THE STRUCTURE OF THE COBORDISM GROUPS B(n,k) OF BUNDLES OVER MANIFOLDS WITH INVOLUTION

Fuichi UCHIDA

(Received December 1, 1969)

Introduction

In the previous paper [4] we have considered the cobordism groups of generic immersions and introduced the cobordism groups $\boldsymbol{B}(n, k)$ of bundles over manifolds with involution as follows. The basic object is a triple (W, T, ξ) where T is a fixed point free differentiable involution on a compact differentiable manifold W and ξ is a k-plane bundle over W. If M_{1} and M_{2} are closed n-manifolds then $\left(M_{1}, T_{1}, \xi_{1}\right)$ is cobordant to $\left(M_{2}, T_{2}, \xi_{2}\right)$ if and only if there exists a triple (W, T, ξ) for which $\partial(W, T, \xi)=\left(M_{1}, T_{1}, \xi_{1}\right)+\left(M_{2}, T_{2}, \xi_{2}\right)$. Then this is an equivalence relation and the set of all cobordism classes $\boldsymbol{B}(n, k)$ becomes an abelian group by disjoint union.

These groups $\boldsymbol{B}(n, k)$ play an important role in the study of the cobordism groups of generic immersions. And there is an exact sequence [4]:

$$
\cdots \xrightarrow{\psi_{*}} \boldsymbol{B}(n, k) \xrightarrow{\rho_{*}} \Re_{n}(B O(k) \times B O(k)) \xrightarrow{\varphi_{*}} \boldsymbol{B}(n, k) \xrightarrow{\psi_{*}} \boldsymbol{B}(n-1, k) \xrightarrow{\rho_{*}} \cdots
$$

where the homomorphism ψ_{*} is a modified Smith homomorphism.
The object of this paper is to determine the structure of these groups. Let $\left\{x_{\omega}\right\}$ be the basis of the free \Re_{*}-module $\Re_{*}(B O(k))$, then $\Pi_{*}(B O(k) \times B O(k))$ $=A^{(k)} \oplus R^{(k)} \oplus S^{(k)}$ where $A^{(k)}, R^{(k)}$ and $S^{(k)}$ are the free \Re_{*}-modules with basis $\left\{x_{\omega} \times x_{\omega}\right\},\left\{x_{\omega} \times x_{\omega} \mid \omega<\omega^{\prime}\right\}$ and $\left\{x_{\omega} \times x_{\omega}{ }^{\prime}+x_{\omega}{ }^{\prime} \times x_{\omega} \mid \omega \neq \omega^{\prime}\right\}$ respectively. Let $\boldsymbol{B}^{(k)}=\sum_{n} \boldsymbol{B}(n, k)$ and $C^{(k)}=\psi_{*}\left(\boldsymbol{B}^{(k)}\right)$. Then we will prove $\boldsymbol{B}^{(k)} \cong C^{(k)} \oplus S^{(k)}$ and $C^{(k)} \simeq A^{(k)} \otimes Z[t]$.

Next we consider the objects (W, T, ξ, \tilde{T}) where ξ is a k-plane bundle over a compact differentiable manifold $W, T: W \rightarrow W$ is a fixed point free differentiable involution and $\widetilde{T}: \xi \rightarrow \xi$ is a bundle map covering T such that $\widetilde{T}^{2}=$ identity, then the cobordism group $\tilde{\boldsymbol{B}}(n, k)$ analogous to $\boldsymbol{B}(n, k)$ is obtained. And there is a short exact sequence:

$$
0 \rightarrow \Re_{n}(B O(k)) \xrightarrow{\varphi_{*}} \tilde{\boldsymbol{B}}(n, k) \xrightarrow{\psi_{*}} \tilde{\boldsymbol{B}}(n-1, k) \rightarrow 0 .
$$

Now let $\sigma: \tilde{\boldsymbol{B}}(n, k) \rightarrow \boldsymbol{B}(n, k)$ be the canonical forgetting homomorphism and $d: B O(k) \rightarrow B O(k) \times B O(K)$ be the diagonal map, then the following diagram is commutative:

Clearly $\sigma(\tilde{\boldsymbol{B}}(n, k))$ is contained in $\psi_{*}(\boldsymbol{B}(n+1, k))$ and in fact we will prove $\sigma(\tilde{\boldsymbol{B}}(n, k))=\psi_{*}(\boldsymbol{B}(n+1, k))$.

In the last section we will determine the rank of the oriented cobordism groups $\boldsymbol{B}^{ \pm}(n, k)$ which are also defined in the previous paper [4].

1. The structure of $B(n, k)$

Let $\pi(n, k)$ be the set of partitions of n into integers each of which is $\leqq k$. Let $\pi^{(k)}$ be the disjoint union of $\pi(n, k)$ for all $n \geqq 0$. Denote $n(\omega)=n$ for $\omega \in \pi^{(k)}$ if $\omega \in \pi(n, k)$. Throughout this paper, suppose any fixed order is given in $\pi^{(k)}$.

One may choose $\left\{x_{\omega} \mid \omega \in \pi^{(k)}, x_{\omega} \in \mathcal{I}_{n(\omega)}(B O(k))\right\}$ as the basis of the free \Re_{*}-module $\Re_{*}(B O(k))$ such that $e\left(x_{\omega}\right)$ is the dual of $W_{i_{1}} \cdots W_{i_{r}}$ if $\omega=\left(i_{1}, \cdots, i_{r}\right)$ where $e: \mathscr{I}_{*}() \rightarrow H_{*}\left(, Z_{2}\right)$ is the evaluation homomorphism and W_{i} is the i-th universal Stiefel-Whitney class. Suppose (M_{ω}, ξ_{ω}) represents the class x_{ω}, where ξ_{ω} is a k-plane bundle over the closed $n(\omega)$-dimensional differentiable manifold M_{ω}. Then $\left\{x_{\omega} \times x_{\omega}{ }^{\prime} \mid \omega, \omega^{\prime} \in \pi^{(k)}\right\}$ becomes the basis of the free $\overbrace{*^{-}}$ module $\mathscr{I}_{*}(B O(k) \times B O(k))$, where $x_{\omega} \times x_{\omega^{\prime}}$ is represented by $\left(M_{\omega} \times M_{\omega^{\prime}}, \xi_{\omega} \times 0\right.$, $0 \times \xi_{\omega^{\prime}}$).

Let $A^{(k)}=\sum_{n} A_{n}^{(k)}, R^{(k)}=\sum_{n} R_{n}^{(k)}$ and $S^{(k)}=\sum_{n} S_{n}^{(k)}$ be the free $\overbrace{*}$-modules with basis $\left\{x_{\omega} \times x_{\omega} \mid \omega \in \pi^{(k)}\right\},\left\{x_{\omega} \times x_{\omega^{\prime}} \mid \omega, \omega^{\prime} \in \pi^{(k)}, \omega<\omega^{\prime}\right\}$ and $\left\{x_{\omega} \times x_{\omega^{\prime}}+x_{\omega^{\prime}} \times x_{\omega} \mid\right.$ $\left.\omega, \omega^{\prime} \in \pi^{(k)}, \omega \neq \omega^{\prime}\right\}$ respectively, where $A_{n}^{(k)}, R_{n}^{(k)}$ and $S_{n}^{(k)}$ are the factors of degree n. Then

$$
\begin{equation*}
\Re_{*}(B O(k) \times B O(k))=A^{(k)} \oplus R^{(k)} \oplus S^{(k)} \quad \text { (direct sum). } \tag{1.1}
\end{equation*}
$$

Lemma 1.2. $\rho_{*} \varphi_{*} \mid R^{(k)}: R^{(k)} \rightarrow S^{(k)}$ is an isomorphism of \Re_{*}-modules.
Proof. $\quad \rho_{*} \varphi_{*}\left(x_{\omega} \times x_{\omega}{ }^{\prime}\right)=x_{\omega} \times x_{\omega}{ }^{\prime}+x_{\omega}{ }^{\prime} \times x_{\omega}$, since $\rho_{*} \varphi_{*}=1+\tau_{*}$, where τ_{*} is induced from the map $\tau: B O(k) \times B O(k) \rightarrow B O(k) \times B O(k)$ switching factors.
q.e.d.

Lemma 1.3. For any $\omega \in \pi^{(k)}$ and any $l=0,1,2, \cdots$, there exists an element $y_{\omega}^{l} \in \boldsymbol{B}(2 n(\omega)+l, k)$ such that $\psi_{*}\left(y_{\omega}^{l}\right)=y_{\omega}^{l-1}$ and $y_{\omega}^{0}=\varphi_{*}\left(x_{\omega} \times x_{\omega}\right)$.

Proof. Let y_{ω}^{l} be the class of ($S^{l} \times M_{\omega} \times M_{\omega}, A \times T, 0 \times \xi_{\omega} \times 0$), where
$A: S^{l} \rightarrow S^{l}$ is the antipodal map on the sphere, $\left(M_{\omega}, \xi_{\omega}\right)$ represents x_{ω} and T is the map switching factors on $M_{\omega} \times M_{\omega}$. Then this is the desired element.
q.e.d.

Let $C^{(k, l)}=\sum_{n} C_{n}^{(k, l)}, C^{(k)}=\sum_{n} C_{n}^{(k)}$ and $\bar{C}^{(k)}=\sum_{n} \bar{C}_{n}^{(k)}$ be the \mathscr{I}_{*}-submodules of $\boldsymbol{B}^{(k)}=\sum_{n} \boldsymbol{B}(n, k)$ generated by $\left\{y_{\omega}^{l} \mid \omega \in \pi^{(k)}\right\},\left\{y_{\omega}^{l} \mid \omega \in \pi^{(k)}, l \geqq 0\right\}$ and $\left\{y_{\omega}^{l} \mid\right.$ $\left.\omega \in \pi^{(k)}, l>0\right\}$ respectively, where $C_{n}^{(k, l)}, C_{n}^{(k)}$ and $\bar{C}_{n}^{(k)}$ are the factors of degree n. From Lemma 1.3, if we define $\varphi_{*}^{(2)}\left(x_{\omega} \times x_{\omega}\right)=y_{\omega}^{l}$, then we obtain the following result.

Lemma 1.4. There exist \Re_{*}-module homomorphisms $\varphi_{*}^{(l)}: A^{(k)} \rightarrow C^{(k, l)}$ of degree l for any $l \geqq 0$ such that $\varphi_{*}^{(0)}=\varphi_{*}$ and $\varphi_{*}^{(l)}$ are surjective for any $l \geq 0$, and the following diagram is commutative:

Lemma 1.5. For any integer $n \geqq 0$, the following statements are true:
$\left(\mathrm{a}_{n}\right)$ the homomorphism $\varphi_{*}: A_{n}^{(k)} \rightarrow C_{n}^{(k, 0)}$ is an isomorphism,
($\left.\mathrm{b}_{n}\right) C_{n}^{(k)}=\sum_{l \geq 0} C_{n}^{(k, l)}$ (direct sum) and the homomorphism $\psi_{*}: \bar{C}_{n+1}^{(k)} \rightarrow C_{n}^{(k)}$ is an isomorphism,
$\left(\mathrm{c}_{n}\right) \quad \boldsymbol{B}(n, k)=\varphi_{*}\left(A_{n}^{(k)}\right) \oplus \varphi_{*}\left(R_{n}^{(k)}\right) \oplus \bar{C}_{n}^{(k)}$.
This lemma will be proved in the next section. As a corollary of this lemma we obtain the following results.

Theorem 1.6. $\quad \boldsymbol{B}^{(k)}=\sum_{n} \boldsymbol{B}(n, k)$ is the direct sum $C^{(k)} \oplus \varphi_{*}\left(R^{(k)}\right)$ and $C^{(k)}$ $=\psi_{*}\left(B^{(k)}\right)$ where $C^{(k)}$ is the free \bigcap_{*}-module with basis $\left\{y_{\omega}^{l} \mid \omega \in \pi^{(k)}, l \geqq 0\right\}$ and the degree of y_{ω}^{l} is $2 n(\omega)+l$. In particular $\boldsymbol{B}^{(k)}$ is a free \mathscr{I}_{*}-module.

Corollary 1.7. $\quad \boldsymbol{B}^{(k)} \simeq\left(A^{(k)} \otimes Z[t]\right) \oplus S^{(k)}$ as \mathscr{N}_{*}-modules where $Z[t]$ is the polynomial ring with one generator t of degree 1 .

2. Proof of Lemma $\mathbf{1 . 5}$

Consider the following exact sequence:

$$
\boldsymbol{B}(0, k) \xrightarrow{\rho_{*}} \Re_{0}(B O(k) \times B O(k)) \xrightarrow{\varphi_{*}} \boldsymbol{B}(0, k) \rightarrow 0 .
$$

Then φ_{*} is isomorphic since $\mathscr{\Omega}_{0}(B O(k) \times B O(k))=A_{0}^{(k)} \cong Z_{2}$. Therefore $\left(a_{0}\right)$ and $\left(c_{0}\right)$ are true. In general we will prove the statements by induction on n.
(i) Suppose " $\left(a_{r}\right)$ is true for $r \leqq n$ ". Then the homomorphisms

$$
\varphi_{*}^{(\lambda)}: A_{r}^{(k)} \rightarrow C_{r+l}^{(k, l)} \text { and }\left(\psi_{*}\right)^{l}: C_{r+l}^{(k, l)} \rightarrow C_{r}^{(k, 0)}
$$

are isomorphic for $r \leqq n$ and $l \geqq 0$ by Lemma 1.4. Suppose

$$
x^{(0)}+x^{(1)}+\cdots+x^{\left(l_{0}\right)}=0
$$

where $x^{(l)} \in C_{n}^{(k, l)}$, then

$$
\left(\psi_{*}\right)^{l_{0}}\left(x^{\left(l_{0}\right)}\right)=\left(\psi_{*}\right)^{l_{0}}\left(x^{(0)}+x^{(1)}+\cdots+x^{\left(l_{0}\right)}\right)=0 \quad \text { thus } \quad x^{\left(l_{0}\right)}=0 .
$$

Therefore $x^{(l)}=0$ for all $0 \leqq l \leqq l_{0}$ and $C_{n}^{(k)}$ is the direct sum of $C_{n}^{(k, l)}, l \geqq 0$. On the other hand, the homomorphisms

$$
\psi_{*}: C_{n+1}^{(k, l+1)} \rightarrow C_{n}^{(k, l)}
$$

are isomorphic for $l \geqq 0$. Therefore the homomorphism

$$
\psi_{*}: \bar{C}_{n+1}^{(k)} \rightarrow C_{n}^{(k)}
$$

is isomorphic. Consequently " $\left(a_{r}\right)$ is true for $r \leqq n$ " implies " $\left(b_{n}\right)$ is true".
(ii) Suppose " $\left(b_{n}\right)$ and $\left(c_{n}\right)$ are true." Then

$$
\boldsymbol{B}(n, k)=C_{n}^{(k)} \oplus \varphi_{*}\left(R_{n}^{(k)}\right)
$$

and the homomorphisms

$$
\psi_{*}: \bar{C}_{n+1}^{(k)} \rightarrow C_{n}^{(k)} \quad \text { and } \quad \rho_{*}: \varphi_{*}\left(R_{n}^{(k)}\right) \rightarrow S_{n}^{(k)}
$$

are isomorphic. Thus $C_{n}^{(k)} \subset \psi_{*}(\boldsymbol{B}(n+1, k))$ and $\psi_{*}(\boldsymbol{B}(n+1, k)) \cap \varphi_{*}\left(R_{n}^{(k)}\right)=0$. Therefore $C_{n}^{(k)}=\psi_{*}(\boldsymbol{B}(n+1, k))$. Then the following is an exact sequence of Z_{2}-modules:

$$
0 \rightarrow\left(\text { kernel of } \psi_{*}\right) \rightarrow \boldsymbol{B}(n+1, k) \xrightarrow{\psi_{*}} C_{n}^{(k)} \rightarrow 0 .
$$

Therefore

$$
\begin{aligned}
\boldsymbol{B}(n+1, k) & =\bar{C}_{n+1}^{(k)} \oplus\left(\text { kernel of } \psi_{*}\right) \\
& =\bar{C}_{n+1}^{(k)} \oplus \varphi_{*}\left(\Im_{n+1}(B O(k) \times B O(k))\right) \\
& =\bar{C}_{n+1}^{k+} \oplus \varphi_{*}\left(A_{n+1}^{(k)} \oplus R_{n+1}^{(k)}\right),
\end{aligned}
$$

since $\varphi_{*}\left(S_{n+1}^{(k)}\right)=0$. Suppose $\varphi_{*}(x+y)=0$ for $x \in A_{n+1}^{(k)}$ and $y \in R_{n+1}^{(k)}$, then $\rho_{*} \varphi_{*}(y)=\rho_{*} \varphi_{*}(x+y)=0$ since $\rho_{*} \varphi_{*}\left(A_{n+1}^{(k)}\right)=0$, and $y=0$ since $\rho_{*} \varphi_{*} \mid R^{(k)}$ is isomorphic. Thus $\varphi_{*}\left(A_{n+1}^{(k)}\right) \cap \varphi_{*}\left(R_{n+1}^{(k)}\right)=0$. Therefore

$$
\boldsymbol{B}(n+1, k)=\bar{C}_{n+1}^{(k)} \oplus \varphi_{*}\left(A_{n+1}^{(k)}\right) \oplus \varphi_{*}\left(R_{n+1}^{(k)}\right) .
$$

Consequently " $\left(b_{n}\right)$ and $\left(c_{n}\right)$ are true" implies " $\left(C_{n+1}\right)$ is true."
(iii) Suppose " $\left(c_{n}\right)$ is true". Then

$$
\rho_{*}(\boldsymbol{B}(n, k))=\rho_{*} \varphi_{*}\left(R_{n}^{(k)}\right)=S_{n}^{(k)},
$$

since $\varphi_{*}\left(A_{n}^{(k)}\right) \oplus \overline{\boldsymbol{C}}_{n}^{(k)} \subset \psi_{*}(\boldsymbol{B}(n+1, k))$. Thus the restriction of φ_{*} on $A_{n}^{(k)} \oplus R_{n}^{(k)}$ is injective by the following exact sequence:

$$
\boldsymbol{B}(n, k) \xrightarrow{\rho_{*}} A_{n}^{(k)} \oplus R_{n}^{(k)} \oplus S_{n}^{(k)} \xrightarrow{\varphi_{*}} \boldsymbol{B}(n, k) .
$$

In particular, $\varphi_{*}: A_{n}^{(k)} \rightarrow C_{n}^{(k, 0)}$ is isomorphic. Consequently " $\left(c_{n}\right)$ is true" implies " $\left(a_{n}\right)$ is true".

These complete the proof of Lemma 1.5.

3. Forgetting homomorphisms

Clearly the following diagram of the forgetting homomorphisms is commutative:

where $b_{1}([M, T, \xi])=[M, T], i_{1}([M, T, \xi])=[M, \xi], i_{2}([M, T])=[M]$ and $b_{2}([M, \xi])=[M]$. Moreover the homomorphism i_{2} is the zero map and the homomorphism b_{2} is surjective. Then we obtain the following result by the above diagram.

Lemma 3.1. The forgetting homomorphism $i_{1}: B(n, k) \rightarrow \mathscr{N}_{n}(B O(k))$ is not surjective if $\bigcap_{n} \neq 0$.

Lemma 3.2. The restriction of the forgetting homomorphism $i_{1}: \boldsymbol{B}(n, k) \rightarrow$ $\eta_{n}(B O(k))$ on $C^{(k, 0)}=\varphi_{*}\left(A^{(k)}\right)$ is the zero map.

Proof. Let $\left\{\left[M_{\omega} \times M_{\omega}, \xi_{\omega} \times 0,0 \times \xi_{\omega}\right]\right\}$ be the generating elements of $A^{(k)}$, then $i_{1} \varphi_{*}\left(\left[M_{\omega} \times M_{\omega}, \xi_{\omega} \times 0,0 \times \xi_{\omega}\right]\right)=\left[M_{\omega} \times M_{\omega}, \xi_{\omega} \times 0\right] \cup\left[M_{\omega} \times M_{\omega}, 0 \times \xi_{\omega}\right]$. But $\left[M_{\omega} \times M_{\omega}, \xi_{\omega} \times 0\right]=\left[M_{\omega} \times M_{\omega}, 0 \times \xi_{\omega}\right]$ by the map switching factors on $M_{\omega} \times M_{\omega}$. Therefore $i_{1} \varphi_{*}=0$ on $A^{(k)}$.
q.e.d.

Theorem 3.3. In general, the forgetting homomorphism

$$
F: \boldsymbol{B}(n, k) \rightarrow \boldsymbol{B}(n, 0) \oplus \mathscr{N}_{n}(B O(k))
$$

is not injective, where $F(x)=b_{1}(x)+i_{1}(x)$.
Proof. Let $f: A^{(k)} \rightarrow \mathcal{I}_{*}$ be the restriction of the forgetting homomorphism $f^{\prime}: \mathscr{I}_{*}(B O(k) \times B O(k)) \rightarrow \mathscr{I}_{*}$ defined by $f^{\prime}([M, \xi, \eta])=[M]$. Then $f: A_{n}^{(k)} \rightarrow \eta_{n}$ is not injective in general, by comparing the rank of $A_{n}^{(k)}$ and η_{n} over Z_{2}. Let x be an element of $A_{n}^{(k)}$ such that $x \neq 0$ and $f(x)=0$, then $b_{1} \varphi_{*}(x)=0$
by definition of the homomorphisms φ_{*} and b_{1}. Moreover $\varphi_{*}(x) \neq 0$, since $\varphi_{*}: \boldsymbol{A}^{(k)} \rightarrow \boldsymbol{B}(n, k)$ is injective. On the other hand, $i_{1} \varphi_{*}\left(A^{(k)}\right)=0$ by Lemma 3.2. Thus $F\left(\varphi_{*}(x)\right)=0$. Therefore F is not injective in general. q.e.d.

4. Cobordism groups $\tilde{\boldsymbol{B}}(\boldsymbol{n}, \boldsymbol{k})$

Now we consider the objects (W, T, ξ, \tilde{T}) where ξ is a k-plane bundle over a compact differentiable manifold $W, T: W \rightarrow W$ is a fixed point free differentiable involution and $\tilde{T}: \xi \rightarrow \xi$ is a bundle map covering T such that $\widetilde{T}^{2}=$ identity, then the cobordism group $\widetilde{\boldsymbol{B}}(n, k)$ analogous to $\boldsymbol{B}(n, k)$ is obtained. This group $\widetilde{\boldsymbol{B}}(n, k)$ is canonically isomorphic to the bordism group $\Im_{n}\left(B O(k) \times B\left(Z_{2}\right)\right)$ where $B\left(Z_{2}\right)$ is the classifying space for the double covering spaces. And we obtain an exact sequence by the similar argument as the case of $\boldsymbol{B}(n, k)$:

$$
\cdots \xrightarrow{\psi_{*}} \tilde{\boldsymbol{B}}(n, k) \xrightarrow{\rho_{*}} গ_{n}(B O(k)) \xrightarrow{\varphi_{*}} \tilde{\boldsymbol{B}}(n, k) \xrightarrow{\psi_{*}} \tilde{\boldsymbol{B}}(n-1, k) \xrightarrow{\rho_{*}} \cdots
$$

where ψ_{*} is the modified Smith homomorphism similarly defined as the case of $\boldsymbol{B}(n, k), \rho_{*}$ is the forgetting homomorphism $\rho_{*}([M, T, \xi, \widetilde{T}])=[M, \xi]$ and φ_{*} is defined by $\varphi_{*}([M, \xi])=\left[M \times S^{0}, i d \times A, \xi \times 0, i d \times A\right]$ where $A: S^{k} \rightarrow S^{k}$ is the antipodal map and 0 is the 0 -plane bundle.

Lemma 4.1. The homomorphism ρ_{*} is the zero map.

Proof. Let $[M, T, \xi, \tilde{T}]$ be any class of $\tilde{\boldsymbol{B}}(n, k)$. Let W be the quotient space of $M \times[0,1]$ by identifying $(x, 1)$ with $(T(x), 1)$ for any $x \in M$, then W becomes a differentiable manifold with boundary M such that the quotient map $p: M \times[0,1] \rightarrow W$ is differentiable. By the similar method there exists a k-plane bundle ζ over W satisfying $p^{*} \zeta=\xi \times 0$. Thus $(M, \xi)=\partial(W, \zeta)$. Therefore ρ_{*} is the zero map. q.e.d.

Thus we obtain a short exact sequence:

$$
\begin{equation*}
0 \rightarrow গ_{n}(B O(k)) \xrightarrow{\varphi_{*}} \tilde{\boldsymbol{B}}(n, k) \xrightarrow{\psi_{*}} \tilde{\boldsymbol{B}}(n-1, k) \rightarrow 0 . \tag{4.2}
\end{equation*}
$$

Now let $\sigma: \tilde{\boldsymbol{B}}(n, k) \rightarrow \boldsymbol{B}(n, k)$ be the canonical forgetting homomorphism defined by $\sigma([M, T, \xi, \tilde{T}])=[M, T, \xi]$ and $d: B O(k) \rightarrow B O(k) \times B O(k)$ be the diagonal map. Then the following diagram is commutative by the definition of the homomorphisms:

Since $\tau_{*} d_{*}=d_{*}, d_{*}\left(\mathscr{I}_{*}(B O(k))\right)$ is contained in $A^{(\boldsymbol{k})} \oplus S^{(\boldsymbol{k})}$. And $\sigma(\tilde{\boldsymbol{B}}(n, k))$
is contained in $C_{n}^{(k)}=\psi_{*}(\boldsymbol{B}(n+1, k))$, because $\psi_{*}(\tilde{\boldsymbol{B}}(n+1, k))=\tilde{\boldsymbol{B}}(n, k)$. Let π be the projection of $\mathscr{I}_{*}(B O(k) \times B O(k))=A^{(k)} \oplus R^{(k)} \oplus S^{(k)}$ onto $A^{(k)}$. Then the following diagram is commutative:

and the lower horizontal line is exact by Theorem 1.6.
Let F^{l} be the \Re_{*}-submodule of $\Re_{*}(B O(k) \times B O(k))$ generated by $\left\{x_{\omega} \times x_{\omega^{\prime}} \mid\right.$ $\left.n(\omega)+n\left(\omega^{\prime}\right) \leqq l\right\}$. Then

$$
\begin{equation*}
d_{*}\left(x_{\omega}\right)-\sum_{\omega_{1} \omega_{2}=\omega} x_{\omega_{1}} \times x_{\omega_{2}} \in F^{n(\omega)-1} \tag{4.4}
\end{equation*}
$$

where $\omega_{1} \omega_{2}=\left(i_{1}, \cdots, i_{r}, j_{1}, \cdots, j_{s}\right)$ if $\omega_{1}=\left(i_{1}, \cdots, i_{r}\right)$ and $\omega_{2}=\left(j_{1}, \cdots, j_{s}\right)$, since $d^{*}\left(W_{i_{1}} \cdots W_{i_{r}} \otimes W_{j_{1}} \cdots W_{j_{s}}\right)=W_{i_{1}} \cdots W_{i_{r}} W_{j_{1}} \cdots W_{s_{s}}$ in $H^{*}\left(B O(k) ; Z_{2}\right)$.

We will use the following known result.
Lemma 4.5. Suppose the following diagram of the homomorphisms is commutative:

and the lower horizontal line is exact. Then β is surjective if α and γ are surjective.
Lemma 4.6. The homomorphism $\pi d_{*}: \mathcal{I}_{*}(B O(k)) \rightarrow A^{(k)}$ is surjective.
Proof. Let $F^{1, l}=\sum_{n} F_{n}^{1, l}$ be the \Re_{*}-submodule of $\Re_{*}(B O(k))$ generated by $\left\{x_{\omega} \mid n(\omega) \leqq l\right\}$ and $F^{2, l}=\sum_{n} F_{n}^{2, l}$ be the \tilde{N}_{*}-submodule of $A^{(k)}$ generated by $\left\{x_{\omega} \times x_{\omega} \left\lvert\, n(\omega) \leqq \frac{l}{2}\right.\right\}$ where $F_{n}^{1, l}$ and $F_{n}^{2, l}$ are the factors of degree n. Then

$$
0=F_{n}^{1,-1} \subset F_{n}^{1,0} \subset \cdots \subset F_{n}^{1, n}=\mathscr{N}_{n}(B O(k))
$$

and

$$
0=F_{n}^{2,-1} \subset F_{n}^{2,0} \subset \cdots \subset F_{n}^{2, n}=A_{n}^{(k)} .
$$

Moreover $F^{1, l} / F^{1, l-1}$ is isomorphic to the free \Re_{*}-module generated by $\left\{x_{\omega} \mid n(\omega)\right.$ $=l\}$ and $F^{2, l} \mid F^{2, l-1}$ is isomorphic to the free \Re_{*}-module generated by $\left\{x_{\omega} \times x_{\omega} \mid\right.$ $n(\omega)=l / 2\}$. Then $\pi d_{*}\left(F^{1, l}\right) \subset F^{2, l}$ by (4.4), thus πd_{*} induces $\bar{d}_{*}: F^{1, l} / F^{1, l-1} \rightarrow$ $F^{2, l} / F^{2, l-1}$ and $\bar{d}_{*}\left(x_{\omega \omega}\right)=x_{\omega} \times x_{\omega}$ in $F^{2,2 n(\omega)} / F^{2,2 n(\omega)-1}$. Thus \bar{d}_{*} is surjective and therefore πd_{*} is surjective by Lemma 4.5.
q.e.d.

Theorem 4.7. $\sigma(\tilde{\boldsymbol{B}}(n, k))=C_{n}^{(k)}=\psi_{*}(\boldsymbol{B}(n+1, k))$.

Proof. This is an easy consequence of (4.2), (4.3), Lemma 4.5 and Lemma 4.6.
q.e.d.

5. The rank of $B^{ \pm}(n, k)$

In the last section of the previous paper [4] we have considered the oriented cobordism groups of generic immersions and introduced the cobordism groups $\boldsymbol{B}^{+}(n, k)$ and $\boldsymbol{B}^{-}(n, k)$ of oriented k-plane bundles over oriented n-manifolds with orientation preserving involution and with orientation reversing involution respectively. These groups play an important role in the study of the oriented cobordism group of generic immersions and there exist following exact sequences [4]:

$$
\begin{aligned}
& \cdots \rightarrow \boldsymbol{B}^{-}(n, k) \xrightarrow{\rho_{*}} \Omega_{n}(B S O(k) \times B S O(k)) \xrightarrow{\varphi_{*}^{+}} \boldsymbol{B}^{+}(n, k) \xrightarrow{\psi_{*}} \boldsymbol{B}^{-}(n-1, k) \rightarrow \cdots, \\
& \cdots \rightarrow \boldsymbol{B}^{+}(n, k) \xrightarrow{\rho_{*}} \Omega_{n}(B S O(k) \times B S O(k)) \xrightarrow{\varphi_{*}^{-}} \boldsymbol{B}^{-}(n, k) \xrightarrow{\psi_{*}} \boldsymbol{B}^{+}(n-1, k) \rightarrow \cdots .
\end{aligned}
$$

In this section we will consider the rank of $\boldsymbol{B}^{ \pm}(n, k)$. Let Q be the field of rational numbers. Then the following sequences are exact:

$$
\begin{array}{r}
\cdots \rightarrow \boldsymbol{B}^{-}(n, k) \otimes Q \xrightarrow{\rho_{*}} \Omega_{n}(B S O(k) \times B S O(k)) \otimes Q \xrightarrow{\varphi_{*}^{+}} \boldsymbol{B}^{+}(n, k) \otimes Q \xrightarrow{\psi_{*}} \\
\cdots \rightarrow \boldsymbol{B}^{+}(n, k) \otimes Q \xrightarrow{\boldsymbol{B}^{-}(n-1, k) \otimes Q \rightarrow \cdots,} \Omega_{n}(B S O(k) \times B S O(k)) \otimes Q \xrightarrow{\varphi_{*}^{-}} \boldsymbol{B}^{-}(n, k) \otimes Q \xrightarrow{\varphi_{*}} \\
\boldsymbol{B}^{+}(n-1, k) \otimes Q \rightarrow \cdots . \tag{2}
\end{array}
$$

We will use the following fact (cf. [1], [2]).
(5.1) Let (X, A) be a $C W$-pair, then $\Omega_{*}(X, A) \otimes Q$ is a free $\Omega_{*} \otimes Q$-module isomorphic to $H_{*}(X, A ; Q) \otimes_{Q}\left(\Omega_{*} \otimes Q\right)$.

Now let $\left\{t_{a} \mid \alpha \in \Lambda\right\}$ be a homogeneous basis of $\Omega_{*}(B S O(k)) \otimes Q$ over $\Omega_{*} \otimes Q$. Then $\left\{t_{\infty} \times t_{\beta} \mid \alpha, \beta \in \Lambda\right\}$ be a basis of $\Omega_{*}(B S O(k) \times B S O(k)) \otimes Q$. Let $A^{(k)}=$ $\sum_{n} A_{n}^{(k)}, S^{(k)}=\sum_{n} S_{n}^{(k)}$ and $T^{(k)}=\sum_{n} T_{n}^{(k)}$ be the free $\Omega_{*} \otimes Q$-module with basis $\left\{t_{\infty} \times t_{a} \mid \alpha \in \Lambda\right\},\left\{t_{\alpha} \times t_{\beta}+t_{\beta} \times t_{\alpha} \mid \alpha, \beta \in \Lambda, \alpha \neq \beta\right\}$ and $\left\{t_{\infty} \times t_{\beta}-t_{\beta} \times t_{\alpha} \mid \alpha, \beta \in \Lambda\right.$, $\alpha \neq \beta\}$ respectively, where $A_{n}^{(k)}, S_{n}^{(k)}$ and $T_{n}^{(k)}$ are the factors of degree n. Then $\Omega_{*}(B S O(k) \times B S O(k)) \otimes Q=A^{(k)} \oplus S^{(k)} \oplus T^{(k)} \quad$ (direct sum).

Lemma 5.2. The homomorphisms

$$
\rho_{*} \varphi_{*}^{+}: A^{(k)} \oplus S^{(k)} \rightarrow A^{(k)} \oplus S^{(k)}
$$

and

$$
\rho_{*} \varphi_{*}^{-}: T^{(k)} \rightarrow T^{(k)}
$$

are the multiplication by 2 .

Proof. $\rho_{*} \varphi_{*}^{ \pm}\left(t_{a} \times t_{\beta}\right)=t_{a} \times t_{\beta} \pm t_{\beta} \times t_{\infty}$ since $\rho_{*} \varphi_{*}^{ \pm}=1 \pm \tau_{*}$, where τ_{*} is induced from the map $\tau: B S O(k) \times B S O(k) \rightarrow B S O(k) \times B S O(k)$ switching factors.
q.e.d.

Let $P_{n}^{(k)}=\varphi_{*}^{+}\left(A_{n}^{(k)} \oplus S_{n}^{(k)}\right)$ and $M_{n}^{(k)}=\varphi_{*}^{-}\left(T_{n}^{(k)}\right)$. Then

$$
\begin{array}{ll}
\varphi_{*}^{+}: A_{n}^{(k)} \oplus S_{n}^{(k)} \cong P_{n}^{(k)}, & \rho_{*}: P_{n}^{(k)} \cong A_{n}^{(k)} \oplus S_{n}^{(k)}, \tag{5.3}\\
\varphi_{*}^{-}: T_{n}^{(k)} \cong M_{n}^{(k)}, & \rho_{*}: M_{n}^{(k)} \cong T_{n}^{(k)}
\end{array}
$$

by Lemma 5.2.
Lemma 5.4. $\quad B^{+}(n, k) \otimes Q=P_{n}^{(k)}$ and $B^{-}(n, k) \otimes Q=M_{n}^{(k)}$.
Proof. Since $B S O(k)$ is simply connected, $\Omega_{0}(B S O(k) \times B S O(k)) \cong Z$ and $\Omega_{1}(B S O(k) \times B S O(k))=0$. Therefore $B^{+}(0, k) \cong Z, B^{-}(0, k) \cong Z_{2}, B^{+}(1, k) \cong Z_{2}$ and $\boldsymbol{B}^{-}(1, k)=0$ by direct calculation. On the other hand $P_{0}^{(k)} \cong Q, M_{0}^{(k)}=0$ and $P_{1}^{(k)}=M_{1}^{(k)}=0$. Therefore Lemma 5.4 is true for $n=0,1$. In general we will prove the lemma by induction on n.

Suppose $\boldsymbol{B}^{+}(n-1, k) \otimes Q=P_{n-1}^{(k)}$, then the homomorphism

$$
\rho_{*}: \boldsymbol{B}^{+}(n-1, k) \otimes Q \rightarrow \Omega_{n-1}(B S O(k) \times B S O(k)) \otimes Q
$$

is injective by (5.3). Thus the homomorphism

$$
\psi_{*}: \boldsymbol{B}^{-}(n, k) \otimes Q \rightarrow \boldsymbol{B}^{+}(n-1, k) \otimes Q
$$

is the zero map by the exact sequence (2). Therefore

$$
\begin{aligned}
\boldsymbol{B}^{-}(n, k) \otimes Q & =\varphi_{*}^{\bar{*}}\left(\Omega_{n}(B S O(k) \times B S O(k)) \otimes Q\right) \\
& =\varphi_{*}^{\bar{*}}\left(A_{n}^{(k)} \oplus S_{n}^{(k)} \oplus T_{n}^{(k)}\right) \\
& =\varphi_{*}^{\bar{*}}\left(\rho_{*}\left(P_{n}^{(k)}\right) \oplus T_{n}^{(k)}\right) \\
& =\varphi_{*}^{-}\left(T_{n}^{(k)}\right) \\
& =M_{n}^{(k)}
\end{aligned}
$$

by (5.3) and the exact sequence (2). Similarly $\boldsymbol{B}^{-}(n-1, k) \otimes Q=M_{n-1}^{(k)}$ implies $\boldsymbol{B}^{+}(n, k) \otimes Q=P_{n}^{(k)}$. q.e.d.

Corollary 5.5. $\psi_{*}\left(\boldsymbol{B}^{ \pm}(n, k)\right)$ is contained in the torsion subgroup of $\boldsymbol{B}^{\mp}(n-1, k)$.

Corollary 5.6. $\quad B^{+}(n, k)$ and $B^{-}(n, k)$ are torsion groups if $\Omega_{n}(B S O(k) \times$ $B S O(k)$) is a torsion group.

Now $\Omega_{*} \otimes Q \cong Q\left[x_{1}, x_{2}, \cdots, x_{n}, \cdots\right]$ where the degree of $x_{n}=4 n, H^{*}(B S O(k) ;$ $Q) \cong Q\left[p_{1}, p_{2}, \cdots, p_{r}\right]$ for $k=2 r+1$ and $H^{*}(B S O(k) ; Q) \cong Q\left[p_{1}, p_{2}, \cdots, p_{r-1}, x_{r}\right]$ for $k=2 r$ where the degree of $p_{i}=4 i$ and the degree of $x_{r}=2 r$. Therefore the rank of $\boldsymbol{B}^{ \pm}(n, k)$ is determined by (5.3) and Lemma 5.4.

Remark. Recently R. Stong [3] studied the equivariant bordism groups. The cobordism group $\widetilde{\boldsymbol{B}}(n, k)$ is $\hat{\eta}_{n}(B O(k), \tau)$ in his notation.

Osaka University

References

[1] P.E. Conner and E.E. Floyd: Differentiable Periodic Maps, Springer-Verlag, 1964.
[2] R.E. Stong: Notes on Cobordism Theory, Princeton Univ. 1968.
[3] R.E. Stong: Bordism and involutions, Ann. of Math. 90 (1969), 47-74.
[4] F. Uchida: Exact sequences involving cobordism groups of immersions, Osaka J. Math. 6 (1969), 397-408.

