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1. Introduction

The purpose of this paper is to prove the following theorem.

Theorem. Let % be a doubly transitive group on the set Ω = { 1 , 2, •••, n}.

If the stabilizer S of the set of points 1 and 2 is isomorphίc to the alternating group

of degree four, then one of the followings holds:

(1) n=6 and ® is 2lβ,

(2) n=\5 and ® is %,

(3) n=\6and®isA(2,4),

(4) ®= C^(J)O(®) for some involution J.

Here SΪM denotes the alternating group of degree m and A(t, q) denotes the

group of all affine transformations of the ^-dimensional affine geometry AG(t, q)

over the field of ^-elements.

Notation. Let X and 2) be the subset of ©. 3(3E) will denote the

set of all the fixed points of 3E- and α(X) is the number of points in $(£).

X~2) means that X is conjugate to 2) in @. All other notation is standard.

2. Preliminaries

Since $) is Sί4, $ is generated by the elements K and T subject to the

following relations:

K3 = τ2 = (Kτ)3 = 1 (2.1)

Put T1=ZK~1TK and 5S=<τ, T ^ . Then 95 is a four group and a Sylow 2-sub-

group of $. Let ξ) be the stabilizer of the point 1. Since © is doubly

transitive on Ω, it contains an involution / with the cycle structure (1, 2)

which normalizes $ and we may assume that [/, τ ] = l . Thus we have the

following decomposition of ©:

(2.2)

1) We thank Professor H. Nagao for pointing out a gap of our original proof.
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Let #(2), h(2) and d denote the number of involutions in ©, ξ>, and the coset

ξ)IH for ffG§, respectively. Then d is the number of elements in ® inverted

by /, that is, the number of involutions in © with the cycle structure (1, 2)

and the following equality is obtained from (2.2):

g(2) = h(2)+d(n-ί) (2.3)

Lemma 1. One of the fallowings holds :

(1) ITJ=TTU IKI=K~\ d=6,

(2) [/, 5S]=1, IKI=τKτ, d=4,

(3) [7,Λ]=1, J=4,

Proof. Since the automorphism group of $ is the symmetric group of

degree four we may assume that the action of / on $ is (1), (2), or (3) by (2.1).

Assume that the case (1) holds. Now </, i£> and </, τKτ) are dihedral groups

of order 6. Therefore I~IK~IK2 in </, K> and I~IτKτ~IτK2τ in </, τKτ>.

Thus the result follows in this case. Note that in this case every involution is

conjugate to T in ©. The cases (2) and (3) are trivial. This proves our lemma.

Let T keep / (/>2) points of Ω unchanged. So we may put ^(τ) =

{1, 2, •••, i}. The group C©(τ) acts on ^ ( T ) and the kernel of this permutation

representation is 33 or <τ> because C@(r)n$ = 93. By a theorem of Witt

[6; p. 105], I Cα(τ)| =4ί(ί—1). Hence there exist (©: C(»(τ))=3(if-l)n/(ί-l)i

involutions in © each of which is conjugate to T.

At first, let us assume that n is odd. Let λ*(2) be the number of involutions

in ξ> leaving only the point 1 fixed. Then from (2.3) the following equality is

obtained :

A*(2)n+3(n-l)n/(i-l)ί = 3(n-l)/(/-l)+A*(2)+J(if-l) (2.4)

Put β=d—h*(2). It follows from (2.4) that n=i(βi-β+3)/3. This implies

that i is odd.

Next let us assume that n is even. Let g*(2) be the number of involutions

in © which are semi-regular on Ω. Then corresponding to (2.4) the follwing

equality is obtained from (2.3):

g*(2)+3(n-l)nl(i-\) = 3(n-l)/(ί-l)+d(fi-l) (2.5)

Put β=d-g*(2)l(n-l). Then by (2.5) we have n=ί(βi-β+3)β. This

implies that i is even.

In both cases, by the definition of β, β is the number of involutions with
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the cycle structure (1, 2) each of which is conjugate to T. Since © is doubly
transitive on Ω, we have /3>0.

Lemma 2. β=l, 3, 4, or 6.

Proof. The result follows immediately from Lemma 1.

Lemma 3. // α(τ)=α(S3), then S S Π G - ^ G ^ l or 33 for every element

G in ©.

Proof. If S3 Π G~^G contains T, then 3f(τ) contains 3f(5B) and ^ ( G - ^ G ) ,
and thus ^(τ) = ^(g3) = ^(G"1S3G). This implies that S3 and G'^G are
contained in $ and so SS^^G'^G. This proves our lemma.

Lemma 4. If α(τ)>α(33), then one of the fallowings holds:

(1) i = 6 <wκ/ C@(τ)/<τ> ώ a5,
(2) i=28, α(33)=4 and C@(τ)/<τ> ύ PΓL(2, 8),
(3) /=/)2'w /or some prime p, a(^8)=pfn and C@(τ)/<τ> contains a regular

normal subgroup. Moreover if p is odd, then there exists a unique involution in
C§(τ)/<(τ)> which fixes only one point on 3>(τ).

Proof. Since C@(τ)/<Y> is doubly transitive on 3ί(τ) of degree / and
order 2(/—l)ί, the results follow from Ito's theorem [7] and its proof.

Lemma 5. If α(τ)<α(SB), then β=3, \y or 6.

Proof. There exist two points j and k in 3ί(τ)—$(33) such that τ 1 =(j , &)•••.
Hence ττ1==(<j9 Λ) and Lemma 2 yields /3 = 3, 4, or 6 since © is doubly
transitive on Ω.

3. The case n is odd

In the following if A*(2)>0, then without loss of generality we may assume
thatα(/)=l.

Lemma 6. 7/A*(2)=l, ώαi ©=C(S(7)O(©).

Proof. Let S be a Sylow 2-subgroup of © containing 7. By our as-
sumption {G~XIG\ G(Ξ@}n@={7}. It follows from the Z*-theorem of
Gluaberman [6; p. 628] that <7>O(©) is a normal subgroup of © and then
Frattini argument implies that ©=C®(7)0(©). This proves our lemma.

Lemma 7. If α(τ) = α(33) and A*(2)=3, then there exists no group
satisfying the condition of our theorem.

Proof. Put 3>(7)= {k} and let ©^ be the stabilizer of a point k in ©.
Then ©* contains Cα(7) and 3f(7τ1)=3f(7ττ1)={A}. It follows from A*(2)=3
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that (/τ υ 7τTj, />=</, 33)> is normal in ©*. Now </, 33> is half transitive on
Ω - {&}. On the other hand I acts on $(93), and /-orbits on $(33) are of length
2 and 33-orbits on Ω—$(33) are of length 4 by our assumption. Thus we get
a contradiction. The proof is complete.

Now h*(2)=0 and then T is a central involution in some Sylow 2-subgroup
of ©. Let @ be a Sylow 2-subgroup of © containing </, 33> and contained in

Lemma 8. J/A*(2)=0, */*en α(τ)=α(SS).

Proof. Assume by way of contradiction that α(τ)<α(33). Then | C©(τ)|
=4*( ι- l ) and 1^(58)1 = V T ( V T - 1 ) by Lemma 4 since C©(τ) and iV©(33)
is doubly transitive on $(τ) and $(33), respectively. Hence iV®(33) does not
contain a Sylow 2-subgroup of ©. We first show that (1) in Lemma 1 holds in
this case. Suppose that (2) or (3) in Lemma 1 holds. Then © { l 2}==</>^ has
no element of order four and hence any 2-element with a 2-cycle must be an
involution since © is doubly transitive. Then since h*(2)=0 © has no element
of order four and so @ is elementary abelian. Then iV@(33) contains @, a
contradiction. Thus (1) in Lemma 1 must hold. Then @{1>2} is the symmetric
group of degree four, β=d=6 and n=i(2i—ί). In particular, O(©)=1. Four
groups in ©f1>2} form two conjugate classes and their representatives are 33
and </, τ>. Now we regard © as a transitive permutation group on the set
of the unordered pairs of the points of Ω. Then ®{12} is the stabilizer of the
pair {1, 2}. If 33 is not conjugate to </, τ> in ©, 33 satisfies the assumption
of a theorem of Witt [6; p. 150], and hence Λf®(33) is transitive on the pairs
which 33 fixes. This forces 33 to have no orbit of length 2 on Ω since ^(33)
fixes $(33) as a whole. This implies that α(τ)=α(33), contrary to the assump-
tion. Thus 33~<7, τ> in ©. On the other hand since λ*(2)=0, any four
group has an orbit of length 2 and hence is conjugate to 33. Then if © is not
of a maximal class, iV®(33) contains a Sylow 2-subgrouρ of © (See [2; p. 215])
which is a contradiction. Thus @ must be of a maximal class and hence
dihedral or semi-dihedral. Since C@(τ)/<τ)> has a dihedral Sylow 2-subgrouρ
@/<τ>, a result of Gorenstein-Walter [4] and Lemma 4 imply that C@(τ)/<τ>
is 2/-closed and so is Cm(τ). By theorems of Gorenstein [3] and Lϋneburg
[9] we get a contradiction. The proof is complete.

Lemma 9. If A*(2)—0, then n=\5 and © is SI7.

Proof. Since α(τ)=α(33) by Lemma 8, C@(τ)/33 is a complete Frobenius
group of odd degree i and then @/33 is cyclic or generalized quaternion. Assume
that [/, 33]Φl. It follows that (@: C©(33))=2 and 733 is a unique involution
in @/33. Now C©(33)=33 and ©=</, 33> is a dihedral group of order 8. Since
β=d=6 by Lemma 1 and n=i(2i— 1), © contains no regular normal subgroup.
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Applying theorems of Gorenstein-Walter [4] and Luneburg [9], © is SC7. On
the other hand it is well known that 3I7 has a doubly transitive permutation
representation of degree 15 in which the stabilizer of two points is 9I4 (See [6;
p. 157]). Thus Λ = 1 5 and © is %. Next assume that [/, 33] = 1. Then by
the same way as in the proof of Lemma 8, @ is elementary abelian and hence
©=</, 5S>. Now C®(τ) is solvable and so theorems of Gorenstein [1] and
Lϋneburg [9] yield a contradiction. This proves our Lemma.

4. The case n is even

Lemma 10. If a(τ)=a(%$), then n=6 and © is 3I6, or n=16 and © is

-4(2,4).

Proof. Assume that ξ> is 2-closed. Then ξ> acts on 3(55) and since ξ>
is transitive on Ω— {1}, we have 3ί(35)=Ω which is impossible. By Lemma 3, ξ>
is a (TY)-group in the sense of Suzuki [11]. Since ξ>/O(ξ>) is also a (77)-group,
Suzuki's result [11; p. 69] implies that ξ>/O(ξ>) is PSL(2y 4) and O(ξ>) is con-
tained in the center of ξ>. On the other hand we have |iV®(93)| =l2i(i— 1)
and |Cs(SB) |=4(i- l) . Now | O ( $ ) | = / - 1 and |©/O(©)| =4(/8i+3) =
I PSL(2, 4) I =60. Therefore y8i= 12. In our case since C^r)/® is a complete
Frobenius group of even degree z, i is a power of 2 and then i=2 or 4. If i=2,
then w=6 and © is St6. If ί=4, then τz=16. Since β=<ϋΓ, 5S> and K is of
order 3, α(SS)—α(Λ) is divisible by 3 and 3f(SS)=3f(β). Applying a result of
Witt [6; p. 150] to iV®(β) and N®«Ky) we can get easily α(Jt)=4. Therefore
$ is semi-regular on Ω—$(β) and thus ^ is transitive on Ω—3f($). Since w
is even it follows from Kantor's theorem [8] that © is isomorphic to a subgroup
of A(29 4) or A(4> 2). Assume that © is a subgroup of A(4, 2). Let 5ft be a
regular normal subgroup of A{4r, 2). If ©n5ft=l, then © is isomorphic to
a subgroup of GL(4, 2) which is impossible because GL(4, 2) contains no
subgroup of index 7. Hence © Π ^ ί φ l and then © contains -ϊi and ξ> is
isomorphic to ®/ ϊί. Since | O(ξ>) | = 3 and O(ξ>) is contained in the center of ξ>,
ξ) is GL(2, 4). Thus w=16 and © is A(2, 4). This proves our lemma.

Lemma 11. If a(τ)>aQ8) and i=6 or 28, then there exists no group
satisfying the condition of our theorem.

Proof. Assume that i=6. Since C®(τ) contains 93, Schur's theorem

[10] implies that C@(τ)=<τ>χg where g is §I5 by Lemma 4. It follows that

[/, SB] = 1 and d=\. Now \C$(τ)\ = 22 5 and |^>| = 22-33 5 or 22 3 5 7.

Assume that ί=28. Then Lemma 4 yields αr(93.)=α($)=4 and using a result

of Witt [6 p. 150], I N&(St) \ = | iV@(9S) | -144, N&(St)=St X C®(Λ). It follows

that [/, SB]=1 and so d=4. Now | Cβ(τ)| = 2 2 33 and |ξ>| = 2 2 . 3 2 5 23 or

22 34 29. In both cases applying a theorem of Gorenstein-Watler [4],
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is isomorphic to a subgroup of PΓL(2, r) containing PSL(2, r). Clearly this is
impossible. This proves our lemma.

In the following we assume that the case (3) of Lemma 4 holds.

Lemma 12. The group ξ>/O(ξ>) ίs PSL(2, q)for some q.

Proof. Since C@(τ)/<τ)> is a solvable doubly transitive group on $(τ)
of degree 22Wί, it follows from a theorem of Huppert [5] that C@(τ)/<Y> is
contained in 1-dimensional semi-linear affine transformation group over the field
of 22w-elements and then Cξ>(τ) has a cyclic normal 2-complement. Thus by
a result of Gorenstein-Walter [4], ξ>/O(ξ>) is PSL(2, q). This proves our lemma.

Lemma 13. There exists no group with a(τ)=22m and

Proof. Put 5=ξ>/O(ξ>). Then ξ is PSL(2, q) with q=3 or 5 (mod. 8) by
Lemma 12. Hence Cξj(5$)=33 and Cξ>(τ) has a normal 2-complement of
order #+1/4 or #—1/4 according as q = 3 or 5 (mod. 8). On the other hand
|C©(τ) |=4( i- l ) and |C©(9S)|=4 ( V 7 - 1 ) since |ΛΓφ(SB)| = 12 (VT— 1).
Then I O(ξ>) Π C (̂5S) | = ( Λ / T - 1) and hence | Oφ) Π C©(τ) | =3c(V7-1) with
some odd integer x dividing > / / + ! • Then the formula of Brauer-Wielandt
[12] yields |O(φ)| = * V 7 - 1 ) . Since | φ | =12(n-l)=4(/8-l)(/3i+3), we
have

(4.1)

Since C§(τ) has a cyclic normal 2-complement (w} of order /—I and C%>(τ)=

), we have

0(a>) = ί- I M N / 7 - 1) = ?±l/4 (4.2)

Then (4.1) yields

(4.3)

In particular, Λ? is a common divisor of \ / T + l and /3/+3 where \/ / — 2W and
/3=3, 4, or 6 by Lemma 5. Assume that β=3. Then x=l or 3 since /3z-f3
= 3 2 2 W + 3 Ξ Ξ 6 (mod. 2 m + l ) . Now it is easy to see that (4.2) and (4.3) are
incompatible. In the case where β=4 or 6, the proofs are similar.

The proof of our theorem is complete.
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