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Gabriel and Oberst have defined a C3-spectral category in [6] and we shall
consider spectral categories which are not necessarily C3 in this note. We call
a category "spectral", if the category is abelian and every morphism splits. We
shall define a regular category and show that the concept of regularity and
spectrality are equivalent if a category is amenable, (see the below for definitions
of regular category and amenable category.) and give some characterizations of
a special regular category. Finally as an application of the above argument, we
shall show that 2I/3ί(2I) is a completely reducible abelian category if 21 is artinian
and noetherian abelian category, where $(21) is the radical of 21 (see the below
for definitions of radical of category and 21/^(21).). We shall give further
applications in the forthcoming paper jointed with M. Harada. The author
would like to express his thank to Professor M. Harada for his suggestion of
the problem. We shall make use of the notations and definitions in [8].

Let 21 be an additive category and 2IW the totality of morphisms in 21.
For αe2ί m , a%m means the class of all morphisms of aβ, where /3e2Im and
aβ is defined. Furthermore, we can define a right (resp. left) ideal E in 21 which
are analogous to the case of rings. Let K be a sub-class of 2IW which satisfies
the following two conditions;
1 For every a, /3e(£, α i / β e S , whenever a±β is defined.
2 /3tf<E© (resp. α/?GK) for any α e 2 I w , /?e& such that βa (resp. aβ) is
defined.
We call (£ a right (resp. left) ideal of 21. We denote the quotient category of
21 with respect to (£ by 21/&; namely the objects of 2I/S are the same as the
objects of 21, and for A, B in 21/©, [A, B]w& is equal to [A, B]j[A, B]Π&.
We call a two sided ideal 31 of 21 "radical" if 31Π [A, A] is equal to the Jacobson
radical of [A, A] for every object A in 21.

Let 21 be an additive category with finite coproduct. We call 21 "regu-
lar," if the ring [A, A] is regular in the sense of Von Neumann for every object
A in 21 (cf. [9]), and we call 21 "amenable," if every idempotent morphism in
[A, A] has the kernel for every AtE% ([4]).
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Proposition 1. Let SI be an additive category with finite coproduct. Then
the following statements are equivalent

1) 31 is regular.
2) For every morphism a in SI, there is a morphism x such that a=axa.

3) There are idempotent morphίsms e, e' suet that SI w α=SI w e, αSI m =^'SI w .

Proof. I)o2) Let a be in [A, B]y then we put a'= (° ° ) : A®B->A®B.

Then there exists x=(Xn XA; A&B-+A&B such that a!=a!xar. Therefore

a=ax12a. 21 22

2)t=>3). The proof is completely similar to the case of ring. Let a be in
[A, B] then there exists x; B^>A such that a—axa. Let we put xa=e then
e is idempotent, a=xe and e=xa=xaxa. Therefore SIwα=3Ime. Similarly,
we have a%m=e'y\m.

3)ol ) Let α be in [A, A], then we can denote a—xe, e=ya for some
xy jye3Iw. Therefore, tfyα=αe=x£2=Λ:£=α.

Theorem 2. Le£ SI be an amenable category. Then SI is regular if and

only if SI is spectral.

Proof. We assume that SI is regular. Then we shall show first that 31

is abelian. Let a: A->B be any morphism in SI.
i) We shall show that a has the kernel and the cokernel. From the as-

sumption, we can denote that a=xe, e=ya for some x, y, e^SIw, where e is
an idempotent. From the assumption (cf. [8], p. 31), every idempotent e in
[Ay A] has its image and we denote it by eA. Let ίx_e\ (\ — e)A^>A be the
inclusion. Then we shall show that i1_e is the kernel of a. We have ai1_e=
xei1_e=0. Let β be any morphism such that α/3=0, then β=(iepeJrh-ePι-e)β
=ii-ePi-eβ> since ieρeβ=eβ=yaβ=0y where pe and px_e are the projections
of A to eA and (l — e)A, respectively. Therefore (\ — e)A = Kcr a. Similarly,
we have (l — e')B=coker ay where a=e'x'y e'=ay'.

ii) Next, we shall show that 31 is normal and conormal. We note first
that SI is balanced. Let /: A->B be monomorphic and epimorphic. From
the assumption we have/=X£ for some #e3I m . Then e is monomorphic since
/is monomorphic. Hence Ker/=(1 — e)A=0 from i), and e=lA. Therefore,
there existsg^$lm such that gf=lA since SIm/=SImβ=3Iwl^. From the duality
we have fg/=lB for some £'eSIm. Hence / is isomorphic. Let a be mono-
morphic, then coker a=(l — e')By ker(l — e')=e'B from i), where a=e'x', e'=ay'
for some x' / e S I ^ and er is idempotent. We put β=ρe/χ\ then ie/β=ie/pe/χ'
=e'x'=a .We shall show that β is isomorphic. β is monomorphic since a
is monomorphic. We have pe'=e' x'y\ since ie/per=e/=ay'=e'x'y/=ie'pe'x'y/

and ief is monomorphic. Let z be any morphism such that zβ=0, then 0=zβ
=zpe'x'=zpe'X

fy'=zpe'. Hence # = 0 since pj is epimorphic, which implies
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that β is epimorphic, Therefore, β is isomorphic from the above argument.
Hence SI is normal, and we can show that 21 is conormal from the duality.
Let a be in [A, B], then A=eA 0(1—e)A=eA 0ker α, B=e'B®(l—e')B =
im α φ ( l - ^ ) ΰ from i). Therefore 21 is spectral. Conversely, We assume that
21 is spectral. For any a: A->B, we have A=ker a®A\ J5=im a®B, and
a\A'=x: A'-*ima is isomorphic. We put e=iA/pA'y then e is idempotent
and a=xe. Furthermore, e=iA/χ~1a. Hence ^ima=%me. Similarly we have

-V3I

REMARK 1. Let 21 be a regular category, then we can imbed 21 into
a spectral category 21*. Let 2ί* be the category whose objects are pairs (A, e)
where ^JGΞ2I and e is an idempotent in [A, A]. We define the morphisms of
(A, e) to (B,f) as follows: first we consider the subset C of t in [A, B] such that
te=ft, and define a congruent relation among them; t = f if and only if ft=ff.
Then we put [(̂ 4, e), (JB,/)]=the congruent classes t of C. Next we shall show
that 21* is a regular category. For any a: (A, e)->(A, e), there exists a morphism
x such that a=axa from the assumption. We put xf=exe> then ex'=x'e, and
axΌc=ay which implies that 21* is regular. 21 is imbeded into 21* by a natural
imbedding functor T such that T(A)=(A, 1A).

REMARK 2. A special case of Theorem 2 was obtained by Harada (un-
published.). We shall give some interesting applications to a case of category of
injective modules in the forthcoming paper.

We shall give some characterizations of special regular categories.

Proposition 3. Let 21 be an abeltan category, then we consider the following
conditions

1). 21 is regular.
2). For any epimorphism a: A—>By we have [B, B]a^a[A, A]
3). The projection functor T: 2I-^2I/(£ is epi-preserve for every ideal K.

then we have 1) <̂  2) and 1) o 3). Furthermore we have 3) o 1) if 21 is a locally
small C3-category.

Proof. 1)^2). If 21 is regular, then every object in 21 is projective,
and hence [B, ΰ]αSα[i4, A] for an epimorphism a; A—>B. Conversely, let

—>-0

y\-
A

be a diagram with x epimorphic. We define an epimorphism xf: AQ)BφC->

A®C by setting x'=(l ° °). Put y'=(° °)e[A®C, A@C]. Then from
VO x 0' \y 0/
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the assumption, there exists z in [A®B®Cy AφBφ C] such that y'x'=x'z.

Hence y—zx2ly where z=(ziJ). Which means that every object A is projective

in SI, and hence, SI is regular.

1)<=>3). It is clear since every morphism splits

Next we assume that SI is a locally small C3-category.
3) ̂ > 1). Let A be a subobject of B. From the assumption on SI, there exists

a complement Ac of A and A@AC is essential in B. Let, a: B->Bj{A®Ac)=C
be the natural epimorphism. Put (E = SIwαSIw, then T(a) = 0 and hence
[C, C]eSIwαSIw. Therefore, there exist x: C->By y:C->C such that \c=yaxy

hence B= im x(&kerya. Since ktr yaΏ.A(&Ac

y and 4̂ is essential in By

im#=0, and hence C—0y which implies that SI is regular.

Proposition 4. Let % be a Cz-category with a generator Uy then SI is

regular if and only if for any injective subobjects M{ i=l, 2 in M, Mx Π M29 is also

injectίve.

Proof. Only if part is clear. Let /?=[£/, U], and SJΪ^ be the category of
right i?-modules. Let S=[U, ]: S I - ^ ^ and T= U®: TO^->31 be the usual

ajoint functors. Then for any object A in SI, S(A)=S(A) where A and S(A)
is an injective envelope of A and 5(^4), respectively, by [10]. Furthermore we

/ \
can express S(A)=N1ΠN2 for some N{ such that Ni^S(A) (cf. [3] p. 63).

Therefore ^[=ΓS(^)=Γ(iV lniV2)=71(JV1)n T(N2)y since T is kernel pre-
serving (cf. [8] p. 55 6-5), and Γ(iVf.)«i4. Hence 31 is regular.

Harada has defined a semi-simple category in [7]. We shall give the
following proposition related to a semi-simple category

Proposition 5. Let SI be a small abelian category. Then SI is semi-simple

artinian if and only if additive functor category (31, Ab) is completely reducible,

where Ab is the category of all abelian groups.

Proof. From the assumption, SI is semi-simple artinian if and only if SI

is artinian completely reducible ([7], 1.2). Let SI be semi-simple artinian, then

we shall show that if A is irreducible in 31, then [A, ] is irreducible in (31, Ab).

Let any Fg [A, ], then F(A)^[Ay A], which implies F(A)=[A, A]y or F(A)=0,

since F(A) is a left ideal of [A, A] which is a division ring. If F(A)=[Ay A]y

n

then for any β £ 51, we can express B=φBit where every B{ is irreducible

in 31 from the assumption, we have F(B) = θ^-β,) and [A, B] = β[A, B,]. If

A~Bit then F(A)~F(B,), and if A*Bp then F{Bj)=[A, β y ] = 0 . Hence

F(B)=k>F(B)=®[A, B,]=[A, B] which is a contradiction.

Hence F(A)=0. We have easily that F(B)=0 for any jBeSl, which implies
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F=0. Furthermore, for any F G (SI, Ab)y we have an exact sequence,
0 [A, ]-+F->0, and hence, (SI, Ah) is completely reducible. Conversely we

assume that (SI, Ab) is completely reducible. Then for any ^4eSI, we have,
[Ay ] = 0 ί \ , where every F{ is irreducible in (SI, Ab). Since F£ is small pro-

jective in (SI, Ab), we can find F~[Aiy ] for some ^ < Ξ S I ([4], p. 229), and we
shall show that A{ is irreducible in 31. For any B^A{, we have the natural
transformation / = [i, ]: [Aiy ]^>[By ], then we have kerf=[Aiy ] or ker/—0 in
(SI, Ab)y since Fi=[Ai, ] is irreducible in (SI, Ab), where / is the inclusion. If
ker/=0, then fAi/B=[h Ai\E\ \Ay AJB]->[By AJB] is monomorphic and

i g
fA./B(g)=B >A{ >AJB=0 for the natural epimorphism^ and hence£=0,

which is a contradiction. Hence ker f=[Ai9 ] andfA.(lA.)=B >A{—
%-> A {

= 0 , which implies J5=0, and A£ is irreducible in SI. Also since [A, A]
n

= ξB[Ai9A], we can express [A, A] = (B[Aiy A] for some integer n, which

implies [A, ] = ($[Aiy ] = [S)Ay ] from the naturality of the functor. Hence
1 = 1 ί = l

»
A=@)Aiy and 31 is semi-simple artinian.

ί = l

Proposition 6. Let SI be α small artinian abelίan category. Then, (31, Ab)
is completely reducible if and only if (SI, Ab) is regular.

Proof. Only if part is clear. We assume that (SI, Ab) is regular, then
from the assumption and ([4], p. 119), for any sub-functor F in [Ay ], Fis a direct
summand of [Ay ], and we can find F=[A'y ] for some direct summand Af of
A. Hence [Ay ] is artinian in (31, Ab), and so, [A, ] is completel reducible
which implies that (31, Ab) is completely reducible since {[Ay ], ^4eSI}, is a
family of generators for (SI, Ab).

Finally, we shall give following theorem as an application of Theorem 2,
which is due to Harada (unpublished).

Theorem 7. Let 31 be an artinian and noethrtan abelian category. Then
31/3(31) is a completely reducible abelian category, where 3(31) is the radical of 31.

Proof. From the assumption, every object M is a coproduct of finite
n

directly indecomposable sub-objects of My namely M=φMi. It is well known
ί=»l

in the case of modules that R= [My M] is a semi-primary ring such that R contains
the nilpotent radical N and R/N is an artinian semi-simple ring, therefore,
RjN is a regular ring. This fact is also valid in the case of abelian category,
(cf. [5]). Hence 31/3(31) is a regular category. Let a be in R and by a we denote
the class of a in RjN. If a is idempotent, then there exists an idempotent
e in R such that e=a ([1] p. 545, 77. 4). Since 1 = (1—e)+e on Ry a has the
kernel ζΓ#: (l-e)A->A. Hence SI/3(SI) is amenable, therefore SI/3(31) is
spectral from Theorem 2 and is completely reducible from artinian and noetherian.
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REMARK 3. In the above theorem, if SI is only noetherian abelian, then
this theorem is not valid. For example, Let 31 be the category of all finitely
generated abelian groups, which is noetherian abelian and is not artinian. We
shall show that 9l/$(51) is not abelian. Let a be any map of Z to Z\(P), where Z
is the ring of rational integers, (P) is the abelian group generated by a integer P.

Then αe3(H), because [ZφZ/(P), Z0Z/(P)]«( ξ °

and RZΘZ/CPA Λ ) is nilpotent left ideal, hence ( Λ W 3f(/2z©z/CP)), which
\a 0/ \a 0/

implies αe3(51) since %(RZΘZ/CP,) Π [Z, Z/(P)]=3ί(«) Π [Z, Z/(P)]. Let/: Z ^ Z
is any non zero map of Z to Z, then we shall show that / is monomorphic and
epimorphic in 3l/ί3>(Sl). g: G^Z is any map such that fg=0, then since we
can express G=GxφG2 and g=(gly g2) G1φG2-^Zy where Gx and G2 are the
torsion sub-group and a free sub-group of G, respectively, we can show easily
that g1=g2 =Qi hence/ is monomorphic. Next let g': Z->G' is any map such that

£ / /=0, then as above we can express G'=GΊQ)Gίy andg '^ f^ 1 ) . We have

gίe3ί(3ί) from the above argument, and we can show easily that £2=0, which
also implies that/is an epimorphism in Sl/3ί(Sl). If Sl/3ί(§ί) is abelian, then/
is isomorphic in 51/3(51), and so there exists g" such that g"f=l (mod $([Z, Z])).
Since 3>([Z, Z])=0,/=ibl> which is a contradiction.

REMARK 4. We shall generalize this argument in the forthcoming paper.
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