPI X CP", ixid] = {j}{n},
we have the following
Lemma 1.3. [ "D(c,(7,,)¢x 1) = {m—k}{n} .
For [M*, £]e U,(BU(1)), consider the following homomorphisms
D = D®id: U (M¥)RQ — UxM¥)®Q,
where D is the duality isomorphism, and
¥ =fi®id: U (M¥)RQ — Ux(BU(1))®Q,

where f§ is the homomorphism induced by the classifying map of £. Then, we
define the homomorphism

6: UBU(1)) - U,_(BU(1)®Q
by
O[M*, £] = fiDg(c,(8)) ,

where g(c,(£)) is the Mischenko series. Using the standard technique, we can
prove that © is well defined and it is the U, homomorphism.
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Suppose that
{m}{n} = ,-Eo a,.(m’ n){z} ............ ( 1 ),

where a,(m, n) € Uy,yin_» and {0} =1. We can compute the coefficient
a,(m, n) from the following

Theorem 1.4.

(i) kgl%ak(m, n) = gk’fﬁl {a,(m—k—1, n)+a,(m, n—k—1)} .

(i) tprn(m, 1) = (’”+ ").
m
(i) ay(m, n) = [CP™][CP"]— :ﬁak(m, n)[CP*] .
Proof. We apply the homomorphism © to the equation (1).

O(m}{n} = f5"De(c,(rn@70)
= fa*D{g(c,(n,,)) X 1+1x g(c,(n4))}, by Theorem 1.1,

=51 B Dt X D) 3 R DX e ()

£=0 k-l—l k+
=5 % g nlox, .
'§k+1{m k 1}{"}+§)k+1{m}{n k—1}, by Lemma 1.3,
=3 2O am—r-1, mii)
n-1 xlz m+n-—k—1 . .
+§Ok+1( g a(m, n—k—1){i}).

Suppose that a;(m, n) is the bordism class of M,. Denote by f? the classifying
map of 1 M‘(/g\)n,-, where 1,y is the trivial line bundle over M.

(% afm, m)fi}) = T O(am, m)(i)
= I74D(1 x g(e,(n))

=3 5 SR x )

= :: g k‘j’:la"(m’ n){i—k—1}, by Lemma 1.2.

Since {{k}, k=1,2, .-} is the basis of Uy free module Uy(BU(1)), cor;lparing
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the coefficient of {r} of ®{m}{n} with that of 6( gnai(m, n){i}), (i) follows.
Putting r=m-n—1 on the equation (i), .
Apyin(My M) = Ay y_(M—1, B)+ i i(m, n—1) .
Hence, by induction (ii) follows. Applying the homomorphism
cx: Ux(BUQ1)) = Usx,

given by the collapsing map ¢: BU(1)— a point, to the equation (1), (iii) follows.

2. The ring structure of U,(BU(1))®Z,

In this section we study the ring structure of U4(BU(1))QZ,, p a prime.
We put [M, E]=[M, £]Q1 U4«(BU(1))®Z,. We define the homomorphism

1 Us(BU(1))®Z, — H(BU1)QZ,

by w,=wp®id with u[M, E]=f{a(M), where (M) is a fundamental class of M
and f%:H (M) — H(BU(1)) is the homomorphism induced by the classifying
map f* of £&. We have immediately the following

Lemma 2.1. If n>0, then u([N*][M, £])=0.
- Proposition 2.2. For p a prime, {p*} is indecomposable.

Proof. Suppose that
= 3 a, ..ttt 3 Baim}.

ittty =pk dim B,,>0
DE>t,>0

Using the relation (1) of § 1 and Theorem 1.4, (ii),

m...{t"}_<tlj;t2><tl+::+t3)...(i’:){_ﬂe U Un(BU1)RZ,,

where Uy= 31 U,. Since (Pk>:—:0 mod p,
i>0 t

(P eUs- UBU1)RQZ,.

By Lemma 2.1, u,{p#j=0. Denote by c the generator of H*(BU(1)). Since
e, p{p*}>=1, u,{p*} is the generator of H,(BU(1))®@Z, Therefore, the

proposition follows. q.e.d.

Proposition 2.3. For p a prime, {p*}?cU,-U(BU(1)QRZ,, where
U*z Z U,-.



Rine STrucTURE OF Uy(BU(1)) 421

Proof. By Theorem 1.4, (ii), {p*}? is represented as follows,

o = ()2, )iy 3 o

Since (iﬁk) (pk“) 0 mod p,

" = 2 Bulm),
mpkt+1
where the dimension of 3,, is positive. q.e.d.

Theorem 2.4. Suppose that p is prime. Let Ay be Uy free module with
a basis

{pr}ire - {prn)in; 0y <<oo <k, 0<i;<p} .
Then, AQZ ,~Uyn(BU1)RQZ,.

Proof. Denote by +y the natural homomorphism from As®Z, to
U«(BU(1))®Z,. Suppose that

SYa(ly, vy iRy 0y km){Pkl}fl...{?kmv}im =0  ereeennn (2)
We define the order in the set consisting of (i, :*+, 7,.;&,, -+, k,,) as follows,
(111 ..., 1’ ves n)<(ll)“' m ’k . k ) lfz ]Pk;<21 ij.

Let (z,, -+, Tk, o, k,,) be maximal in the set consisting of (3, -+, 7,3 &,, ***, Rn)
which is used in the equation (2). Put

qg= f;‘ ipi .
By Theorem 1.4,
R a{pg e {phafin = clgh+ 38,15,

= (R

=7,!-1,! mod p
== 0 mod p.

where

Then, the equation (2) becomes

a_({n °tt zn’ 1 ,.)C{Q}‘I“ ZWS{S} =0.
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Since Uy(BU(1)) is the Uy free module with the basis {{m}, m=1, 2, .-} and
¢£0 mod p, @y, -+, 2n;k, -+, k,)=0. By induction, it follows that a(,, ---,
i3kyy oo+, k,,)=0 and +» is monomorphism.

We show that each {n} belongs to the image of . By the definition of
Ay, {T}€image . Suppose that {m}image +» for m<n. We represent n as
follows,

n = jpkit-.. —|-er"’ ’
where 0<<j,<p, 0<k,<.--<k,. By Theorem 1.4,

(pri{prelir = el T

= ()2

=j,!--+7, ! mod p.

where

Since ¢£0 mod p and {p*1}/1..-{psr}/r = image +, the inductive hypothesis im-
plies that {n} cimage . q.e.d.
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