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In this note we shall solve an analyticity problem and improve an integration
theorem obtained by the second named author [1].

1. Introduction

We shall give a proof to the following

Lemma. Let f(x) be a real valued C°°-function on the interval (0, 1).
Suppose that the radius of convergence of the power series

is greater than a positive constant r for every x0 in (0, 1). Then f(x) is real analytic
on the interval (0, 1).

Applying this lemma we can prove the following

Theorem. Let M be a C°° -manifold and L be a Lie subalgebra of the Lie
algebra of all C°° -vector fields on M. For two elements u and v of Ly put

where (ad v)ku=\v, (ad v)k~lu\, k=l, 2, 3, . Suppose that for any pair of u
and v in L and for any compact subset K in M there exists a positive number
c(u, v\K) such that the radius of convergence of gt(u, v) at x is greater than
c(uy v\ K ) ί f x is in K. Then through every point x0 on M there passes a maximal
integral manifold N(x0) of L. Any integral manifold of L containing XQ is an open
submanίfold of N(x0).

This theorem was proved by Matsuda [1] under the additional condition
that gt(u, v) is continuously differentiable with respect to (x, t) term by term.
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2. Proof of Lemma

The first step is to prove that the set of all points at which f(x) is real analytic
is open and dense in (0, 1). Put

.
k\

By our assumption M(x) is finite at every x in (0, 1). Take an arbitrary closed
interval 70 in (0, 1). If we put

then

/o = U Ao
«=ι

Since An is closed for every n, by Baire's theorem there exist an integer M and an
open subinterval ^ of /0 such that AM contains IΓ For two points x and XQ in
/u by the mean value theorem we have

where x0^y^x or x^y^x0. If \x— XQ\ =θr and 0<5<1, then

<,
n\

Hence f(x) is real analytic at x0 and on 7lβ

The second step is to prove that the set B of all points at which f{x) is not
real analytic is empty. To the contrary suppose that B is not empty. Put

Bn= (x<=B\ M

Then

B=\jBn.

Since B and 7?w(l5jfl<°°) are closed, by Baire-HausdorfFs theorem there exist
an integer N and an open interval / such that BN contains / Π B which is not
empty. Let us define N(x) by
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ft!

and prove that

on I, if |/K-f.
«J

If Λ; is in 5, then

Suppose that x is not in 5. We can take a neighbourhood (a, b) of # in / such
that f(x) is real analytic on (a, b) and a or δ is a point of 5. Fix a point #0 in
(0, b). By the identity

we have

Since

we obtain

jlnl

+w! V 3

(;+«)! 3

Hence

Suppose that α is a point of B. Since /cn)(#) is continuous, we have

and

In the same way as above we obtain
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If a is not a point of B and b is a point of B, we can also get this inequality.
Since N(x) is bounded on /,/(#) is real analytic on /. This is a contradiction,

because we assumed that B Π / is not empty.

3. Proof of Theorem

Take an element v of L satisfying v(x0) Φ 0 and any element u of L. Let us
show that there exist a neighbourhood U and a positive number c such that we
have

Φt(v)*u = gt(u, v)

for (xy f) in C 7 x ( — c, c). Here φt(
v) is a local one-parameter group of dif-

feomorphisms generated by v.
This identity is sufficient for our improvement of the theorem, because as

shown in [1] the proof of our theorem is reducible to this identity.
Take a cubic neighbourhood

F= {(«•,-,«"); \x'-x'0\<2c}
_ r\

of x0 such that c(u, v\ V)^c. Here we can assume that v= - in V. Then we
dx1

have

(zdv)*u = ̂ - , fc=l, 2, 3,-V ' Q(x1)*'

and

φt(v)*u(x) = u(x—t),

where

x—t = (xl—t, x2, , xn).

Hence if we put

U= {(Λ1,-,^); |Λ*-Λ?

then by our lemma we obtain

for (ΛJ, *) in C7χ(—c, c).
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