Maki, H. Osaka J. Math. 7 (1970), 397-407

EXTENDIBLE VECTOR BUNDLES OVER LENS SPACES MOD 3

HARUO MAKI

(Received March 10, 1970)

1. Introduction. In [5] Schwarzenberger investigated the problem of determing whether a real vector bundle over the real projective space RP^n can be extended to a real vector bundle over RP^m (n < m). In [3], he also investigated the case of the complex tangent bundle of the complex projective space.

The purpose of this note is to prove the non-extendibility of a bundle over lens spases mod 3 by making use of Schwarzenberger's technique ([5]).

Let $S^{2^{n+1}}$ be the unit (2n+1)-sphere. That is

$$S^{2^{n+1}} = \{(z_0, \dots, z_n); \sum_{i=0}^n |z_i|^2 = 1, z_i \in C \text{ for all } i\}$$

Let γ be the rotation of $S^{2^{n+1}}$ defined by

$$\gamma(z_0, \cdots, z_n) = (e^{2\pi i/p} z_0 \cdots, e^{2\pi i/p} z_n).$$

Then γ generates the differentiable transformation group Γ of S^{2n+1} of order p, and lens space mod p is defined to be the orbit space $L^n(p) = S^{2n+1}/\Gamma$ It is a compact differentiable (2n+1)-manifold without boundary and $L^n(2) = RP^{2n+1}$. The Grothendieck rings $\widetilde{KO}(L^n(p))$, $\widetilde{K}(L^n(p))$ were determined by T. Kambe [4]. We recall them in 2. Let $\{z_0, \dots, z_n\} \in L^n(p)$ denote the equivalence class of $(z_0, \dots, z_n) \in S^{2n+1}$. $L^n(p)$ is naturally embedded in $L^{n+1}(p)$ by identifying $\{z_0, \dots, z_n\}$ with $\{z_0, \dots, z_n, 0\}$. Hence $L^n(p)$ is embedded in $L^m(p)$ for n < m. Throughout this note we suppose p=3. Now we state our theorems which shall be proved in 3 and 4.

Let ζ be any *t*-dimensional real bundle over $L^{*}(3)$. Let $p(\zeta)$ be the mod 3 Pontryagin class of ζ

$$p(\zeta) = \sum_{i} p_{j}(\zeta)$$
 where $p_{j}(\zeta) = (-1)^{j} C_{2j}(\zeta \otimes C) \mod 3$.

From the property of the cohomology algebra $H^*(L^n(3); \mathbb{Z}_3)$, we have

$$p_j(\zeta) = d_j x^{2j} ,$$

where $d_j \in \mathbb{Z}_3$ and x is a generator of $H^2(L^n(3); \mathbb{Z})$. Then there exists an integer s such that

(1)
$$p(\zeta) = 1 + d_1 x^2 + \dots + d_s x^{2s}$$
 for $0 \le 2s \le t$.

Then we have the following

Theorem 1. Let ζ be a t-dimensional real vector bundle over $L^{n}(3)$. If 2t < n+1, then we have

$$p(\zeta) = (1+x^2)^s \mod 3$$
 for some integer $s \quad 0 \leq 2s \leq t$.

Corollary 2. Under the assumptions of Theorem 1,

$$p(\zeta) = p(\eta_L n \oplus \cdots (s) \cdots \oplus \eta_L n) \quad \text{for some } 0 \leq 2s \leq t,$$

where we denote by \oplus a Whitney sum of $\eta_L n$. (See 2 for the definition of $\eta_L n$.)

For a pair (X, Y) of compact spaces, a bundle ζ_Y over Y is said to be *extendible to* X provided there exists a bundle ζ_X over X such that

$$\zeta_X|_Y \simeq \zeta_Y,$$

where we denote by $|_{Y}$ the restriction to Y.

Let *a* be a real number. We denote by [a] the integral part of *a*. Let *b* be an integer. We denote by $\nu_{3}(b)$ an integer *q* such that

 $b = r \cdot 3^{q}$, where (r, 3) = 1.

For integers t and m, define

$$\beta_{\mathfrak{z}}(t, m) = \operatorname{Min}\left[\left(i - \left[\frac{i}{2}\right] - 1\right) - \nu_{\mathfrak{z}}\left(i - \left[\frac{i}{2}\right]\right) + \nu_{\mathfrak{z}}\left\{\binom{i - [i/2]}{[i/2]}\right\}\right]$$

where t < i < m, $i \equiv 0 \mod 2$ and $i \equiv 1 \mod 6$.

Theorem 3. Assume that n, m and t are the positive integers such that

$$(2)$$
 $2t < m+1$

- $(3) \qquad n \equiv 0 \mod 4$
- $(4) \qquad m \equiv 0 \mod 4$

(5)
$$\left[\frac{m}{2}\right] \ge \left[\frac{n}{2}\right] + \beta_3(t, m)$$

Let ζ be a t-dimensional real vector undle over $L^{n}(3)$ which is extendible to $L^{m}(3)$ (n < m). Then ζ is stably equivalent to

$$\eta_L \oplus \dots \oplus (s) \oplus \oplus \eta_L \oplus for \text{ some integer } s \ (0 \leq 2s \leq t).$$

As an application of Th. 3, we obtain the following

Theorem 4. Let ζ be a t-dimensional real vector bundle over $L^{n}(3)$ $(n \equiv 0 \mod 4)$. Assume that ζ is stably equivalent to

$$\eta_L n \oplus \cdots (s) \cdots \oplus \eta_L n$$
 for some $s > \left[\frac{t}{2}\right]$.

Then ζ is not extendible to $L^{\phi(t,n)}(3)$, where

$$\phi(t, n) = \operatorname{Min}\left\{m \geq 2t; \ m \equiv 0 \ mod \ 4, \left[\frac{m}{2}\right] - \beta_{\mathfrak{z}}(t, m) \geq \left[\frac{n}{2}\right]\right\}.$$

Next we show

Theorem 5. The tangent bundle $\tau(L^n(3))$ of $L^n(3)$ is not extendible to $L^{\phi(2n+1,n)}(3)$ for $n \equiv 0 \mod 4$. And $\tau(L^n(3))$ is not extendible to $L^{4n+2}(3)$ $(n \equiv 0 \mod 4)$.

2. The structure of $\widetilde{KO}(L^n(p))$. The structure of $\widetilde{KO}(L^n(p))$ is stated as follows [4]. Let CP^n be the complex projective space of complex *n*-dimension. Let η be the canonical complex line bundle over CP^n , $r(\eta)$ the real restriction of η . Consider the natural projection

$$\pi: L^n(p) \to CP^n$$
.

Define $\eta_L = \pi^*(r(\eta)) \in KO(L^n(p))$ where $\pi^* : KO(CP^n) \to KO(L^n(p))$ is the induced homomorphism of π . Let $\overline{\sigma}_n$ denote the stable class of η_L^n , i.e., $\overline{\sigma}_n = \eta_L^n - 2 \in \widetilde{KO}(L^n(p))$. We recall $\tau_L^n \oplus 1 = (n+1)\eta_L^n$ where τ_L^n is the tangent bundle of $L^n(p)$. The theorem of T. Kambe (Th. 2, [4]) is as follows:

Theorem (Kambe). Let p be an odd prime, q=(p-1)/2 and n=s(p-1)+r $(0 \le r < p-1)$. Then

$$\widetilde{KO}(L^{n}(p)) \simeq \begin{cases} (\mathbf{Z}_{p^{s+1}})^{[\mathbf{r}/2]} + (\mathbf{Z}_{p^{s}})^{q-[\mathbf{r}/2]} \cdots (if \ n \equiv 0 \ mod \ 4) \\ \mathbf{Z}_{2} + (\mathbf{Z}_{p^{s+1}})^{[\mathbf{r}/2]} + (\mathbf{Z}_{p^{s}})^{q-[\mathbf{r}/2]} \cdots (if \ n \equiv 0 \ mod \ 4) \end{cases}$$

and the direct summand $(\mathbf{Z}_{p^{s+1}})^{[r/2]}$ and $(\mathbf{Z}_{p^s})^{q-[r/2]}$ are additively generated by $\bar{\sigma}_n, \dots, \bar{\sigma}_n^{[r/2]}$ and $\bar{\sigma}_n^{[r/2]+1}, \dots, \bar{\sigma}_n^q$ respectively. Moreover its ring structure is given by

$$\bar{\sigma}_{n}^{q+1} = \sum_{i=1}^{q} \frac{-(2q+1)}{(2i-1)} {q+i-1 \choose 2i-2} \bar{\sigma}_{n}^{i}, \ \bar{\sigma}_{n}^{[n/2]+1} = 0.$$

In the theorem, $(\mathbb{Z}_a)^b$ indicates the direct sum of *b*-copies of cyclic group of order *a*. Let p=3 in the above theorem. If $n \equiv 0 \mod 4$ then

$$\widetilde{KO}(L^n(3)) \simeq \mathbf{Z}_{3^s}, \quad s = \left[\frac{n}{2}\right].$$

and Z_{3^*} is generated by σ_n . Its ring structure is given by

$$\bar{\sigma}_n^2 = (-3)\bar{\sigma}_n, \quad \bar{\sigma}^{s+1} = 0.$$

3. The proofs of Theorem 1 and Corollary 2. From Th. 11.3 in [2], we obtain the following equality. (For the proof, see Proposition 5, in the last part of this section.) Let \mathcal{O}_3^k : $H^q(L^n(3): \mathbb{Z}_3) \to H^{q+4k}(L^n(3): \mathbb{Z}_3)$ the k-th reduced power operation mod 3. Then we have

$$(6) \qquad \qquad \mathcal{O}_{\mathfrak{Z}}^{k}(p_{\mathfrak{z}}(\zeta)) = (\sum_{n+m=k} p_{\mathfrak{z}}(\zeta) p_{\mathfrak{z}}(\zeta)) p_{\mathfrak{z}}(\zeta) + \sum_{l>s} p_{l}(\zeta) (\cdots)$$

for $0 \leq k \leq s$.

Let s be an integer such as (1) in **1**. Since $d_j \equiv 0$ for all j > s and $d_s \equiv 0$, then (6) gives

(7)
$$\mathscr{O}_{\mathfrak{Z}}^{k}(p_{\mathfrak{s}}(\zeta)) = (\sum_{n+m=k} p_{\mathfrak{m}}(\zeta)p_{\mathfrak{m}}(\zeta))p_{\mathfrak{s}}(\zeta).$$

For an element x^{2s} of $H^{s}(L^{n}(3); \mathbb{Z}_{3})$, we have

$$\mathcal{O}_{3}^{k}(x^{2s}) = {\binom{2s}{k}} x^{2s+2k}$$
 and $d_{s} {\binom{2s}{k}} x^{2s+2k} = (\sum_{n+m=k} d_{n}d_{m}) d_{s} x^{2s+2k}$.

From $2s+2k \leq 4s \leq 2t < n+1$, $x^{2s+2k} \neq 0$. Hence $\binom{2s}{k} = \sum_{n+m=k} d_n d_m$.

By induction, we obtain $d_j \equiv {s \choose j} \mod 3$. Therefore

$$p(\zeta) = 1 + {s \choose 1} x^2 + \dots + {s \choose s} x^{2s} \mod 3$$
$$= (1+x^2)^s \mod 3.$$

The proof of Theorem 1 is completed if we prove Proposition 5. Now, it is well known that the bundle η_{L^n} over $L^n(3)$ has the total Pontryagin class mod $3 p(\eta_{L^n})=1+x^2$. Thus the proof of Corollary 2 is completed.

Now, in order to prove the formula (6) in the proof of Theorem 1, we consider a following symmetric polynomial. Let $\sum x_1^p x_2^p \cdots x_k^p x_{k+1} \cdots x_s$ be a homogeneous symmetric polynomial in variables x_1, x_2, \cdots, x_t of degree N=(p-1)k+s where p, k and N are positive integers.

To prove (6), we show the following propositions.

Proposition 1.

$$\sum x_1^2 x_2^2 \cdots x_k^2 x_{k+1} \cdots x_s = \sum_{i=0}^k A(i) \sigma_{k-i} \sigma_{s+i}$$

where
$$A(i) = (-1) \sum_{j=1}^{i} {\binom{s-k+2i}{j}} A(i-j), \ 1 \le i \le k \text{ and } A(0) = 1$$

Proof. Ptu $f(k, s) = \sum x_1^2 \cdots x_k^2 x_{k+1} \cdots x_s$. By an easy calculation,

(8)
$$f(k, s) = (\sum x_1 \cdots x_k)(\sum x_1 \cdots x_s) - \sum_{j_1=1}^k {s-k+2j_1 \choose j_1} f(k-j_1, s+j_1).$$

By making use of (8) repeatedly, we have

$$f(k, s) = \sigma_k \sigma_s + \sum_{l=1}^k F_l$$

where $F_{I} = (-1)^{I} \sum_{j_{1}=1}^{k} \sum_{j_{2}=1}^{j_{i-1}-1} \cdots \sum_{j_{l}=1}^{k-j_{l-1}-1} {s-k+2j_{l} \choose j_{1}} \cdots {s-k+2j_{l-1}-1 \choose j_{l}} \sigma_{k-j_{l-1}-1} \sigma$

$$A_{l}(i) = (-1)^{l} \sum_{n=1}^{i-1} \sum_{j_{1}+\cdots+j_{l-1}=i-n} {s-k+2j_{1} \choose j_{1}} \cdots {s-k+2^{j-1} \choose j_{l-1}} {s-k+2i \choose n}.$$

Put $A(i) = A_1(i) + \cdots + A_i(i)$. Then

$$A(i) = (-1)\sum_{n=1}^{i-1} {\binom{s-k+2i}{n}} \sum_{l=2}^{i-n+1} A_{l-1}(i-n) - {\binom{s-k+2i}{i}}.$$

Since $\sum_{l=2}^{j+1} A_{l-1}(j)$ is a coefficient A(j) of $\sigma_{k-j}\sigma_{s+j}$ in f(k, s), we have

$$A(i) = (-1) \sum_{j=1}^{i} {\binom{s-k+2i}{j}} A(i-j).$$

This completes the proof of Proposition 1.

Proposition 2.

$$\sum x_1^2 \cdots x_k^2 = \sum_{i=0}^k A(i) \sigma_{k-i} \sigma_{k+i}$$
(a)
$$\sum_{j=0}^i A(i-j) \binom{2i}{j} = 0 \quad and \quad A(0) = 1$$

where

(b)
$$A(i) \equiv (-1)^{i+1} \mod 3$$
 for $i \neq 0$.

Proof. The part of (a) is completed by Proposition 1. The proof of (b) is obtained by induction. For $i=1, 2, A(1)=(-1)\binom{2}{1}\equiv 1$ and A(2)=2. Assuming the equation (b) for integers $i\leq 2q$, we have

$$A(i+1) = 2\sum_{j=1}^{i} \binom{2i+2}{j} (-1)^{i-j+2} + 2\binom{2i+2}{i+1}$$

By making use of $\sum_{j=1}^{i} \binom{2i+2}{j} (-1)^{j+1} \equiv \binom{2j+2}{i+1} + 2\binom{2i+2}{2i+2} + 2\binom{2i+2}{0} + 2\binom{2i+2}{i+1}$, we have

$$A(i+1) \equiv 1 \mod 3$$

Assuming the equation (b) for integers $i \leq 2q+1$, we can obtain $A(i+1) \equiv 2 \mod 3$. Thus Proposition 2 is obtained by induction.

Proposition 3.

$$\sum x_1^3 x_1^3 \cdots x_k^3 x_{k+1} \cdots x_s = (\sum x_1^2 \cdots x_k^2) \sigma_s - \sum_{l>s} \sigma_l (\cdots) +$$

Proof. Put $f(a, b) = \sum x_1^3 \cdots x_a^3 x_{a+1}^2 \cdots x_{a+b+1}^2 x_{a+b+1} \cdots x_c$ with c = N - 2a - b. By calculation, we have the following equality;

(9)
$$f(k, 0) = (\sum x_1 \cdots x_k) \sigma_s - \sum_{\alpha_1=1}^k f(k - \alpha_1, \alpha_1).$$

Define $a_0 = k$, $b_0 = 0$ and $c_0 = N - 2a_0 - b_0$. Then (9) is reformed as follows:

(10)
$$f(a_0, b_0) = f(0, a_0) \sigma_{c_0} - \sum_{\alpha_1=1}^{a_0} f(a_1, b_1)$$
 where $a_1 = a_0 - \alpha_1, b_1 = \alpha_1 + \beta_1(\beta_1 = 0)$

Now for each term $f(a_1, b_1)$ in (10), we obtain

(11)
$$f(a_1, b_1) = f(0, a_1)\sigma_{N-2a_1-b_1} - \sum_{\alpha_2=0}^{a_1} \sum_{\beta_2=0}^{b_1} A(\alpha_2, \beta_2)f(a_1-\alpha_2, \alpha_2+\beta_2)$$

for some integers $A(\alpha_2, \beta_2)$ and $A(0, b_1)=0$. We can inductively define two sequences $\{a_i\}, \{b_i\}$ satisfying the followings

(12)
$$f(a_{i-1}, b_{i-1}) = f(0, a_{i-1}) \sigma_{N-2a_{i-1}-b_{i-1}} - \sum_{\alpha_i=0}^{a_{i-1}} \sum_{\beta_i=0}^{b_{i-1}} A(\alpha_i, \beta_i) f(a_i, b_i)$$

(13)
$$a_i = a_{i-1} - \alpha_i, \ b_i = \alpha_i + \beta_i$$

with some integers $A(\alpha_i, \beta_i)$ and $A(0, b_{i-1}) = 0$. Put $c_{i-1} = N - 2a_{i-1} - b_{i-1}$. Then we have $s < c_1 < c_2 < \cdots < c_i < \cdots$. From (13), $a_{i+1} \le a_i$ for all *i*. Hence consider the following cases:

- (14) there exists an integer n such as $a_{i+1} < a_i$ for all $i \ge n$,
- (15) there exists an integer *m* such as $a_m = \cdots = a_i = \cdots$ for all $i \ge m$.

If (14) is satisfied, then $a_q=0$ for some integer q. From (12) and Proposition 1, we have

(16)
$$f(a_{q_{-1}}, b_{q_{-1}}) = f(0, a_{q_{-1}}) \sigma_{c_{q_{-1}}} \sum_{\beta_{q}=0}^{b_{q_{-1}}} A(0, \beta_{q}) f(0, b_{q})$$
$$= f(0, a_{q_{-1}}) \sigma_{c_{q_{-1}}} - \sum_{\beta_{q}=0}^{b_{q_{-1}}} \sum_{i=0}^{b_{q}} A(0, \beta_{q}) A(i) \sigma_{b_{q^{-i}}} \sigma_{c_{q^{+i}}}$$

If (15) is satisfied, then $b_i > b_{i+1}$ for all $i \ge m$.

Therefore $b_r = 0$ for some integer r. From (12) we have

$$f(a_{r-1}, b_{r-1}) = f(0, a_{r-1}) \sigma_{a_{r-2}} - \sum_{\alpha_r=0}^{a_{r-1}} A(\alpha_r, 0) f(a_r, 0) .$$

Since $a_r < a_0$, the above discussion is also applied to $f(a_r, 0)$ in this case. Hence, by making use of (9) repeatedly, we have finally

$$f(k, 0) = f(0, k) \sigma_s - \sum_{l>s} (\cdots) \sigma_l.$$

From Proposition 2 and Proposition 3 we have the following

Proposition 4.

$$\sum x_1^3 \cdots x_k^3 x_{k+1} \cdots x_s = (\sigma_k^2 + \sum_{j=1}^k (-1)^{j+1} \sigma_{k-j} \sigma_{k+j}) \sigma_s + \sum_{l>s} (\cdots) \sigma_l.$$

Now, we can prove the formula (6) in the proof of Theorem 1.

Proposition 5.
$$\mathcal{P}_{3}^{k}(p_{s}(\zeta)) = (\sum_{n+m=s} p_{n}(\zeta)p_{m}(\zeta))p_{s}(\zeta) + \sum_{l>s} p_{l}(\zeta)(\cdots)$$
.

Proof. Let $C_i \in H^{2i}(B_{U(i)} : Z_3)$ be the *i*-th Chern class mod 3. By Th. 11.3 ([2]) and Proposition. 4, we have

(17)
$$\mathcal{O}_{\mathfrak{Z}}^{k}(C_{i}) = (C_{k}^{2} + \sum_{j=1}^{k} (-1)^{j+1} C_{k-j} C_{k+j}) C_{i} + \sum_{l>i} (\cdots) C_{l}.$$

Let $p_s(\zeta)$ be the s-th Pontrjagin class mod 3 of a real bundle ζ . Then $p_s(\zeta) = (-1)^s C_{2s}(\zeta \otimes C) \mod 3$ where $C_{2s}(\zeta \otimes C)$ is a 2s-th Chern class of $\zeta \otimes C$. From (17) we obtain

$$\mathcal{O}_{3}^{2i}(p_{s}(\zeta)) = (p_{i}^{2}(\zeta) + 2\sum_{l=1}^{i} p_{i+l}(\zeta)p_{i-l}(\zeta))p_{s}(\zeta) + \sum_{l>s} (\cdots)p_{l}(\zeta)$$

and $\mathcal{O}_{3}^{2i+1}(p_{s}(\zeta))=2(\sum_{l=1}^{i}p_{i-l}(\zeta)p_{i+l}(\zeta))p_{s}(\zeta)+\sum_{l>s}(\cdots)p_{l}(\zeta)$. This completes the proof of Proposition 5.

4. Proofs of Theorem 3, 4 and 5. To prove Theorem 3, we discuss the following lemmas. The proofs of Lemma 1, 2 and 3 are omitted.

Lemma 1. Let A_0, A_1, \dots, A_n be integers with $\nu_3(A_j) > 0$ for all $j \neq n$ and $\nu_3(A_n) \ge 0$. If $\nu_3(A_n) < \nu_3(A_j)$ for all $j \neq n$, then

$$\nu_{\mathfrak{z}}(\sum_{j=0}^{n}A_{j})=\nu_{\mathfrak{z}}(A_{n}).$$

Lemma 2. If r, s, a and u are positive integers with $s < a < 3^{u}$ and (r, 3)=1 then following hold.

(18)
$$\nu_{3}\left\{\binom{rs^{u}+s}{a}\right\} = \nu_{3}\left\{\binom{3^{u}+s}{a}\right\} \leq \nu_{3}\left\{\binom{3^{u}}{a}\right\}$$

(19)
$$\nu_{3}\left\{\binom{3^{u}}{a}\right\} = u - \nu_{3}(a) .$$

Lemma 3. If u and n are positive integers, then

(20)
$$\nu_{\mathfrak{s}}((3^{u})!) = \frac{3^{u}-1}{2}$$

(21)
$$\nu_3((2n+1)!) \leq n$$

(22)
$$\nu_{3}((2n)!) < n$$
.

Put $A_j = (-1)^j (-3)^{i-j-1} {q \choose i-j} \cdot {i-j \choose j}$ $(j = 0, 1, \dots, \left\lfloor \frac{i}{2} \right\rfloor)$ for some positive integer q, i > 2 with q > i-j.

Lemma 4. Let A_j be above integers. Then

$$\nu_{3}(\sum_{j=0}^{[i/2]}A_{j}) = \nu_{3}(A_{[i/2]}) \text{ for } i \equiv 1 \mod 6 \text{ and } i \equiv 0 \mod 2$$

Proof. If i=2n, then for each $l=1, 2, \dots, n-1$

$$\nu_{\mathfrak{z}}(A_{n-l}) = (n+l-1) - \nu_{\mathfrak{z}}((2l)!) - \nu_{\mathfrak{z}}((n-l)!) + \nu_{\mathfrak{z}}(q) + \dots + \nu_{\mathfrak{z}}(q-n-l+1).$$

From Lemma 3 (22) $\nu_3(A_{n-l}) - \nu_3(A_n) > l - \nu_3((2l)!)$. Then we have

$$\nu_{\mathfrak{s}}(A_j) > \nu_{\mathfrak{s}}(A_n)$$
 and $\nu_{\mathfrak{s}}(A_j) > 0$ for all $j \neq n$.

Therefore by Lemma 1 we obtain $\nu_3(\sum_{j=0}^{\lfloor i/2 \rfloor} A_j) = \nu_3(A_{\lfloor i/2 \rfloor})$ for $i \equiv 0 \mod 2$. From Lemma 3 (21), we obtain

$$\nu_{3}(A_{n-l}) - \nu_{3}(A_{n}) > \nu_{3}(n!) - \nu_{3}((n-l)!) > 0$$

under the conditon $i \equiv 1 \mod 6$, $\left[\frac{i}{2}\right] = n = 3m$.

Now we prove the theorems.

Proof of Theorem 3. Let ζ' be the extension over $L^m(3)$ of ζ . By the structure of \widetilde{KO} -ring of the lens space ([4]), ζ' is stably equivalent to $q\eta_L m$, for some $q \in \mathbb{Z}_{3^{\lfloor m/2 \rfloor}}$. Since $\zeta' - t = q \bar{\sigma}_m \in \widetilde{KO}(L^m(3))$, we have

(23)
$$\zeta - t = q(i^* \eta_L m - 2) \in \widetilde{KO}(L^n(3))$$

where $i^*: \widetilde{KO}(L^m(3)) \to \widetilde{KO}(L^n(3))$ is the induced homomorphism of natural embedding $i: L^n(3) \to L^m(3)$. If $2q \leq t$, then ζ is stably equivalent to $\eta_{L^n} \oplus \cdots$ $(q) \cdots \oplus \eta_{L^n}$ for some integer q $(0 \leq 2q \leq t)$. If 2q > t, $\gamma^i(q\bar{\sigma}_m) = 0$ for all i > g. dim $(q\bar{\sigma}_m)$ ([1] Prop. 2.3). Since $t \geq g$. dim $(q\bar{\sigma}_m)$, we have

(24)
$$\gamma^i(q\bar{\sigma}_m) = 0 \quad \text{for all } i > t$$
.

According to the Theorem of Kambe ([4] Lemma 4.8),

γ

where $A_j = (-1)^j (-3)^{\alpha - j - 1} {q \choose \alpha - j} {\alpha - j \choose j}$. Then we have $\gamma^i (q\bar{\sigma}_m) = \sum_{i=0}^{\lfloor \alpha/2 \rfloor} A_j \bar{\sigma}_m$. From (23),

(24)

$$(\sum_{j=0}^{\lfloor \alpha/2 \rfloor} A_j) \bar{\sigma}_m = 0 \in \widetilde{KO}(L^m(3)) = Z_3[m/2] \quad \text{for all } i > t. \quad \text{Therefore}$$

$$\nu_3(\sum_{j=0}^{\lfloor \alpha/2 \rfloor} A_j) \ge \left[\frac{m}{2}\right] \quad \text{for all } i > t.$$

Now, according to Lemma 4, we have

$$\nu_{3}(\sum_{j=0}^{\lfloor a/2 \rfloor} A_{j}) = \nu_{3}(A_{\lfloor i/2 \rfloor}) \text{ for } i > t \ (i \equiv 0 \mod 2 \text{ and } i \equiv 1 \mod 6)$$

And so we have

(25)
$$\left(i - \left[\frac{i}{2}\right] - 1\right) + \nu_3\left\{\begin{pmatrix}q\\i - [i/2]\end{pmatrix}\right\} + \nu_3\left\{\begin{pmatrix}i - [i/2]\\[i/2]\end{pmatrix}\right\} \ge \left[\frac{m}{2}\right] \text{ for } i > t, i \equiv 0 \mod 2$$

and $i \equiv 1 \mod 6$.

Now the total Pontrjagin class mod 3 of $q\eta_L m$ is given by the equation $p(q\eta_L m) = (1+x^2)^q$. Since m > 2t-1, Theorem 1 implies that there exists an integer s such that

$$p(\zeta') = (1+x^2)^s, \quad 0 \leq 2s \leq t$$
.

Hence we have

$$(1+x^2)^q \equiv (1+x^2)^s \mod 3$$
, i.e.,
 $1+\binom{q-s}{1}x^2+\cdots+\binom{q-s}{[m/2]}x^{2[m/2]}\equiv 1 \mod 3$.

This implies that there exists an integer u such that

(26)
$$q-s=3^{u}r, (r, 3)=1 \text{ and } 3^{u}>[m/2].$$

Then we obtain the following

$$\nu_{3}\left\{\begin{pmatrix}q\\i-[i/2]\end{pmatrix}\right\} = \nu_{3}\left\{\begin{pmatrix}r3^{u}+s\\i-[i/2]\end{pmatrix}\right\}$$
$$\leq \nu_{3}\left\{\begin{pmatrix}3^{u}\\i-[i/2]\end{pmatrix}\right\} \text{ for } t < i < m \text{ (by Lemma 2)}$$
$$= u - \nu_{3}(i - [i/2]).$$

Hence from (25) $u+(i-[i/2]-1)-\nu_3(i-[i/2])+\nu_3\left\{\binom{i-[i/2]}{[i/2]}\right\} \ge \left[\frac{m}{2}\right]$ for t < i < m and $i \equiv 0 \mod 2$, $i \equiv 1 \mod 6$. By the assumption (5) of Theorem 3, we have

(27)
$$u \ge [m/2] - \operatorname{Min}\left[(i - [i/2] - 1) - \nu_3(i - [i/2]) + \nu_3\left\{ \binom{i - [i/2]}{[i/2]} \right\} \right]$$
$$= [m/2] - \beta_3(t, m) \ge [n/2] .$$

According to (23), (26) and (27), there exists an integer s such that

$$0 \leq 2s \leq t,$$

$$\zeta - t = (r3^{u} + s)\bar{\sigma}_{n}$$

$$= s\bar{\sigma}_{n}.$$

This completes the proof of Theorem 3.

Proof of Theorem 4. By the contraposition of Theorem 3 and the main theorem of Kambe ([4] Th. 2), it is clear.

Proof of Theorem 5. Since $\tau(L^n(3)) \oplus 1 = (n+1)\eta_{L^n}$ and $n+1 > n = \left[\frac{2n+1}{2}\right]$

=[1/2 dim $\tau(L^n(3))$], Theorem 4 implies that the tangent bundle τ is not extendible to $L^{\phi(2n+1,n)}(3)$. For every m > 2n+1, $\beta_3(2n+1, m) \le n$ whenever $n \equiv 0$ mod 3, $n \equiv 1 \mod 3 \beta_3(2n+1, m) < n$ whenever $n \equiv 2 \mod 3$. Then $\phi(2n+1, n) = 2 (2n+1)$.

This completes the proof of Theorem 5.

REMARK. The following table shows the value of $\phi(t, n)$ where $1 \le t \le 10$ and $1 \le n \le 16$.

n t		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1		3	3	3	4	4	6	6	8	8	10	10	12	12	14	14	16
2		5	5	5	6	6	8	8	10	10	12	12	14	14	16	16	18
3		6	6	6	6	6	8	8	10	10	12	12	14	14	16	16	18
4		8	8	8	8	8	8	8	10	10	12	12	14	14	16	16	18
5		10	10	10	10	10	10	10	10	10	12	12	14	14	16	16	18
6		12	12	12	12	12	12	12	14	14	16	16	18	18	20	20	22
7		14	14	14	14	14	14	14	14	14	16	16	18	18	20	20	22
8		16	16	16	16	16	16	16	16	16	18	18	20	20	22	22	24
9		18	18	18	18	18	18	18	18	18	18	18	20	20	22	22	24
10		20	20	20	20	20	20	20	20	20	20	20	20	20	22	22	24
	[

WAKAYAMA UNIVERSITY

References

- M.F. Atiyah: Immersions and embeddings of manifold, Topology 1 (1962), 125– 132.
- [2] A. Borel et J.P. Serre: Groupes de Lie et puissances réduites de steenrod, Amer. J. Math. 75 (1953), 409-448.
- [3] F. Hirzebruch: Topological Methods in Algebraic Geometry, Appendix by Schwarzenberger, Springer, Berlin, 1966.
- [4] T. Kambe: The structure of K_{Λ} -rings of lens space and their application, J. Math. Soc. Japan. 18 (1966), 135–146.
- [5] R.L.E. Schwarzenberger: Extendible vector bundles over real projective space, Quart. J. Math. Oxford Ser. 17 (1966), 19-21.