Noda, R. and Yamaki, H. Osaka J. Math. 7 (1970), 313-319

A CHARACTERIZATION OF THE ALTERNATING GROUPS OF DEGREES SIX AND SEVEN¹)

RYUZABURO NODA AND HIROYOSHI YAMAKI

(Received April 10, 1970)

1. Introduction

The purpose of this paper is to prove the following theorem.

Theorem. Let \mathfrak{G} be a doubly transitive group on the set $\Omega = \{1, 2, \dots, n\}$. If the stabilizer \mathfrak{R} of the set of points 1 and 2 is isomorphic to the alternating group of degree four, then one of the followings holds:

- (1) n=6 and \otimes is \mathfrak{A}_6 ,
- (2) n=15 and \otimes is \mathfrak{A}_7 ,
- (3) n=16 and \otimes is A(2, 4),
- (4) $\mathfrak{G} = C_{\mathfrak{G}}(J)O(\mathfrak{G})$ for some involution J.

Here \mathfrak{A}_m denotes the alternating group of degree m and A(t, q) denotes the group of all affine transformations of the *t*-dimensional affine geometry AG(t, q) over the field of *q*-elements.

Notation. Let \mathfrak{X} and \mathfrak{Y} be the subset of \mathfrak{G} . $\mathfrak{I}(\mathfrak{X})$ will denote the set of all the fixed points of \mathfrak{X} and $\alpha(\mathfrak{X})$ is the number of points in $\mathfrak{I}(\mathfrak{X})$. $\mathfrak{X} \sim \mathfrak{Y}$ means that \mathfrak{X} is conjugate to \mathfrak{Y} in \mathfrak{G} . All other notation is standard.

2. Preliminaries

Since \Re is \mathfrak{A}_4 , \Re is generated by the elements K and τ subject to the following relations:

$$K^3 = \tau^2 = (K\tau)^3 = 1 \tag{2.1}$$

Put $\tau_1 = K^{-1}\tau K$ and $\mathfrak{V} = \langle \tau, \tau_1 \rangle$. Then \mathfrak{V} is a four group and a Sylow 2-subgroup of \mathfrak{R} . Let \mathfrak{H} be the stabilizer of the point 1. Since \mathfrak{G} is doubly transitive on Ω , it contains an involution I with the cycle structure $(1, 2)\cdots$ which normalizes \mathfrak{R} and we may assume that $[I, \tau] = 1$. Thus we have the following decomposition of \mathfrak{G} :

$$\mathfrak{G} = \mathfrak{H} \cup \mathfrak{H} \mathfrak{H} \mathfrak{H} \tag{2.2}$$

¹⁾ We thank Professor H. Nagao for pointing out a gap of our original proof.

Let g(2), h(2) and d denote the number of involutions in \mathfrak{G} , \mathfrak{H} , and the coset \mathfrak{H} for $H \in \mathfrak{H}$, respectively. Then d is the number of elements in \mathfrak{R} inverted by I, that is, the number of involutions in \mathfrak{G} with the cycle structure (1, 2)... and the following equality is obtained from (2.2):

$$g(2) = h(2) + d(n-1) \tag{2.3}$$

Lemma 1. One of the followings holds:

- (1) $I\tau_1I = \tau\tau_1$, $IKI = K^{-1}$, d=6, $I \sim IK \sim IK^2 \sim I\tau K\tau \sim I\tau K^2\tau \sim I\tau$. (2) $[I, \mathfrak{V}] = 1$, $IKI = \tau K\tau$, d=4, $I\tau \sim I\tau_1 \sim I\tau\tau_1$.
- (3) $[I, \Re] = 1, \quad d = 4,$ $I\tau \sim I\tau_1 \sim I\tau\tau_1.$

Proof. Since the automorphism group of \Re is the symmetric group of degree four we may assume that the action of I on \Re is (1), (2), or (3) by (2.1). Assume that the case (1) holds. Now $\langle I, K \rangle$ and $\langle I, \tau K \tau \rangle$ are dihedral groups of order 6. Therefore $I \sim IK \sim IK^2$ in $\langle I, K \rangle$ and $I \sim I\tau K\tau \sim I\tau K^2\tau$ in $\langle I, \tau K\tau \rangle$. Thus the result follows in this case. Note that in this case every involution is conjugate to τ in \mathfrak{G} . The cases (2) and (3) are trivial. This proves our lemma.

Let τ keep i $(i \ge 2)$ points of Ω unchanged. So we may put $\mathfrak{F}(\tau) = \{1, 2, \dots, i\}$. The group $C_{\mathfrak{G}}(\tau)$ acts on $\mathfrak{F}(\tau)$ and the kernel of this permutation representation is \mathfrak{V} or $\langle \tau \rangle$ because $C_{\mathfrak{G}}(\tau) \cap \mathfrak{R} = \mathfrak{V}$. By a theorem of Witt [6; p. 105], $|C_{\mathfrak{G}}(\tau)| = 4i(i-1)$. Hence there exist $(\mathfrak{G}: C_{\mathfrak{G}}(\tau)) = 3(n-1)n/(i-1)i$ involutions in \mathfrak{G} each of which is conjugate to τ .

At first, let us assume that n is odd. Let $h^*(2)$ be the number of involutions in \mathcal{D} leaving only the point 1 fixed. Then from (2.3) the following equality is obtained:

$$h^{*}(2)n + 3(n-1)n/(i-1)i = 3(n-1)/(i-1) + h^{*}(2) + d(n-1)$$
(2.4)

Put $\beta = d - h^*(2)$. It follows from (2.4) that $n = i(\beta i - \beta + 3)/3$. This implies that *i* is odd.

Next let us assume that *n* is even. Let $g^*(2)$ be the number of involutions in \mathfrak{G} which are semi-regular on Ω . Then corresponding to (2.4) the following equality is obtained from (2.3):

$$g^{*}(2) + 3(n-1)n/(i-1) = 3(n-1)/(i-1) + d(n-1)$$
(2.5)

Put $\beta = d - g^*(2)/(n-1)$. Then by (2.5) we have $n = i(\beta i - \beta + 3)/3$. This implies that *i* is even.

In both cases, by the definition of β , β is the number of involutions with

the cycle structure (1, 2)... each of which is conjugate to τ . Since \mathfrak{G} is doubly transitive on Ω , we have $\beta > 0$.

Lemma 2. $\beta = 1, 3, 4, or 6.$

Proof. The result follows immediately from Lemma 1.

Lemma 3. If $\alpha(\tau) = \alpha(\mathfrak{V})$, then $\mathfrak{V} \cap G^{-1}\mathfrak{V}G = 1$ or \mathfrak{V} for every element G in \mathfrak{V} .

Proof. If $\mathfrak{V} \cap G^{-1}\mathfrak{V}G$ contains τ , then $\mathfrak{I}(\tau)$ contains $\mathfrak{I}(\mathfrak{V})$ and $\mathfrak{I}(G^{-1}\mathfrak{V}G)$, and thus $\mathfrak{I}(\tau) = \mathfrak{I}(\mathfrak{V}) = \mathfrak{I}(G^{-1}\mathfrak{V}G)$. This implies that \mathfrak{V} and $G^{-1}\mathfrak{V}G$ are contained in \mathfrak{R} and so $\mathfrak{V} = G^{-1}\mathfrak{V}G$. This proves our lemma.

Lemma 4. If $\alpha(\tau) > \alpha(\mathfrak{V})$, then one of the followings holds:

(1) i=6 and $C_{(S)}(\tau)/\langle \tau \rangle$ is \mathfrak{A}_{5} ,

(2) i=28, $\alpha(\mathfrak{V})=4$ and $C_{\mathfrak{G}}(\tau)/\langle \tau \rangle$ is $P\Gamma L(2, 8)$,

(3) $i=p^{2m}$ for some prime $p, \alpha(\mathfrak{V})=p^m$ and $C_{\mathfrak{G}}(\tau)/\langle \tau \rangle$ contains a regular normal subgroup. Moreover if p is odd, then there exists a unique involution in $C_{\mathfrak{G}}(\tau)/\langle \tau \rangle$ which fixes only one point on $\mathfrak{F}(\tau)$.

Proof. Since $C_{\mathfrak{G}}(\tau)/\langle \tau \rangle$ is doubly transitive on $\mathfrak{F}(\tau)$ of degree *i* and order 2(i-1)i, the results follow from Ito's theorem [7] and its proof.

Lemma 5. If $\alpha(\tau) < \alpha(\mathfrak{V})$, then $\beta = 3, 4, \text{ or } 6$.

Proof. There exist two points j and k in $\Im(\tau) - \Im(\Im)$ such that $\tau_1 = (j, k) \cdots$. Hence $\tau \tau_1 = (j, k) \cdots$ and Lemma 2 yields $\beta = 3$, 4, or 6 since \Im is doubly transitive on Ω .

3. The case n is odd

In the following if $h^*(2) > 0$, then without loss of generality we may assume that $\alpha(I) = 1$.

Lemma 6. If $h^*(2)=1$, then $\mathfrak{G}=C_{\mathfrak{G}}(I)O(\mathfrak{G})$.

Proof. Let \mathfrak{S} be a Sylow 2-subgroup of \mathfrak{S} containing I. By our assumption $\{G^{-1}IG; G \in \mathfrak{S}\} \cap \mathfrak{S} = \{I\}$. It follows from the Z^* -theorem of Gluaberman [6; p. 628] that $\langle I \rangle O(\mathfrak{S})$ is a normal subgroup of \mathfrak{S} and then Frattini argument implies that $\mathfrak{S} = C_{\mathfrak{S}}(I)O(\mathfrak{S})$. This proves our lemma.

Lemma 7. If $\alpha(\tau) = \alpha(\mathfrak{V})$ and $h^*(2)=3$, then there exists no group satisfying the condition of our theorem.

Proof. Put $\Im(I) = \{k\}$ and let \mathfrak{G}_k be the stabilizer of a point k in \mathfrak{G} . Then \mathfrak{G}_k contains $C_{\mathfrak{G}}(I)$ and $\Im(I\tau_1) = \Im(I\tau\tau_1) = \{k\}$. It follows from $h^*(2) = 3$ that $\langle I\tau_1, I\tau\tau_1, I \rangle = \langle I, \mathfrak{B} \rangle$ is normal in \mathfrak{G}_k . Now $\langle I, \mathfrak{B} \rangle$ is half transitive on $\Omega - \{k\}$. On the other hand I acts on $\mathfrak{F}(\mathfrak{B})$, and I-orbits on $\mathfrak{F}(\mathfrak{B})$ are of length 2 and \mathfrak{B} -orbits on $\Omega - \mathfrak{F}(\mathfrak{B})$ are of length 4 by our assumption. Thus we get a contradiction. The proof is complete.

Now $h^*(2)=0$ and then τ is a central involution in some Sylow 2-subgroup of \mathfrak{G} . Let \mathfrak{S} be a Sylow 2-subgroup of \mathfrak{G} containing $\langle I, \mathfrak{B} \rangle$ and contained in $C_{\mathfrak{G}}(\tau)$.

Lemma 8. If $h^*(2)=0$, then $\alpha(\tau)=\alpha(\mathfrak{V})$.

Proof. Assume by way of contradiction that $\alpha(\tau) < \alpha(\mathfrak{V})$. Then $|C_{\mathfrak{V}}(\tau)|$ =4i(i-1) and $|N_{\mathfrak{G}}(\mathfrak{V})|=4\sqrt{i}(\sqrt{i}-1)$ by Lemma 4 since $C_{\mathfrak{G}}(\tau)$ and $N_{\mathfrak{G}}(\mathfrak{V})$ is doubly transitive on $\mathfrak{F}(\tau)$ and $\mathfrak{F}(\mathfrak{V})$, respectively. Hence $N_{\mathfrak{V}}(\mathfrak{V})$ does not contain a Sylow 2-subgroup of \mathfrak{G} . We first show that (1) in Lemma 1 holds in this case. Suppose that (2) or (3) in Lemma 1 holds. Then $\mathfrak{G}_{(1,2)} = \langle I \rangle \Re$ has no element of order four and hence any 2-element with a 2-cycle must be an involution since \mathfrak{G} is doubly transitive. Then since $h^*(2)=0 \mathfrak{G}$ has no element of order four and so \mathfrak{S} is elementary abelian. Then $N_{\mathfrak{S}}(\mathfrak{V})$ contains \mathfrak{S} , a contradiction. Thus (1) in Lemma 1 must hold. Then $\mathfrak{G}_{(1,2)}$ is the symmetric group of degree four, $\beta = d = 6$ and n = i(2i-1). In particular, $O(\mathfrak{G}) = 1$. Four groups in $\mathfrak{G}_{(1,2)}$ form two conjugate classes and their representatives are \mathfrak{B} and $\langle I, \tau \rangle$. Now we regard \otimes as a transitive permutation group on the set of the unordered pairs of the points of Ω . Then $\mathfrak{G}_{[1,2]}$ is the stabilizer of the pair {1, 2}. If \mathfrak{B} is not conjugate to $\langle I, \tau \rangle$ in $\mathfrak{B}, \mathfrak{B}$ satisfies the assumption of a theorem of Witt [6; p. 150], and hence $N_{\mathfrak{G}}(\mathfrak{V})$ is transitive on the pairs which \mathfrak{V} fixes. This forces \mathfrak{V} to have no orbit of length 2 on Ω since $N_{\mathfrak{G}}(\mathfrak{V})$ fixes $\mathfrak{T}(\mathfrak{V})$ as a whole. This implies that $\alpha(\tau) = \alpha(\mathfrak{V})$, contrary to the assumption. Thus $\mathfrak{V} \sim \langle I, \tau \rangle$ in \mathfrak{G} . On the other hand since $h^*(2)=0$, any four group has an orbit of length 2 and hence is conjugate to \mathfrak{B} . Then if \mathfrak{S} is not of a maximal class, $N_{\mathfrak{G}}(\mathfrak{V})$ contains a Sylow 2-subgroup of \mathfrak{G} (See [2; p. 215]) which is a contradiction. Thus S must be of a maximal class and hence dihedral or semi-dihedral. Since $C_{\mathfrak{G}}(\tau)/\langle \tau \rangle$ has a dihedral Sylow 2-subgroup $\mathfrak{S}/\!\langle au
angle$, a result of Gorenstein-Walter [4] and Lemma 4 imply that $C_{\mathfrak{S}}(au)/\!\langle au
angle$ is 2'-closed and so is $C_{(3)}(\tau)$. By theorems of Gorenstein [3] and Lüneburg [9] we get a contradiction. The proof is complete.

Lemma 9. If $h^*(2)=0$, then n=15 and \bigotimes is \mathfrak{A}_{7} .

Proof. Since $\alpha(\tau) = \alpha(\mathfrak{V})$ by Lemma 8, $C_{\mathfrak{V}}(\tau)/\mathfrak{V}$ is a complete Frobenius group of odd degree *i* and then $\mathfrak{S}/\mathfrak{V}$ is cyclic or generalized quaternion. Assume that $[I, \mathfrak{V}] \neq 1$. It follows that $(\mathfrak{S}: C_{\mathfrak{S}}(\mathfrak{V}))=2$ and $I\mathfrak{V}$ is a unique involution in $\mathfrak{S}/\mathfrak{V}$. Now $C_{\mathfrak{S}}(\mathfrak{V})=\mathfrak{V}$ and $\mathfrak{S}=\langle I, \mathfrak{V} \rangle$ is a dihedral group of order 8. Since $\beta=d=6$ by Lemma 1 and n=i(2i-1), \mathfrak{S} contains no regular normal subgroup.

Applying theorems of Gorenstein-Walter [4] and Lüneburg [9], \mathfrak{G} is \mathfrak{A}_7 . On the other hand it is well known that \mathfrak{A}_7 has a doubly transitive permutation representation of degree 15 in which the stabilizer of two points is \mathfrak{A}_4 (See [6; p. 157]). Thus n=15 and \mathfrak{G} is \mathfrak{A}_7 . Next assume that $[I, \mathfrak{B}]=1$. Then by the same way as in the proof of Lemma 8, \mathfrak{S} is elementary abelian and hence $\mathfrak{S}=\langle I, \mathfrak{B} \rangle$. Now $C_{\mathfrak{G}}(\tau)$ is solvable and so theorems of Gorenstein [1] and Lüneburg [9] yield a contradiction. This proves our Lemma.

4. The case n is even

Lemma 10. If $\alpha(\tau) = \alpha(\mathfrak{V})$, then n=6 and \mathfrak{G} is \mathfrak{A}_6 , or n=16 and \mathfrak{G} is A(2, 4).

Proof. Assume that \mathfrak{H} is 2-closed. Then \mathfrak{H} acts on $\mathfrak{J}(\mathfrak{B})$ and since \mathfrak{H} is transitive on $\Omega - \{1\}$, we have $\Im(\mathfrak{V}) = \Omega$ which is impossible. By Lemma 3, \Im is a (TI)-group in the sense of Suzuki [11]. Since $\mathcal{D}/O(\mathfrak{D})$ is also a (TI)-group, Suzuki's result [11; p. 69] implies that $\mathcal{D}/O(\mathfrak{D})$ is PSL(2, 4) and $O(\mathfrak{D})$ is contained in the center of \mathfrak{H} . On the other hand we have $|N_{\mathfrak{H}}(\mathfrak{B})| = 12i(i-1)$ and $|C_{\mathfrak{H}}(\mathfrak{V})| = 4(i-1)$. Now $|O(\mathfrak{Y})| = i-1$ and $|\mathfrak{Y}/O(\mathfrak{Y})| = 4(\beta i+3) =$ |PSL(2, 4)| = 60. Therefore $\beta i = 12$. In our case since $C_{\text{(5)}}(\tau)/\mathfrak{B}$ is a complete Frobenius group of even degree i, i is a power of 2 and then i=2 or 4. If i=2, then n=6 and \mathfrak{B} is $\mathfrak{A}_{\mathfrak{s}}$. If i=4, then n=16. Since $\mathfrak{R}=\langle K, \mathfrak{B} \rangle$ and K is of order 3, $\alpha(\mathfrak{P}) - \alpha(\mathfrak{R})$ is divisible by 3 and $\mathfrak{P}(\mathfrak{P}) = \mathfrak{P}(\mathfrak{R})$. Applying a result of Witt [6; p. 150] to $N_{\mathfrak{G}}(\mathfrak{R})$ and $N_{\mathfrak{G}}(\langle K \rangle)$ we can get easily $\alpha(\mathfrak{R})=4$. Therefore \Re is semi-regular on $\Omega - \Im(\Re)$ and thus \Re is transitive on $\Omega - \Im(\Re)$. Since *n* is even it follows from Kantor's theorem [8] that ⁽³⁾ is isomorphic to a subgroup of A(2, 4) or A(4, 2). Assume that \mathfrak{G} is a subgroup of A(4, 2). Let \mathfrak{R} be a regular normal subgroup of A(4, 2). If $\mathfrak{G} \cap \mathfrak{N} = 1$, then \mathfrak{G} is isomorphic to a subgroup of GL(4, 2) which is impossible because GL(4, 2) contains no subgroup of index 7. Hence $\mathfrak{G} \cap \mathfrak{N} \neq 1$ and then \mathfrak{G} contains \mathfrak{N} and \mathfrak{D} is isomorphic to $\mathfrak{G}/\mathfrak{N}$. Since $|O(\mathfrak{H})| = 3$ and $O(\mathfrak{H})$ is contained in the center of \mathfrak{H} . \mathfrak{H} is GL(2, 4). Thus n=16 and \mathfrak{G} is A(2, 4). This proves our lemma.

Lemma 11. If $\alpha(\tau) > \alpha(\mathfrak{V})$ and i=6 or 28, then there exists no group satisfying the condition of our theorem.

Proof. Assume that i=6. Since $C_{\mathfrak{G}}(\tau)$ contains \mathfrak{B} , Schur's theorem [10] implies that $C_{\mathfrak{G}}(\tau) = \langle \tau \rangle \times \mathfrak{F}$ where \mathfrak{F} is \mathfrak{A}_5 by Lemma 4. It follows that $[I, \mathfrak{B}] = 1$ and d=4. Now $|C_{\mathfrak{G}}(\tau)| = 2^2 \cdot 5$ and $|\mathfrak{B}| = 2^2 \cdot 3^3 \cdot 5$ or $2^2 \cdot 3 \cdot 5 \cdot 7$. Assume that i=28. Then Lemma 4 yields $\alpha(\mathfrak{B}) = \alpha(\mathfrak{A}) = 4$ and using a result of Witt [6; p. 150], $|N_{\mathfrak{G}}(\mathfrak{A})| = |N_{\mathfrak{G}}(\mathfrak{B})| = 144$, $N_{\mathfrak{G}}(\mathfrak{A}) = \mathfrak{A} \times C_{\mathfrak{G}}(\mathfrak{A})$. It follows that $[I, \mathfrak{B}]=1$ and so d=4. Now $|C_{\mathfrak{G}}(\tau)| = 2^2 \cdot 3^3$ and $|\mathfrak{B}| = 2^2 \cdot 3^2 \cdot 5 \cdot 23$ or $2^2 \cdot 3^4 \cdot 29$. In both cases applying a theorem of Gorenstein-Watler [4], $\mathfrak{H}/O(\mathfrak{H})$

is isomorphic to a subgroup of $P\Gamma L(2, r)$ containing PSL(2, r). Clearly this is impossible. This proves our lemma.

In the following we assume that the case (3) of Lemma 4 holds.

Lemma 12. The group $\mathfrak{H}/O(\mathfrak{H})$ is PSL(2, q) for some q.

Proof. Since $C_{\mathfrak{G}}(\tau)/\langle \tau \rangle$ is a solvable doubly transitive group on $\mathfrak{F}(\tau)$ of degree 2^{2m} , it follows from a theorem of Huppert [5] that $C_{\mathfrak{G}}(\tau)/\langle \tau \rangle$ is contained in 1-dimensional semi-linear affine transformation group over the field of 2^{2m} -elements and then $C_{\mathfrak{F}}(\tau)$ has a cyclic normal 2-complement. Thus by a result of Gorenstein-Walter [4], $\mathfrak{H}/O(\mathfrak{F})$ is PSL(2, q). This proves our lemma.

Lemma 13. There exists no group with $\alpha(\tau)=2^{2m}$ and $\alpha(\mathfrak{V})=2^{m}$.

Proof. Put $\overline{\mathfrak{H}} = \mathfrak{H}/O(\mathfrak{H})$. Then $\overline{\mathfrak{H}}$ is PSL(2, q) with $q \equiv 3$ or 5 (mod. 8) by Lemma 12. Hence $C\overline{\mathfrak{H}}(\overline{\mathfrak{H}}) = \overline{\mathfrak{H}}$ and $C\overline{\mathfrak{H}}(\overline{\tau})$ has a normal 2-complement of order q+1/4 or q-1/4 according as $q \equiv 3$ or 5 (mod. 8). On the other hand $|C\mathfrak{H}(\tau)| = 4(i-1)$ and $|C\mathfrak{H}(\mathfrak{H})| = 4$ $(\sqrt{i}-1)$ since $|N\mathfrak{H}(\mathfrak{H})| = 12$ $(\sqrt{i}-1)$. Then $|O(\mathfrak{H}) \cap C\mathfrak{H}(\mathfrak{H})| = (\sqrt{i}-1)$ and hence $|O(\mathfrak{H}) \cap C\mathfrak{H}(\tau)| = x(\sqrt{i}-1)$ with some odd integer x dividing $\sqrt{i}+1$. Then the formula of Brauer-Wielandt [12] yields $|O(\mathfrak{H})| = x^3(\sqrt{i}-1)$. Since $|\mathfrak{H}| = 12(n-1) = 4(\beta-1)(\beta i+3)$, we have

$$|\overline{\mathfrak{H}}| = 4(\sqrt{i}+1)(\beta i+3)/x^3 = (q+1)q(q-1)/2$$
(4.1)

Since $C\mathfrak{F}(\tau)$ has a cyclic normal 2-complement $\langle w \rangle$ of order i-1 and $C\mathfrak{F}(\overline{\tau}) = \overline{C\mathfrak{F}(\tau)}$, we have

$$o(\overline{w}) = i - 1/x(\sqrt{i} - 1) = q \pm 1/4$$
(4.2)

Then (4.1) yields

$$2(\beta i + 3)/x^2 = q(q \mp 1) \tag{4.3}$$

In particular, x is a common divisor of $\sqrt{i}+1$ and $\beta i+3$ where $\sqrt{i}=2^m$ and $\beta=3, 4, \text{ or } 6$ by Lemma 5. Assume that $\beta=3$. Then x=1 or 3 since $\beta i+3=3\cdot 2^{2m}+3\equiv 6 \pmod{2^m+1}$. Now it is easy to see that (4.2) and (4.3) are incompatible. In the case where $\beta=4$ or 6, the proofs are similar.

The proof of our theorem is complete.

OSAKA UNIVERSITY

318

References

- [1] D. Gorenstein: Finite groups in which Sylow 2-subgroups are abelian and centralizers of involutions are solvable, Canad. J. Math. 17 (1965), 860-896.
- [2] D. Gorenstein: Finite Groups, Harper and Row, New York, 1967.
- [3] D. Gorenstein: Finite groups the centralizers of whose involutions have normal 2-complements, Canad. J. Math. 21 (1969), 335-357.
- [4] D. Gorenstein and J.H. Walter: The characterization of finite groups with dihedral Sylow 2-subgroups, I, II, III, J. Algebra 2 (1965), 85-151, 218-270, 334-393.
- [5] B. Huppert: Zweifach transitive auflösbare Permutationsgruppen, Math. Z. 68 (1957), 126-150.
- [6] B. Huppert: Endliche Gruppen I, Springer, Berlin, 1967.
- [7] N. Ito: On doubly transitive groups of degree n and order 2(n-1)n, Nagoya Math. J. 27 (1966), 409-417.
- [8] W.M. Kantor: On 2-transitive groups in which the stabilizer of two points fixes additional points, (to appear).
- [9] H. Lüneburg: Charakterisierungen der endlichen desarguesschen projective Ebenen, Math. Z. 85 (1964), 419–450.
- [10] I. Schur: Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 132 (1907), 85–137.
- [11] M. Suzuki: Finite groups of even order in which Sylow 2-groups are independent, Ann. of Math. 80 (1964), 58-77.
- [12] H. Wielandt: Beziehungen zwischen den Fixpunktzahlen von Automorphismengruppen einer endlichen Gruppe, Math. Z. 73 (1960), 146–158.