ON RIBBON 2-KNOTS III ON THE UNKNOTTING RIBBON 2-KNOTS IN S ${ }^{4}$

Takaaki YANAGAWA

(Received September 8, 1969)

1. Introduction

Concerning the unknotting theorem for the pair $\left(S^{n}, M^{n+2}\right)$ with the codimension 2, there are several remarkable results; by T. Homma in the case $n=1$ and $M^{3}=S^{3}$, by C.D. Papakyriakopoulos in the case $n=1$ and any 3-manifold M^{2}, by J. Stallings in the case $n \geqq 3$ and $M^{n+2}=S^{n+2}$ in the topological sense and by J. Levine in the case $n \geqq 4$ and $M^{n+2}=S^{n+2}$ in the combinatorial sense, see [1], [2], [3], [4] and [5]. Confining ourselves to the case $M^{n+2}=S^{n+2}$, the unknotting theorem has not been solved in the case $n=2$.

In this paper, we will prove the following theorem which is an answer under an additional condition to the unknotting theorem in the case $n=2$ and $M^{4}=S^{4}$:

Theorem (2, 2). For a ribbon 2-knot K^{2} in S^{4}, K^{2} is unknotted in S^{4} if and only if $\pi_{1}\left(S^{4}-K^{2}\right)=Z^{1)}$.

In this paper, everything will be considered from the combinatorial point of view.

2. Proof of Theorem

Lemma (2, 1) ${ }^{2)}$. Let M^{4} be a combinatorial 4-manifold and let γ be a simple closed curve in \dot{M}^{4} which is contractible to a point in \dot{M}^{4}. Then, γ bounds a non-singular, locally flat 2 -ball in $M^{\circ}{ }^{43}$.

Proof. Since γ is contractible to a point in $\stackrel{\circ}{M}^{4}$, there is a PL-map φ of a 2-ball D^{2} into $\stackrel{ }{M}^{4}$ satisfying the following (1), (2) and (3):
(1) $\varphi\left(D^{2}\right) \subset \grave{M}^{4}, \quad \varphi\left(\partial D^{2}\right)=\gamma$,
(2) $\varphi\left(D^{2}\right)$ is in a general position in M^{4} so that the self-intersection consists of a finite number of double points,

1) See [6] for the definition of the ribbon $2-$ knots in R^{4}.
2) Cf. the result in [7], the proof of Lemma (2, 7).
3) $\dot{\circ}$ and ∂X mean the interior and the boundary of X respectively.
(3) there are at most a finite number of locally knotted points on $\varphi\left(D^{2}\right)$ which are different from the double points in (2).

Here, in (3), a point x of $\varphi\left(D^{2}\right)$ is called a locally knotted point ${ }^{4}$ if the pair $\left(L k\left(x, \varphi\left(D^{2}\right)\right), L k\left(x, M^{4}\right)\right)$ is a knotted sphere-pair for the combinatorial triangulation of M^{4} for which $\varphi\left(D^{2}\right)$ is a subcomplex and the point x is a vertex. If there is a locally knotted point x of $\varphi\left(D^{2}\right)$, it is possible to exchange a nonsingular 2-ball $S t\left(x, \varphi\left(D^{2}\right)\right.$), which may be not locally flat, for an immersed 2-ball $\rho\left(B^{2}\right)$ in a 4-ball $B^{4}=\operatorname{St}\left(x, M^{4}\right)$ by an immersion ρ of a 2 -ball B^{2} such that $\rho\left(\partial B^{2}\right)=\varphi\left(D^{2}\right) \cap \partial B^{4}, \rho\left(\dot{B}^{2}\right) \subset B^{4}$ and that each pair $\left(\rho L k\left(y, B^{2}\right), L k\left(\rho(y), B^{4}\right)\right)$ is unknotted for a fine subdivision of B^{4} and each virtex y of B^{2}. Perform the exchange for all locally knotted points of $\varphi\left(D^{2}\right)$. By making use of the general position theory, we have a $P L$-map φ^{\prime} of D^{2} into M^{4} satisfying the following (1^{\prime}), (2^{\prime}) and (3^{\prime}):
(1') $\varphi^{\prime}\left(D^{2}\right) \subset M^{4}, \quad \varphi^{\prime}\left(\partial D^{2}\right)=\gamma$,
$\left(2^{\prime}\right) \varphi^{\prime}\left(D^{2}\right)$ is in a general position in M^{4} so that the self-intersection consists of a finite number of double points,
(3') $\varphi^{\prime}\left(D^{2}\right)$ has no locally knotted point.
Let x be a double point of $\varphi^{\prime}\left(D^{2}\right)$ and $x=\varphi^{\prime}(y)=\varphi^{\prime}\left(y^{\prime}\right)$ for just two points y, y^{\prime} of D^{2}. Then there is an $\operatorname{arc} \alpha$ spanning y and a point $y^{\prime \prime}$ on ∂D^{2} such that the image $\varphi^{\prime}(\alpha)$ does not cross any double point of $\varphi^{\prime}\left(D^{2}\right)$ except for x. Let V^{4} be a regular neighborhood of $\varphi^{\prime}(\alpha)$ in M^{4}. Since V^{4} is a 4-ball, there is a PL-homeomorphism ϕ of V^{4} onto a standard 4-cube Δ^{4} such that
(i) $\Delta^{4} ;\left|x_{1}\right|,\left|x_{2}\right|,\left|x_{3}\right|,\left|x_{4}\right| \leqq 2$
(ii) $\phi \varphi^{\prime}(\alpha) ; 0 \leqq x_{1} \leqq 1, x_{2}=x_{3}=x_{4}=0$
(iii) $\phi \varphi^{\prime}(x) ; x_{1}=x_{2}=x_{3}=x_{4}=0$
(iv) $\phi\left(V^{4} \cap \varphi^{\prime}\left(D^{2}\right)\right) ;\left\{\begin{array}{l}-2 \leqq x_{1} \leqq 1, x_{2}=x_{3}=0,\left|x_{4}\right| \leqq 2 \\ x_{1}=0,\left|x_{2}\right|,\left|x_{3}\right| \leqq 2, x_{4}=0 \cdots(*) .\end{array}\right.$

Let N^{2} be the 2-ball in $\phi \varphi^{\prime}\left(D^{2}\right)$ defined by the equation (*) and let $N^{\prime 2}$ be the 2 -ball in Δ^{4} defined as follows:
(v) $\quad N^{\prime 2} ;\left\{\begin{array}{l}0 \leqq x_{1}<2,\left|x_{2}\right| \leqq 2, \quad\left|x_{3}\right|=2, \quad x_{4}=0, \\ 0 \leqq x_{1}<2,\left|x_{2}\right|=2,\left|x_{3}\right| \leqq 2, \quad x_{4}=0, \\ x_{1}=2,\left|x_{2}\right|,\left|x_{3}\right| \leqq 2, \quad x_{4}=0 .\end{array}\right.$

If we consider a singular 2-ball $B^{\prime 2}=\phi^{-1}\left(\left(\phi \varphi^{\prime}\left(D^{2}\right)-N^{2}\right) \cup N^{\prime 2}\right)$, then this 2-ball $B^{\prime 2}$ is not only locally flat but also has a number of the double points less
4) See [8] p. 34.
than the number of those of $\phi^{\prime}\left(D^{2}\right)$. Moreover we have that $\partial B^{\prime 2}=\gamma$. Repeating this process, we have finally a locally flat, non-singular $2-$ ball B^{2} such that $B^{2} \subset \grave{M}^{4}$ and that $\partial B^{2}=\gamma$. The proof is thus complete.

Let K^{2} be a ribbon 2-knot in R^{4}, then there is a 3-manifold W^{3} satisfying the following properties:
(1) $W^{3} \approx B^{3}$ or $W^{3} \approx \#\left(S^{1} \times S^{2}\right)-\stackrel{B}{B}^{35}$,
(2) If $W^{3} \approx B^{3}, W^{3}$ has a trivial system of 2 -spheres $\left\{S_{1}^{2}, \cdots, S_{2 n}^{2}\right\}$ satisfying that
(i) a 2-link $\left\{S_{1}^{2}, \cdots, S_{2 n}^{2}\right\}$ is trivial in R^{4},
(ii) $S_{i}^{2} \cup S_{n+i}^{2}$ bounds a spherical-shell N_{i}^{3} in $W^{3}(i=1, \cdots, n)^{6)}$,
(iii) $W^{3}-\stackrel{N}{N}_{1}^{3} \cup \cdots \cup \stackrel{N}{N}_{n}^{3} \approx B^{3}-\Delta_{1}^{3} \cup \cdots \cup \AA_{2 n}^{3}$,
see $(3,5)$ and $(3,6)$ in $[6]$.
Let Δ_{0}^{3} be a 3 -ball in $W^{3}-N_{1}^{3} \cup \cdots \cup N_{n}^{3}$, let S_{0}^{2} be a boundary 2 -sphere of Δ_{0}^{3} and let $\beta_{1}, \cdots, \beta_{2 n}$ be a collection of mutually disjoint arcs spanning S_{0}^{2} and $S_{1}^{2}, \cdots, S_{2 n}^{2}$ in $W^{3}-N_{1}^{3} \cup \cdots \cup N_{n}^{3} \cup \Delta_{0}^{3}$ respectively. Moreover, let U_{λ}^{3} be a regular neighborhood of the arc β_{λ} in $W^{3}-\stackrel{\circ}{N}_{1}^{3} \cup \cdots \cup \stackrel{\circ}{N}_{n}^{3} \cup \grave{\Delta}_{0}^{3}$ where $U_{\lambda}^{3} \cap S_{\lambda}^{2}=e_{\lambda}^{2}$ and $U_{\lambda}^{3} \cap S_{0}^{2}=e_{\lambda}^{\prime 2}$ are 2 -balls such that $e_{\lambda}^{\prime 2} \cap e_{\mu}^{\prime 2}=\emptyset(\lambda \neq \mu, \lambda, \mu=1, \cdots, 2 n)$. Since the $2-\operatorname{link}\left\{S_{0}^{2}, \cdots, S_{2 n}^{2}\right\}$ is trivial in R^{4}, there is an isotopy ξ of R^{4} by which $\xi\left(S_{\lambda}^{2}\right)(\lambda=0, \cdots, 2 n)$ are moved into the position given by the equations below:

$$
\begin{aligned}
& \xi\left(S_{0}^{2}\right) ; x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1, \quad x_{4}=0 \\
& \xi\left(S_{i}^{2}\right) ;\left(x_{1}-4 i\right)^{2}+x_{2}^{2}+x_{3}^{2}=1, \quad x_{4}=0 \\
& \xi\left(S_{n+i}^{2}\right) ;\left(x_{1}-4 i\right)^{2}+x_{2}^{2}+x_{3}^{2}=2, \quad x_{4}=0 \\
& \xi\left(N_{i}^{3}\right) ; 1 \leqq\left(x_{1}-4 i\right)^{2}+x_{2}^{2}+x_{3}^{2} \leqq 2, \quad x_{4}=0 \quad(i=1, \cdots, n) .
\end{aligned}
$$

Moreover, we may suppose that the center line $\xi\left(\beta_{\lambda}\right)$ of the tube $\xi\left(U_{\lambda}^{3}\right)$ is given by the equations below:

$$
\begin{array}{ll}
x_{1}=4 i, & x_{2}=0, \quad x_{3}=1-x_{4}, \quad x_{4} \geqq 0 \\
& \text { in the neighborhood of } \xi\left(\beta_{i} \cap S_{i}^{2}\right), \\
x_{1}=4 i, & x_{2}=0, \quad x_{3}=\sqrt{2}-x_{4}, \quad x_{4} \leqq 0 \\
& \text { in the neighborhood of } \xi\left(\beta_{n+i} \cap S_{n+i}^{2}\right) \\
& (i=1,2, \cdots, n) .
\end{array}
$$

Theorem (2.2)'. For a ribbon 2-knot K^{2} in R^{4}, K^{2} is unknotted in R^{4}, if and only if $\pi_{1}\left(R^{4}-K^{2}\right)=Z$.
5) B^{3} means a 3-ball and \approx means to be homeomorphic to.
6) $N_{i}^{3} \approx S^{2} \times[0,1]$.

The proof of this theorem is divided into two steps, and the second-step of the proof will be given later after we have proved two lemmas $(2,3)$ and $(2,4)$. Since K^{2} is a ribbon $2-\mathrm{knot}$ in R^{4}, it bounds a 3-manifold W^{3} previously described, therefore if $W^{3} \approx B^{3}$, we have nothing particular to say. Hence, in the following discussion we will consider the case that $W^{3} \approx B^{3}$. Consider the trivial system $\left\{S_{1}^{2}, \cdots, S_{2 n}^{2}\right\}$ and the isotopy ξ of R^{4} as before. Let \widetilde{K}^{2} be a 2 -knot in R^{4} such that

$$
\widetilde{K}^{2}=\xi\left(\bigcup_{\lambda=0}^{2 n} S_{\lambda}^{2}-\bigcup_{\lambda=1}^{2 n}\left(\tilde{e}_{\lambda}^{2} \cup \dot{e}_{\lambda}^{\prime 2}\right)\right) \cup \xi\left(\bigcup_{\lambda=1}^{2 n} \partial U_{\lambda}^{3}-\bigcup_{\lambda=1}^{2 n}\left(\tilde{e}_{\lambda}^{2} \cup \tilde{e}_{\lambda}^{\prime 2}\right)\right) .
$$

Then, since two 2 -spheres $\xi\left(K^{2}\right)$ and \widetilde{K}^{2} bound a 3 -manifold which is a subcomplex of $\xi\left(W^{3}\right)$ and which is homeomorphic to $S^{2} \times[0,1]$ in R^{4}, \widetilde{K}^{2} belongs to the 2 -knot-type $\left\{\xi\left(K^{2}\right)\right\}$ which coincides with the 2 -knot-type $\left\{K^{2}\right\}$.

Let B_{i}^{3} be a 3 -ball bounded by the 2 -sphere $\xi\left(S_{i}^{2}\right)$:

$$
B_{i}^{3} ;\left(x_{1}-4 i\right)^{2}+x_{2}^{2}+x_{3}^{2} \leqq 1, \quad x_{4}=0 \quad(i=0,1,2, \cdots, n) .
$$

First-step of the proof of $(2,2)^{\prime}$: Each 3-ball B_{i}^{3} bounded by the 2 -sphere $\xi\left(S_{i}^{2}\right)(i=1, \cdots, n)$ in R_{0}^{3} does not meet any arc $\xi\left(\beta_{\lambda}\right)$ except for the end points $(\lambda=1, \cdots, 2 n)$.

Since we can find a regular neighborhood U_{λ}^{3} of β_{λ} so fine that $\xi\left(U_{\lambda}^{3}\right) \cap B_{i}^{3}$ $=\emptyset$ because $\xi\left(\beta_{\lambda}\right) \cap B_{i}^{3}=\emptyset$ for all i and $\lambda(i=1, \cdots, n, \lambda=1, \cdots, 2 n)$, the $2-\mathrm{knot}$ \tilde{K}^{2} bounds a 3 -ball $B_{0}^{3} \cup B_{1}^{3} \cup \cdots \cup B_{n}^{3} \cup B_{n+1}^{3} \cup \cdots \cup B_{2 n}^{3} \cup \xi\left(U_{1}^{3}\right) \cup \cdots \cup \xi\left(U_{2 n}^{3}\right)$, where the 3-ball B_{n+i}^{3} is bounded by $\xi\left(S_{n+i}^{2}\right)$ in the neighborhood of $\xi\left(N_{i}^{3}\right) \cup B_{i}^{3}$ in R^{4} so that $B_{n+i}^{3} \cap B_{j}^{3}=\emptyset, B_{n+i}^{3} \cap \xi\left(U_{\lambda}^{3}\right)=\emptyset(\lambda \neq n+i)$ and $=\xi\left(e_{\lambda}^{2}\right)(\lambda=n+i)$ $(i, j=1, \cdots, n, \lambda=1, \cdots, 2 n)$: for a sufficiently small $\varepsilon(<0)$,

$$
B_{n+i}^{3} ;\left\{\begin{array}{ll}
\left(x_{1}-4 i\right)^{2}+x_{2}^{2}+x_{3}^{2}=2, & -\varepsilon \leqq x_{4} \leqq 0 \\
\left(x_{1}-4 i\right)^{2}+x_{2}^{2}+x_{3}^{2} \leqq 2, & x_{4}=-\varepsilon
\end{array}, ~(i=1,2, \cdots, n) . ~ \$\right.
$$

If there is a 3 -ball B_{i}^{3} which meets some arcs $\xi\left(\beta_{\lambda}\right)(1 \leqq i \leqq n, 1 \leqq \lambda \leqq 2 n)$, we will consider how to remove the intersection of the 3 -ball B_{i}^{3} and the arcs $\xi\left(\beta_{\lambda}\right)$ without changing the 2 -knot-type of \widetilde{K}^{2}. We need following two lemmas $(2,3)$ and $(2,4)$ to remove the intersection.

Lemma (2,3). If there are an arc b in $R^{4}-\tilde{K}^{2}$ and a subarc β_{λ}^{\prime} of the arc $\beta_{\lambda}(1 \leqq \lambda \leqq 2 n)$ such that the simple closed curve $\gamma=b \cup \xi\left(\beta_{\lambda}^{\prime}\right)$ is contractible in $R^{4}-\tilde{K}^{2}$, then there exists an isotopy η of R^{4} by which $\eta\left(\tilde{K}^{2}\right)=\tilde{K}^{2}$ and $\eta \xi\left(\beta_{\lambda}\right)$ $=\xi\left(\beta_{\lambda}-\beta_{\lambda}^{\prime}\right) \cup b$.

Proof. Since β_{λ} is contained in $\stackrel{\circ}{U}_{\lambda}^{3}$ except two end points, we can triangulate R^{4} so that the regular neighborhood $N\left(\widetilde{K}^{2}\right)$ of \tilde{K}^{2} in R^{4} does not meet $\xi\left(\beta_{\lambda}\right)$. If we apply $(2,1)$ to the 4 -manifold $M^{4}=R^{4}-\stackrel{N}{N}\left(\tilde{K}^{2}\right)$ and the simple closed
curve $\gamma=b \cup \xi\left(\beta_{\lambda}^{\prime}\right)$, the simple closed curve γ bounds a locally flat 2-ball B^{2} in \dot{M}^{4}. Therefore there exists a combinatorial 4-ball B^{4} containning B^{2} in its interior and contained in $R^{4}-\widetilde{K}^{2}$. Now, we have easily an isotopy which is identical on ∂B^{4} and transfers the subarc $\xi\left(\beta_{\lambda}^{\prime}\right)$ onto the arc b. Hence, the proof is complete.

Lemma (2, 4). If $\pi_{1}\left(R^{4}-\widetilde{K}^{2}\right)=Z$ and an arc $\xi\left(\beta_{\lambda}\right)(1 \leqq \lambda \leqq 2 n)$ pierces through a 3 -ball $B_{i}^{3}(1 \leqq i \leqq n)$ at a point A, there are an arc b in $R^{4}-\widetilde{K}^{2}$ and a subarc β_{λ}^{\prime} on the arc β_{λ} containning A such that the simple closed curve $b \cup \xi\left(\beta_{\lambda}^{\prime}\right)$ is contractible in $R^{4}-\tilde{K}^{2}$.

Proof. For convenience's sake, we may suppose that $\xi\left(\beta_{\lambda}\right)$ is given in the neighborhood of the point A as follows:

$$
\xi\left(\beta_{\lambda}\right) ; x_{1}=4 i, \quad x_{2}=x_{3}=0, \quad-1 \leqq x_{4} \leqq 1
$$

Consider the cross-sections of $\xi\left(S_{i}^{2}\right), \xi\left(S_{n+i}^{2}\right)$ and $\xi\left(N_{i}^{3}\right)$ by the hyperplane $P ; x_{3}=0$. Then, we have the following figure Fig. (1).

Fig. 1

Fig. 2

Place $\xi\left(U_{\lambda}^{3}\right)$ in a general position with respect to the hyperplane P, then the cross-section $\xi\left(U_{\lambda}^{3}\right) \cap P$ is at most 2 -dimensional, and we can find an arc b spanning two points A_{+}and A_{-}in $P-P \cap \widetilde{K}^{2}$ as follows:

$$
b ; \begin{cases}x_{1}=4 i, & 0 \leqq x_{2} \leqq 2, \quad x_{3}=0, \quad x_{4}=\varepsilon \\ x_{1}=4 i, & x_{2}=2, \quad x_{3}=0, \quad-£ \leqq x_{4} \leqq \varepsilon \\ x_{1}=4 i, & 0 \leqq x_{2} \leqq 2, \quad x_{3}=0, \quad x_{4}=-\varepsilon\end{cases}
$$

see Fig. (2).

Since the 2 -knot \tilde{K}^{2} bounds the orientable 3 -manifold $\tilde{W}^{3}=\xi\left(N_{1}^{3} \cup \cdots \cup\right.$ $N_{n}^{3} \cup U_{1}^{3} \cup \cdots \cup U_{2 n}^{3} \cup \Delta_{0}^{3}$) in R^{4}, we will give an orientation induced from the orientation of \tilde{W}^{3} for \tilde{K}^{2}. Then, the trivial link $\xi\left(S_{\imath}^{2} \cup S_{n+i}^{2}\right) \cap P$, which bounds an annulus $\xi\left(N_{i}^{3}\right) \cap P$ in P, can be given the orientation induced from that of $\xi\left(N_{i}^{3}\right) \cap P$, see Fig. (1) again. Since $\widetilde{K}^{2} \cap P$ is a cross-section of a 2 -knot \widetilde{K}^{2}, the simple closed curves c_{i} and c_{n+i} represent the generator of $H_{1}\left(R^{4}-\tilde{K}^{2}\right)$, see Fig. (2) again. Therefore, the loop $w \gamma w^{-1}$ represents an element of the commutator subgroup of $\pi_{1}\left(R^{4}-\tilde{K}^{2}\right)$ for any arc w from the base-point to a point on γ, where the simple closed curve γ is $b \cup \xi\left(\beta_{\lambda}^{\prime}\right)$ for the segment $\xi\left(\beta_{\lambda}^{\prime}\right)$ between A_{+}and A_{-} on $\xi\left(\beta_{\lambda}\right)$. Now, $w \gamma w^{-1} \sim 0$ for any arc w, because $\pi_{1}\left(R^{4}-\tilde{K}^{2}\right)=Z$; that is, γ is contractible in $R^{4}-\widetilde{K}^{2}$.

Second-step of the proof of $(2,2)^{\prime}$: There is a 3-ball $B_{i}^{\mathbf{3}}$ which meets some arcs $\xi\left(\beta_{\lambda}\right)$.

Since the 2 -knot \tilde{K}^{2} constructed by making use of W^{3}, S_{λ}^{2} and U_{λ}^{3} and bounding the 3 -manifold $\tilde{W}^{3}=\xi\left(N_{1}^{3} \cup \cdots \cup N_{n}^{3} \cup U_{1}^{3} \cup \cdots \cup U_{2 n}^{3} \cup \Delta_{0}^{3}\right)$ in R^{4} belongs to the 2 -knot-type $\left\{K^{2}\right\}$, it is sufficient to prove that \widetilde{K}^{2} is unknotted. On the other hand, by making use of $(2,4)$ and $(2,5)$, there exists an isotopy η of R^{4} such that $\eta\left(\widetilde{K}^{2}\right)=\widetilde{K}^{2}$ and that $\eta \xi\left(\beta_{\lambda}\right)(\lambda=1, \cdots, 2 n)$ does not meet any 3-ball $B_{i}^{3}(i=1, \cdots, n)$. Since $\xi\left(\AA_{\lambda}\right) \subset \xi\left(\dot{U}_{\lambda}^{3}\right)$, so $\eta \xi\left(\stackrel{\beta}{\beta}_{\lambda}\right) \subset \eta \xi\left(\stackrel{\circ}{U}_{\lambda}^{3}\right)$. Take a sufficiently fine tube (a regular neighborhood in U_{λ}^{3}) $\widetilde{U}_{\lambda}^{3}$ of the $\operatorname{arc} \beta_{\lambda}$ in U_{λ}^{3} so that $\eta \xi\left(\widetilde{U}_{\lambda}^{3}\right)$ does not meet any $\stackrel{B}{i}_{3}^{3}(i=1, \cdots, n)$ and that $\widetilde{U}_{\lambda}^{3} \cap S_{\lambda}^{2}=f_{\lambda}^{2}$ and $\widetilde{U}_{\lambda}^{3} \cap S_{0}^{2}=f_{\lambda}^{\prime 2}$ are 2-balls in e_{λ}^{2} and $e_{\lambda}^{\prime 2}$ respectively $(\lambda=1, \cdots, 2 n)$. Then, the fusion $K^{*^{2}}=\eta \xi\left(\bigcup_{\lambda=0}^{2 n} S_{\lambda}^{2}-\bigcup_{\lambda=1}^{2 n}\left(f_{\lambda}^{2} \cup f_{\lambda}^{\prime 2}\right)\right) \cup \eta \xi\left(\bigcup_{\lambda=1}^{2 n} \partial \widetilde{U}_{\lambda}^{3}-\bigcup_{\lambda=1}^{2 n}\left(f_{\lambda}^{2} \cup \dot{f}_{\lambda}^{\prime 2}\right)\right)$ not only belongs to $\left\{\tilde{K}^{2}\right\}$ which coincides with $\left\{K^{2}\right\}$, but also the tubes $\eta \xi\left(\widetilde{U}_{\lambda}^{3}\right)(\lambda=1, \cdots$, $2 n$) does not meet any 3 -ball $B_{i}^{3}(i=1, \cdots, n)$. Since we can construct a 3 -ball bounded by the $2-\mathrm{knot} K^{*^{2}}$ in R^{4} as we have done in the first-step of the proof, the $2-\mathrm{knot} K^{*^{2}}$ is unknotted in R^{4}. This implies that \widetilde{K}^{2} is unknotted, and the proof is thus complete.

From (2, 2) ${ }^{\prime}$, we have easily the main theorem of this paper:
Theorem (2,2). For a ribbon 2-knot K^{2} in S^{4}, K^{2} is unknotted in S^{4}, if and only if $\pi_{1}\left(S^{4}-K^{2}\right)=Z$.

Corollary (2, 3). Let K^{2} be a 2-knot in R^{4} satisfying the following (1), (2) and (3). Then K^{2} is unknotted in R^{4};
(1) a 2-node $K^{2} \cap H_{+}^{4}$ containes no minimum,
(2) the 2-nodes $K^{2} \cap H_{+}^{4}$ and $K^{2} \cap H_{-}^{4}$ are symmetric each other with respect to the hyperplane R_{0}^{3},
(3) the knot $k=K^{2} \cap R_{0}^{3}$ is unknotted in R_{0}^{3}.

Proof. This follows from (2, 2)'. Since K^{2} satisfies (1) and (2), K^{2} is a
ribbon 2-knot, see [6]. Moreover there is a homomorphism of $\pi_{1}\left(R_{0}^{3}-k\right)$ onto $\pi_{1}\left(R^{4}-K^{2}\right)$, cf. p. 132-6 in [9]. Then, it is easy to see that $\pi_{1}\left(R^{4}-K^{2}\right)=Z$ as $\pi_{1}\left(R_{0}^{3}-k\right)=Z$ by the condition (3). $(2,3)$ is a proposition analogous to the theorem in [11].

The converse of $(2,3)$ is not always true, see the remark below:
Remark. There is an unknotted 2-knot K^{27} which satisfies (1) and (2) in $(2,3)$ but does not satisfy (3) in $(2,3)$, see the following example.

The knot k in R_{0}^{3}, described in Fig. (3), is knotted in R_{0}^{3}, although its Alexander polynomial $\Delta(t)=1$, see Fig. (13) on p. 151 in [10].

R_{-2}^{3}

R_{-1}^{3}

k
R_{0}^{3}

R_{1}^{3}

R_{2}^{3}

Fig. 3

3. A generalization to the higher dimensional case

Let K^{m} be a locally flat m-sphere in R^{m+2} and let W^{m+1} be a $(m+1)$-manifold satisfying the following (1), (2) and (3):
(1) $W^{m+1} \subset R^{m+2}, \quad \partial W^{m+1}=K^{m}$,
(2) $W^{m+1} \approx B^{m+1}$ or $W^{m+1} \approx \#\left(S^{1} \times S^{m}\right)-B^{m+1}$,
(3) if $W^{m+1} \approx B^{m+1}, W^{m+1}$ has a trivial system of m-spheres $\left\{S_{1}^{m}, \cdots, S_{2 n}^{m}\right\}$ such that
(i) the locally flat m-link $\left\{S_{1}^{m}, \cdots, S_{2 n}^{m}\right\}$ is combinatorially trivial in R^{m+2},
(ii) $S_{i}^{m} \cup S_{n+i}^{m}$ bounds a spherical-shell N_{i}^{m+1} in $W^{m+1}{ }^{8)}$,
(iii) $W^{m+1}-\stackrel{\circ}{N}_{1}^{m+1} \cup \cdots \cup \stackrel{N}{n}_{n}^{m+1} \approx B^{m+1}-\Delta_{1}^{m+1} \cup \cdots \cup \Delta_{2 n}^{m+1} .{ }^{9)}$

Then, we have the following theorem in the same way as $(2,2)$.
Theorem (3, 1). Let K^{m} be a locally flat m-sphere in S^{m+2} and ($m+1$)manifold W^{m+1} satisfying the above conditions. Then, K^{m} is unknotted ${ }^{10)}$ in S^{m+2}, if and only if $\pi_{1}\left(S^{m+2}-K^{m}\right)=Z$.

Kobe University
7) Prof. R.H. Fox named this 2-knot Terasaka-Kinoshita 2-sphere.
8) $N_{i}^{m+1} \approx S^{m} \times[0,1]$.
9) $\Delta_{1}^{m+1}, \cdots, \Delta_{2 n}^{m+1}$ are disjoint ($m+1$)-simplices in $a(m+1)$-ball B^{m+1}.
10) At least topologically unknotted.

References

[1] T. Homma: On Dehn's Lemma for S^{3}, Yokohama Math. J. 5 (1957), 223-244.
[2] C.D. Papakyriakopoulos: On Dehn's lemma and the asphericity of knots, Ann. of Math. 66 (1957), 1-26.
[3] A. Shapiro and J.H.C. Whitehead: A proof and extension of Dehn's lemma, Bull. Amer. Math. Soc. 64 (1958), 174-178.
[4] J. Stallings: On topologically unknotted spheres, Ann. of Math. 77 (1963), 490-503.
[5] J. Levine: Unknotting spheres in codimension two, Topology 4 (1965), 9-16.
[6] T. Yanagawa: On ribbon 2-knots, Osaka J. Math. 6 (1969), 447-464.
[7] R. Penrose, E.C. Zeeman and J.H.C. Whitehead: Imbeddings of manifolds in Euclidean space, Ann. of Math. 73 (1961), 154-212.
[8] S. Suzuki: Local knots of 2-spheres in 4-manifolds, Proc. Japan Acad. 45 (1969), 34-38.
[9] R.H. Fox: A quick trip through knot theory, Top. of 3-manifolds and related topics., edited by M.K. Fort Jr. Prentice Hall, 1962.
[10] S. Kinoshita and H. Terasaka: On unions of knots, Osaka Math. J. 9 (1957), 131-153.
[11] F. Hosokawa: On trivial 2-spheres in 4-space, The Quart. J. Math. (2) 19 (1968), 249-256.

