Yanagawa, T. Osaka J. Math. 7 (1970), 165–172

ON RIBBON 2-KNOTS III ON THE UNKNOTTING RIBBON 2-KNOTS IN S⁴

TAKAAKI YANAGAWA

(Received September 8, 1969)

1. Introduction

Concerning the unknotting theorem for the pair (S^n, M^{n+2}) with the codimension 2, there are several remarkable results; by T. Homma in the case n=1and $M^3=S^3$, by C.D. Papakyriakopoulos in the case n=1 and any 3-manifold M^3 , by J. Stallings in the case $n \ge 3$ and $M^{n+2}=S^{n+2}$ in the topological sense and by J. Levine in the case $n \ge 4$ and $M^{n+2}=S^{n+2}$ in the combinatorial sense, see [1], [2], [3], [4] and [5]. Confining ourselves to the case $M^{n+2}=S^{n+2}$, the unknotting theorem has not been solved in the case n=2.

In this paper, we will prove the following theorem which is an answer under an additional condition to the unknotting theorem in the case n=2 and $M^4=S^4$:

Theorem (2, 2). For a ribbon 2-knot K^2 in S^4 , K^2 is unknotted in S^4 if and only if $\pi_1(S^4-K^2)=Z^{12}$.

In this paper, everything will be considered from the combinatorial point of view.

2. Proof of Theorem

Lemma $(2, 1)^{2^{\circ}}$. Let M^4 be a combinatorial 4-manifold and let γ be a simple closed curve in \mathring{M}^4 which is contractible to a point in \mathring{M}^4 . Then, γ bounds a non-singular, locally flat 2-ball in \mathring{M}^4 ³⁾.

Proof. Since γ is contractible to a point in \mathring{M}^4 , there is a PL-map φ of a 2-ball D^2 into \mathring{M}^4 satisfying the following (1), (2) and (3):

- (1) $\varphi(D^2) \subset \mathring{M}^4$, $\varphi(\partial D^2) = \gamma$,
- (2) $\varphi(D^2)$ is in a general position in \mathring{M}^4 so that the self-intersection consists of a finite number of double points,

¹⁾ See [6] for the definition of the ribbon 2-knots in \mathbb{R}^4 .

²⁾ Cf. the result in [7], the proof of Lemma (2, 7).

³⁾ X and ∂X mean the interior and the boundary of X respectively.

(3) there are at most a finite number of *locally knotted points* on $\varphi(D^2)$ which are different from the double points in (2).

Here, in (3), a point x of $\varphi(D^2)$ is called a *locally knotted point*⁴⁾ if the pair $(Lk(x, \varphi(D^2)), Lk(x, M^4))$ is a knotted sphere-pair for the combinatorial triangulation of M^4 for which $\varphi(D^2)$ is a subcomplex and the point x is a vertex. If there is a locally knotted point x of $\varphi(D^2)$, it is possible to exchange a nonsingular 2-ball $St(x, \varphi(D^2))$, which may be not locally flat, for an immersed 2-ball $\rho(B^2)$ in a 4-ball $B^4 = \operatorname{St}(x, M^4)$ by an immersion ρ of a 2-ball B^2 such that $\rho(\partial B^2) = \varphi(D^2) \cap \partial B^4$, $\rho(\dot{B}^2) \subset \dot{B}^4$ and that each pair ($\rho Lk(y, B^2), Lk(\rho(y), B^4)$) is unknotted for a fine subdivision of B^4 and each virtex y of B^2 . Perform the exchange for all locally knotted points of $\varphi(D^2)$. By making use of the general position theory, we have a *PL*-map φ' of D^2 into \dot{M}^4 satisfying the following (1'), (2') and (3'):

- $(1') \quad arphi'(D^2) {\subset} M^4, \quad arphi'(\partial D^2) = \gamma \ ,$
- (2') $\varphi'(D^2)$ is in a general position in M^4 so that the self-intersection consists of a finite number of double points,
- (3') $\varphi'(D^2)$ has no locally knotted point.

Let x be a double point of $\varphi'(D^2)$ and $x = \varphi'(y) = \varphi'(y')$ for just two points y, y' of D^2 . Then there is an arc α spanning y and a point y" on ∂D^2 such that the image $\varphi'(\alpha)$ does not cross any double point of $\varphi'(D^2)$ except for x. Let V^4 be a regular neighborhood of $\varphi'(\alpha)$ in M^4 . Since V^4 is a 4-ball, there is a PL-homeomorphism ϕ of V^4 onto a standard 4-cube Δ^4 such that

(i)
$$\Delta^4$$
; $|x_1|$, $|x_2|$, $|x_3|$, $|x_4| \leq 2$

- (ii) $\phi \varphi'(\alpha); \ 0 \leq x_1 \leq 1, \ x_2 = x_3 = x_4 = 0$
- (iii) $\phi \varphi'(x); x_1 = x_2 = x_3 = x_4 = 0$

(iv)
$$\phi(V^4 \cap \varphi'(D^2)); \begin{cases} -2 \leq x_1 \leq 1, \ x_2 = x_3 = 0, \ |x_4| \leq 2 \\ x_1 = 0, \ |x_2|, \ |x_3| \leq 2, \ x_4 = 0 \cdots (*). \end{cases}$$

Let N^2 be the 2-ball in $\phi \varphi'(D^2)$ defined by the equation (*) and let N'^2 be the 2-ball in Δ^4 defined as follows:

(v)
$$N'^2$$
;
$$\begin{cases} 0 \leq x_1 < 2, \ |x_2| \leq 2, \ |x_3| = 2, \ x_4 = 0, \\ 0 \leq x_1 < 2, \ |x_2| = 2, \ |x_3| \leq 2, \ x_4 = 0, \\ x_1 = 2, \ |x_2|, \ |x_3| \leq 2, \ x_4 = 0. \end{cases}$$

If we consider a singular 2-ball $B'^2 = \phi^{-1}((\phi \varphi'(D^2) - N^2) \cup N'^2)$, then this 2-ball B'^2 is not only locally flat but also has a number of the double points less

166

⁴⁾ See [8] p. 34.

RIBBON 2-KNOTS III

than the number of those of $\varphi'(D^2)$. Moreover we have that $\partial B'^2 = \gamma$. Repeating this process, we have finally *a locally flat*, *non-singular 2-ball* B^2 such that $B^2 \subset \mathring{M}^4$ and that $\partial B^2 = \gamma$. The proof is thus complete.

Let K^2 be a ribbon 2-knot in R^4 , then there is a 3-manifold W^3 satisfying the following properties:

- (1) $W^3 \approx B^3$ or $W^3 \approx \# (S^1 \times S^2) \mathring{B}^{35}$,
- (2) If W³≈B³, W³ has a trivial system of 2-spheres {S²₁, ..., S²_{2n}} satisfying that
- (i) a 2-link $\{S_1^2, \dots, S_{2n}^2\}$ is trivial in \mathbb{R}^4 ,
- (ii) $S_i^2 \cup S_{n+i}^2$ bounds a spherical-shell N_i^3 in W^3 $(i=1, \dots, n)^{6}$,
- (iii) $W^3 \mathring{N}_1^3 \cup \cdots \cup \mathring{N}_n^3 \approx B^3 \mathring{\Delta}_1^3 \cup \cdots \cup \mathring{\Delta}_{2n}^3$

see (3, 5) and (3, 6) in [6].

Let Δ_0^3 be a 3-ball in $W^3 - N_1^3 \cup \cdots \cup N_n^3$, let S_0^2 be a boundary 2-sphere of Δ_0^3 and let $\beta_1, \dots, \beta_{2n}$ be a collection of mutually disjoint arcs spanning S_0^2 and S_1^2, \dots, S_{2n}^2 in $W^3 - N_1^3 \cup \cdots \cup N_n^3 \cup \Delta_0^3$ respectively. Moreover, let U_{λ}^3 be a regular neighborhood of the arc β_{λ} in $W^3 - \mathring{N}_1^3 \cup \cdots \cup \mathring{N}_n^3 \cup \mathring{\Delta}_0^3$ where $U_{\lambda}^3 \cap S_{\lambda}^2 = e_{\lambda}^2$ and $U_{\lambda}^3 \cap S_0^2 = e_{\lambda}^{\prime 2}$ are 2-balls such that $e_{\lambda}^{\prime 2} \cap e_{\mu}^{\prime 2} = \emptyset$ ($\lambda \neq \mu, \lambda, \mu = 1, \dots, 2n$). Since the 2-link $\{S_0^2, \dots, S_{2n}^2\}$ is trivial in \mathbb{R}^4 , there is an isotopy ξ of \mathbb{R}^4 by which $\xi(S_{\lambda}^2)$ ($\lambda = 0, \dots, 2n$) are moved into the position given by the equations below:

$$\begin{split} \xi(S_0^2); \ x_1^2 + x_2^2 + x_3^2 &= 1, \quad x_4 = 0 \\ \xi(S_i^2); \ (x_1 - 4i)^2 + x_2^2 + x_3^2 &= 1, \quad x_4 = 0 \\ \xi(S_{n+i}^2); \ (x_1 - 4i)^2 + x_2^2 + x_3^2 &= 2, \quad x_4 = 0 \\ \xi(N_i^3); \ 1 &\leq (x_1 - 4i)^2 + x_2^2 + x_3^2 \leq 2, \quad x_4 = 0 \quad (i = 1, \dots, n) \,. \end{split}$$

Moreover, we may suppose that the center line $\xi(\beta_{\lambda})$ of the tube $\xi(U_{\lambda}^{3})$ is given by the equations below:

 $\begin{aligned} x_1 &= 4i, \quad x_2 = 0, \quad x_3 = 1 - x_4, \quad x_4 \ge 0 \\ &\text{ in the neighborhood of } \xi(\beta_i \cap S_i^2), \\ x_1 &= 4i, \quad x_2 = 0, \quad x_3 = \sqrt{2} - x_4, \quad x_4 \le 0 \\ &\text{ in the neighborhood of } \xi(\beta_{n+i} \cap S_{n+i}^2) \\ &(i = 1, 2, \cdots, n) . \end{aligned}$

Theorem (2. 2)'. For a ribbon 2-knot K^2 in R^4 , K^2 is unknotted in R^4 , if and only if $\pi_1(R^4-K^2)=Z$.

⁵⁾ B^3 means a 3-ball and \approx means to be homeomorphic to.

⁶⁾ $N_i^3 \approx S^2 \times [0, 1].$

The proof of this theorem is divided into two steps, and the second-step of the proof will be given later after we have proved two lemmas (2, 3) and (2, 4). Since K^2 is a ribbon 2-knot in R^4 , it bounds a 3-manifold W^3 previously described, therefore if $W^3 \approx B^3$, we have nothing particular to say. Hence, in the following discussion we will consider the case that $W^3 \approx B^3$. Consider the trivial system $\{S_1^2, \dots, S_{2n}^2\}$ and the isotopy ξ of R^4 as before. Let \tilde{K}^2 be a 2-knot in R^4 such that

$$\tilde{K}^2 = \xi (\bigcup_{\lambda=0}^{2n} S_{\lambda}^2 - \bigcup_{\lambda=1}^{2n} (\mathring{e}_{\lambda}^2 \cup \mathring{e}_{\lambda}'^2)) \cup \xi (\bigcup_{\lambda=1}^{2n} \partial U_{\lambda}^3 - \bigcup_{\lambda=1}^{2n} (\mathring{e}_{\lambda}^2 \cup \mathring{e}_{\lambda}'^2)) .$$

Then, since two 2-spheres $\xi(K^2)$ and \tilde{K}^2 bound a 3-manifold which is a subcomplex of $\xi(W^3)$ and which is homeomorphic to $S^2 \times [0, 1]$ in \mathbb{R}^4 , \tilde{K}^2 belongs to the 2-knot-type $\{\xi(K^2)\}$ which coincides with the 2-knot-type $\{K^2\}$.

Let B_i^3 be a 3-ball bounded by the 2-sphere $\xi(S_i^2)$:

$$B_i^3$$
; $(x_1 - 4i)^2 + x_2^2 + x_3^2 \leq 1$, $x_4 = 0$ $(i = 0, 1, 2, \dots, n)$.

First-step of the proof of (2, 2)': Each 3-ball B_i^3 bounded by the 2-sphere $\xi(S_i^2)$ $(i=1, \dots, n)$ in R_0^3 does not meet any arc $\xi(\beta_{\lambda})$ except for the end points $(\lambda=1, \dots, 2n)$.

Since we can find a regular neighborhood U_{λ}^{3} of β_{λ} so fine that $\xi(U_{\lambda}^{3}) \cap B_{i}^{3} = \emptyset$ for all i and λ ($i=1, \dots, n, \lambda=1, \dots, 2n$), the 2-knot \tilde{K}^{2} bounds a 3-ball $B_{0}^{3} \cup B_{1}^{3} \cup \dots \cup B_{n}^{3} \cup B_{n+1}^{3} \cup \dots \cup B_{2n}^{3} \cup \xi(U_{1}^{3}) \cup \dots \cup \xi(U_{2n}^{3})$, where the 3-ball B_{n+i}^{3} is bounded by $\xi(S_{n+i}^{2})$ in the neighborhood of $\xi(N_{i}^{3}) \cup B_{i}^{3}$ in R^{4} so that $B_{n+i}^{3} \cap B_{j}^{3} = \emptyset$, $B_{n+i}^{3} \cap \xi(U_{\lambda}^{3}) = \emptyset$ ($\lambda \pm n + i$) and $= \xi(e_{\lambda}^{2})$ ($\lambda = n + i$) $(i, j=1, \dots, n, \lambda=1, \dots, 2n)$: for a sufficiently small $\varepsilon(<0)$,

$$B^{\mathbf{3}}_{n+i}; \begin{cases} (x_1-4i)^2+x_2^2+x_3^2=2, & -\varepsilon \leq x_4 \leq 0\\ (x_1-4i)^2+x_2^2+x_3^2 \leq 2, & x_4=-\varepsilon\\ (i=1, 2, \cdots, n). \end{cases}$$

If there is a 3-ball B_i^3 which meets some arcs $\xi(\beta_{\lambda})$ $(1 \le i \le n, 1 \le \lambda \le 2n)$, we will consider how to remove the intersection of the 3-ball B_i^3 and the arcs $\xi(\beta_{\lambda})$ without changing the 2-knot-type of \tilde{K}^2 . We need following two lemmas (2, 3) and (2, 4) to remove the intersection.

Lemma (2, 3). If there are an arc b in $\mathbb{R}^4 - \tilde{K}^2$ and a subarc β'_{λ} of the arc β_{λ} $(1 \leq \lambda \leq 2n)$ such that the simple closed curve $\gamma = b \cup \xi(\beta'_{\lambda})$ is contractible in $\mathbb{R}^4 - \tilde{K}^2$, then there exists an isotopy η of \mathbb{R}^4 by which $\eta(\tilde{K}^2) = \tilde{K}^2$ and $\eta \xi(\beta_{\lambda}) = \xi(\beta_{\lambda} - \beta'_{\lambda}) \cup b$.

Proof. Since β_{λ} is contained in $\mathring{U}_{\lambda}^{3}$ except two end points, we can triangulate R^{4} so that the regular neighborhood $N(\check{K}^{2})$ of \check{K}^{2} in R^{4} does not meet $\xi(\beta_{\lambda})$. If we apply (2, 1) to the 4-manifold $M^{4} = R^{4} - \mathring{N}(\check{K}^{2})$ and the simple closed

168

curve $\gamma = b \cup \xi(\beta'_{\lambda})$, the simple closed curve γ bounds a locally flat 2-ball B^2 in \mathring{M}^4 . Therefore there exists a combinatorial 4-ball B^4 containing B^2 in its interior and contained in $R^4 - \check{K}^2$. Now, we have easily an isotopy which is identical on ∂B^4 and transfers the subarc $\xi(\beta'_{\lambda})$ onto the arc b. Hence, the proof is complete.

Lemma (2, 4). If $\pi_1(R^4 - \tilde{K}^2) = Z$ and an arc $\xi(\beta_\lambda)$ $(1 \le \lambda \le 2n)$ pierces through a 3-ball B_i^3 $(1 \le i \le n)$ at a point A, there are an arc b in $R^4 - \tilde{K}^2$ and a subarc β'_λ on the arc β_λ containing A such that the simple closed curve $b \cup \xi(\beta'_\lambda)$ is contractible in $R^4 - \tilde{K}^2$.

Proof. For convenience's sake, we may suppose that $\xi(\beta_{\lambda})$ is given in the neighborhood of the point A as follows:

$$\xi(\beta_{\lambda}); x_1 = 4i, x_2 = x_3 = 0, -1 \leq x_4 \leq 1.$$

Consider the cross-sections of $\xi(S_i^2)$, $\xi(S_{n+i}^2)$ and $\xi(N_i^3)$ by the hyperplane P; $x_3=0$. Then, we have the following figure Fig. (1).

Place $\xi(U_{\lambda}^{3})$ in a general position with respect to the hyperplane P, then the cross-section $\xi(U_{\lambda}^{3}) \cap P$ is at most 2-dimensional, and we can find an arc b spanning two points A_{+} and A_{-} in $P-P \cap \tilde{K}^{2}$ as follows:

$$b; \begin{cases} x_1 = 4i, & 0 \leq x_2 \leq 2, & x_3 = 0, & x_4 = \varepsilon \\ x_1 = 4i, & x_2 = 2, & x_3 = 0, & -\varepsilon \leq x_4 \leq \varepsilon \\ x_1 = 4i, & 0 \leq x_2 \leq 2, & x_3 = 0, & x_4 = -\varepsilon, \end{cases}$$

see Fig. (2).

Since the 2-knot \tilde{K}^2 bounds the orientable 3-manifold $\tilde{W}^3 = \xi(N_1^3 \cup \cdots \cup N_n^3 \cup U_1^3 \cup \cdots \cup U_{2n}^3 \cup \Delta_0^3)$ in R^4 , we will give an orientation induced from the orientation of \tilde{W}^3 for \tilde{K}^2 . Then, the trivial link $\xi(S_i^2 \cup S_{n+i}^2) \cap P$, which bounds an annulus $\xi(N_i^3) \cap P$ in P, can be given the orientation induced from that of $\xi(N_i^3) \cap P$, see Fig. (1) again. Since $\tilde{K}^2 \cap P$ is a cross-section of a 2-knot \tilde{K}^2 , the simple closed curves c_i and c_{n+i} represent the generator of $H_1(R^4 - \tilde{K}^2)$, see Fig. (2) again. Therefore, the loop $w\gamma w^{-1}$ represents an element of the commutator subgroup of $\pi_1(R^4 - \tilde{K}^2)$ for any arc w from the base-point to a point on γ , where the simple closed curve γ is $b \cup \xi(\beta'_\lambda)$ for the segment $\xi(\beta'_\lambda)$ between A_+ and A_- on $\xi(\beta_\lambda)$. Now, $w\gamma w^{-1} \sim 0$ for any arc w, because $\pi_1(R^4 - \tilde{K}^2) = Z$; that is, γ is contractible in $R^4 - \tilde{K}^2$.

Second-step of the proof of (2, 2)': There is a 3-ball B_i^3 which meets some arcs $\xi(\beta_{\lambda})$.

Since the 2-knot \tilde{K}^2 constructed by making use of W^3 , S_{λ}^2 and U_{λ}^3 and bounding the 3-manifold $\tilde{W}^3 = \xi(N_1^3 \cup \cdots \cup N_n^3 \cup U_1^3 \cup \cdots \cup U_{2n}^3 \cup \Delta_0^3)$ in R^4 belongs to the 2-knot-type $\{K^2\}$, it is sufficient to prove that \tilde{K}^2 is unknotted. On the other hand, by making use of (2, 4) and (2, 5), there exists an isotopy η of R^4 such that $\eta(\tilde{K}^2) = \tilde{K}^2$ and that $\eta\xi(\beta_{\lambda})$ ($\lambda = 1, \cdots, 2n$) does not meet any 3-ball B_i^3 ($i=1, \cdots, n$). Since $\xi(\beta_{\lambda}) \subset \xi(U_{\lambda}^3)$, so $\eta\xi(\beta_{\lambda}) \subset \eta\xi(U_{\lambda}^3)$. Take a sufficiently fine tube (a regular neighborhood in U_{λ}^3) \tilde{U}_{λ}^3 of the arc β_{λ} in U_{λ}^3 so that $\eta\xi(\tilde{U}_{\lambda}^3)$ does not meet any \mathring{B}_i^3 ($i=1, \cdots, n$) and that $\tilde{U}_{\lambda}^3 \cap S_{\lambda}^2 = f_{\lambda}^2$ and $\tilde{U}_{\lambda}^3 \cap S_0^2 = f_{\lambda}^{\prime 2}$ are 2-balls in e_{λ}^2 and $e_{\lambda}^{\prime 2}$ respectively ($\lambda = 1, \cdots, 2n$). Then, the fusion $K^{*2} = \eta\xi(\bigcup_{\lambda=0}^{2n} S_{\lambda}^2 - \bigcup_{\lambda=1}^{2n} (\mathring{f}_{\lambda}^2 \cup \mathring{f}_{\lambda}^{\prime 2})) \cup \eta\xi(\bigcup_{\lambda=1}^{2n} \partial \tilde{U}_{\lambda}^3 - \bigcup_{\lambda=1}^{2n} (\mathring{f}_{\lambda}^2 \cup \mathring{f}_{\lambda}^{\prime 2}))$ not only belongs to $\{\tilde{K}^2\}$ which coincides with $\{K^2\}$, but also the tubes $\eta\xi(\tilde{U}_{\lambda}^3)$ ($\lambda = 1, \cdots,$ 2n) does not meet any 3-ball B_i^3 ($i=1, \cdots, n$). Since we can construct a 3-ball bounded by the 2-knot K^{*2} in R^4 as we have done in the first-step of the proof, the 2-knot K^{*2} is unknotted in R^4 . This implies that \tilde{K}^2 is unknotted, and the proof is thus complete.

From (2, 2)', we have easily the main theorem of this paper:

Theorem (2, 2). For a ribbon 2-knot K^2 in S^4 , K^2 is unknotted in S^4 , if and only if $\pi_1(S^4-K^2)=Z$.

Corollary (2, 3). Let K^2 be a 2-knot in R^4 satisfying the following (1), (2) and (3). Then K^2 is unknotted in R^4 ;

- (1) a 2-node $K^2 \cap H^4_+$ containes no minimum,
- (2) the 2-nodes $K^2 \cap H^4_+$ and $K^2 \cap H^4_-$ are symmetric each other with respect to the hyperplane R^3_0 ,
- (3) the knot $k = K^2 \cap R_0^3$ is unknotted in R_0^3 .

Proof. This follows from (2, 2)'. Since K^2 satisfies (1) and (2), K^2 is a

170

ribbon 2-knot, see [6]. Moreover there is a homomorphism of $\pi_1(R_0^3-k)$ onto $\pi_1(R^4 - K^2)$, cf. p. 132-6 in [9]. Then, it is easy to see that $\pi_1(R^4 - K^2) = Z$ as $\pi_1(R_0^3 - k) = Z$ by the condition (3). (2, 3) is a proposition analogous to the theorem in [11].

The converse of (2, 3) is not always true, see the remark below:

There is an unknotted 2-knot K^{2} ⁽⁷⁾ which satisfies (1) and (2) in Remark. (2, 3) but does not satisfy (3) in (2, 3), see the following example.

The knot k in R_0^3 , described in Fig. (3), is knotted in R_0^3 , although its Alexander polynomial $\Delta(t) = 1$, see Fig. (13) on p. 151 in [10].

A generalization to the higher dimensional case 3.

Let K^m be a locally flat *m*-sphere in R^{m+2} and let W^{m+1} be a (m+1)-manifold satisfying the following (1), (2) and (3):

- (1) $W^{m+1} \subset R^{m+2}, \quad \partial W^{m+1} = K^m,$
- (2) $W^{m+1} \approx B^{m+1}$ or $W^{m+1} \approx \#(S^1 \times S^m) \mathring{B}^{m+1}$.
- (3) if $W^{m+1} \not\approx B^{m+1}$, W^{m+1} has a trivial system of *m*-spheres $\{S_1^m, \dots, S_{2n}^m\}$ such that
- (i) the locally flat *m*-link $\{S_1^m, \dots, S_{2n}^m\}$ is combinatorially trivial in \mathbb{R}^{m+2} ,
- (ii) $S_i^m \cup S_{n+i}^m$ bounds a spherical-shell N_i^{m+1} in $W^{m+1,8}$, (iii) $W^{m+1} \mathring{N}_1^{m+1} \cup \cdots \cup \mathring{N}_n^{m+1} \approx B^{m+1} \mathring{\Delta}_1^{m+1} \cup \cdots \cup \mathring{\Delta}_{2n}^{m+1,9}$

Then, we have the following theorem in the same way as (2, 2).

Theorem (3, 1). Let K^m be a locally flat m-sphere in S^{m+2} and (m+1)manifold W^{m+1} satisfying the above conditions. Then, K^m is unknotted¹⁰⁾ in S^{m+2} , if and only if $\pi_1(S^{m+2}-K^m)=Z$.

KOBE UNIVERSITY

⁷⁾ Prof. R.H. Fox named this 2-knot Terasaka-Kinoshita 2-sphere.

⁸⁾ $N_{i}^{m+1} \approx S^{m} \times [0, 1].$

⁹⁾ $\Delta_1^{m+1}, \dots, \Delta_{2m}^{m+1}$ are disjoint (m+1)-simplices in a(m+1)-ball B^{m+1} .

¹⁰⁾ At least topologically unknotted.

References

- [1] T. Homma: On Dehn's Lemma for S³, Yokohama Math. J. 5 (1957), 223-244.
- [2] C.D. Papakyriakopoulos: On Dehn's lemma and the asphericity of knots, Ann. of Math. 66 (1957), 1-26.
- [3] A. Shapiro and J.H.C. Whitehead: A proof and extension of Dehn's lemma, Bull. Amer. Math. Soc. 64 (1958), 174–178.
- [4] J. Stallings: On topologically unknotted spheres, Ann. of Math. 77 (1963), 490-503.
- [5] J. Levine: Unknotting spheres in codimension two, Topology 4 (1965), 9-16.
- [6] T. Yanagawa: On ribbon 2-knots, Osaka J. Math. 6 (1969), 447-464.
- [7] R. Penrose, E.C. Zeeman and J.H.C. Whitehead: Imbeddings of manifolds in Euclidean space, Ann. of Math. 73 (1961), 154-212.
- [8] S. Suzuki: Local knots of 2-spheres in 4-manifolds, Proc. Japan Acad. 45 (1969), 34–38.
- [9] R.H. Fox: A quick trip through knot theory, Top. of 3-manifolds and related topics., edited by M.K. Fort Jr. Prentice Hall, 1962.
- [10] S. Kinoshita and H. Terasaka: On unions of knots, Osaka Math. J. 9 (1957), 131-153.
- [11] F. Hosokawa: On trivial 2-spheres in 4-space, The Quart. J. Math. (2) 19 (1968), 249-256.