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1. Introduction

A complete lattice L is said to be compactly generated, when it has a subset
Σ which satisfies that (1) if #<sup N for an element x of Σ and a subset N
of Σ, there exists a finite number of elements x19 •••, xn of N satisfying x1 U ••• U
xn>x, and (2) every element of L is expressible as a join (supremum) of a subset
of Σ. Σ is called a compact generator system of Lυ. The purpose of the
present paper is to investigate primary decompositions of elements in compactly
generated integral multiplicative lattices20.

Throughout this paper, we let L be a compactly generated integral mul-
tiplicative lattice with a compact generator system Σ. In Section 2 we define
a μ-system as a suitable subset of Σ, which is somewhat different from the
one introduced in [13]. By using the μ,-systems, we define radicals of elements
in L and consider meet decompositions of radicals by prime elements. In
Section 3 right primary elements are defined by using radicals defined in
Section 2. The result in this section is a uniqueness theorem of short deco-
mposition for elements having right primary decompositions. Section 4 deals
with right upper M-components of elements, where M is a ^-system. A right
upper M-component is defined by using the concept of M-z>-systems, which
are also somewhat different from the one introduced in [13]. It will be shown
in this section that the right upper M-component of an element has two differ-
ent representations (Theorem 3). Section 5 is mainly concerned with minimal
primes of elements and decompositions of upper isolated ^-components of
elements. The results in this section are obtained under two conditions. The

1) In [12, §9] Σ is called an Λ/-system of L. It can be proved that a lattice is compactly
generated in the sense of Dilworth and Crawley ([5], [6]), if and only if it has an α;-system, that
is, it is compactly generated in our sense.

2) Cf. [3, CHAP. XIII].
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one is the ascending chain condition for elements, and the other is the condition

(N), which is concerned with weight and type of product-forms. Under some

modified semi-modularity for L, it can be proved, in Section 6, that every

element of L has right primary decomposition if and only if L has right weak

Artin-Rees property. The proofs of the results obtained in this section are

similar as in [7], [9] and [10]. But in order to make this paper self-contained

we include proofs of the results. Section 7 lays two applications. The ideal

theory in non-associative rings has been developed in [2] and [8]. The results

obtained in the first half of this section are generalizations of the classical primary

decompositions of ideals in commutative rings to ideals in (N)-rings (non-

associative and non-commutative), and which are concerned with [2], [8], [10]

and [15]. In [3] Birkhoίf has pointed out that the lattice of normal subgroups of

a group is a commutative integral residuated cm-lattice under the commutator-

product and the set-inclusion. It is easy to see that the set of the normal

subgroups with single generators is a compact generator system of the lattice.

In the latter half of this section, primary decompositions of normal subgroups of

(N)-groups are obtained as an application of the results in the preceding sections,

where (N)-groups are regarded as a generalization of nilpotent groups. Recently
primary decomposition theory has been studied in various algebraic systems ([1],

[17], [18], etc.). In particular, the theory in groupoids is obtained, among

others, in [1]. We shall note here that the results in Sections 2^6 are applicable

to subsystems of some sorts of groupoids, but which is not collected in this

paper.
Elements of L will be denoted, throughout this paper, by a, b, c, •••, and

those of Σ, in particular, by ΛJ, y, #, ••• with or without suffices. The greatest

element of L will be denoted by e, which is not necessarily multiplicative unit

of L ([3, CHAP. XIII]). ab<a and ab<b are assumed for two elements a, b
of L. An element a is said to be less than b if a<b. The symbols V and Λ
will denote the set-theoretic union and the intersection respectively. By
{a^A I a has property P] we mean the set of all elements a in A, each of which

has property P.

2. Radicals of elements

Let a, b be any two elements of L. The set of the elements x of Σ such

that xb<a is not void. The join (supremum) of such elements x will be denoted

by ajb, and called a (right) quotient of a by b. It is easily verified that ajb is

not necessarily the join of the elements c of L such that cb<a. The quotient

has the following properties: (1) a<a\b^ (2) (a\V)b<a, (3) b<a implies α/δ—e,

(4) b<a implies b/c<a/c, (5) c<b implies a\b<a\c, (6) inf (a/bλ)=a/(sup bλ)

and (7) inf (αλ/*)=(inf aλ)/b. λ λ
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From now on, the symbols P(ά) and Σ(#) will mean the sets
a/x=a} and {x^Σ\x<a}, respectively. The complements of P(ά) and Σ(fl)
in Σ will be denoted by P'(a) and Σ'(fl) respectively. It is then easy to see

that P(ά) is contained in Σ'(fl) for every element

DEFINITION 1. A subset M of Σ is called a μ-system, if there exists an
z of M such that z<xy for any two elements x9 y of M. The void set is to be
element considered as a μ-system.

An element p of L is said to be prime if whenever a product of two elements
of L is less than />, then at least one of the factors is less than p.

Lemma 1. The following conditions are equivalent to one another.

1) p is prime,
, 2) xy<p (x, jyeΣ) implies x<p or y<p,

3) Σ'(/>) is a μ-system.

Lemma 2. An element p (φ£) is prime if and only if P(p)=^'(p).

Proofs. These two lemmas are immediate.
The following lemma is somewhat different from Lemma 1 in [14].

Lemma 3. Let a be an element of Ly and let M be a μ-system which does
not meet Σ(#). Then there exists an element p which is maximal in the set con-
sisting of the elements b such that b>a and Σ(δ) does not meet M. p is necessarily
a prime element.

Proof. Since L is compactly generated, we can show, by Zorn's lemma,
the existence of p mentioned in the first part of the lemma. To prove the

last part of the lemma, we suppose that xy<p, x^p and yd£*p for x, y in Σ.
Then there exist x' and y' in M such that x'<p\Jx and y'<p\ly. Since

there exists an element u of M such that u<x'y'y we obtain that u<(p\Jx)

(p \Jy)<p \Jxy=p. This is a contradiction.

DEFINITION 2. Let a be an element of L. A radical of a, denoted by
rad(α), is the join of all elements x of Σ having the property that every μ-system
which contains x meets Σ(α).

Theorem 1. For every element a of L, rad(ά) is the meet (infimunί) of the
primes pλ such that px>a.

Proof. First we shall show that rad(α)<^>λ for every prime />λ such that

p\>a If we suppose that there exists p such that p>a and p^τad(a)y we
can take an element x of Σ such that x^p and x < rad(β). Then there exists
a finite number of elements x19 ••• , xn such that x<xί\J ••• \Jxn and each x{ has
the property that every μ-system which contains xt meets Σ(fl). Now, since
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there exists Xj such that Xjd^p, Σ'(p) meets Σ(α), which is a contradiction.
We have therefore rad(α)<inf/>λ. Next, let x be any element of Σ such that

it is not less than rad(#). Then there exists a μ-system M which does not meet

Σ(fl) and contains x. Hence by using Lemma 3 we can take a prime element
p such that p>a and Σ(/>) does not meet M. Then evidently x is not less
than p. Therefore x is not less than inf pλ. This completes the proof.

\

DEFINITION 3. Let a be an element of L. A prime element p of L is said to
be a minimal prime belonging to a, if (1) p>a and (2) there exists no prime
element/)' such that a<p'<p.

Let p be a prime element such that p>a. Then it is proved that the set
of the primes which are in the closed interval [a, p] is inductive for downwards;
that is, for every descending chain C consisting of primes in [«,/>], inf C is a
prime in [α, p]. Hence Zorn's lemma assures the existence of a minimal prime
belonging to a which is less than p. Therefore we obtain the following

Corollary. For every element a of L, rad(ά) is the meet of the minimal
primes belonging to a.

For radicals we can prove the following

Lemma 4. (1°) a<rad(a), (2°) a<b implies rad(α) < rad(δ), (3°)
rad(rad(«))=rad(tf), (4°) rad(αΠ ft)=rad(a)n rad(6)=rad(fl*).

3. Elements with right primary decompositions

DEFINITION 4. An element q of L is said to be (right) primary, if whenever
xy<q and jyfprad(<?) for x, y in Σ, then x<q.

It is easy to see that q is primary if and only if ab<q and b <p rad (q) imply
a<q for a, b in L.

Lemma 5. An element q of L is primary if and only if Σ (rad(q)) contains

P'(ύ
Proof. This is immediate.

Lemma 6. If qlf , qn is a finite number of primary elements with the same
radicals, say rad(qi)=c(ι=l, •-• , n), then q=q1Γ\ m Γ\qn ™ primary and has the
radical c.

Proof. It is eivdent that ra.d(q)=c by the property (4°) in Lemma 4. In
order to prove that q is primary, we suppose that xy<q and jf|S rad (<?)=£.
Then xy < qέ and y <ĵ  rad (qt) hence x < qf for i= 1 , , n. We obtain therefore
Λ?<?ιIΊ ••• n qn

=(l> completing the proof.

Lemma 7. Let a=q1Γi •••(!?« be an ir redundant decomposition of a into
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a finite number of primary elements q{. If rad(qi)^rad(qk) for some i and k, a
is not primary.

Proof. Put tj=q1 Π ••• ΓΊ y_! Π <7/+ι Π ••• ΓΊ qn- Then tjqj<a. Since tj^a,
we have <7y< rad (α)= n?=1rad(^ ). Hence rad(^y)< Π ?=1 rad (#,-) foτj=l, ,n.

We obtain therefore rad (<?!)= •••—rad (<?„), a contradiction.

DEFINITION 5. An irredudant decomposition

of a into primary elements q{ is called a short decomposition of α, if none of
the meets of two (or more) of qιy ••• , qn are primary.

Theorem 2. If an element a of L can be decomposed as a meet of a finite
number of primary elements, a has a short decomposition. In any two short de-
compositions of a, the number of primary components as well as their radicals are

necessarily the same.

Proof. By Lemmas 6 and 7, a has a short decomposition. Now, let

(*) and Λ=gfΠ ••• ΓΊ #* be any two short decompositions of a. Take a maximal

element in the po-set (rad^), ••• , rad(^Λ), rad (<?? ),•••, rad (<?*)}. We may
suppose, without loss of generality, that the maximal element is rad(q1).

We now show that rad(^) occurs among rad (<??), k=l, ,m. Assume that
rad(^1)Φrad(^*) for all k. Then we have that <?ι fjί rad (<?f ) for all k. Because,

if cotrary, we have a contradiction by using (2°), (3°) in Lemma 4 and the maxi-

mality of rad(^). On the other hand it is easily verified that qί/q1=qί for /Φ 1,

and q*/q! = q* for k=l, ,m. Hence we obtain that a=qϊ (Ί Π <?* = (q */?ι)

n - n (jϊ/ίiHίgi/ίijn fe/jOn - n (?«/?ι) = *n ?2n - n ί*=j2n - n ?„ which
is a contradiction. We can now suppose, without loss of generality, that

rad (g^^ rad (<?*), and make

n (<?„/?.) = (if/ft) n - n (?*/?1) («).

Then since ίΊ^rad^,-) for ί'Φl, and q1^rad(qf) for ΛΦ1, we have <?, /ίι=<?,

(ίφl), and qΐ/q^qΐ (Aφl). Hence by (α) we have ί2n ••• n?,=(?f/?1)n jf
Π ••• Π?*, and have

) n - n (?./??) = ((if /ϊO/ίf ) n (?f /?f ) n •- n (?*/??) (/s).

Since it is easily verified that ίf^rad^ ) for iΦl, and qί^τad(qϊ) for AΦ1,

and since <??/<?!><?*, we have qilq:\=qi for ίΦl; q*/q*=q* for Λ Φ 1 and

=β. Hence by (/β), we have

n?i (7).
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Continuing an exactly similar argument for (γ), we atain after a finite number
of steps that m=n, and rad(^ )=rad(gf) for /=!,•• -,m=n.

4. Isolated components of elements

DEFINITION 6. A subset TV of Σ is called a (right) M-v-system, if (1)
N contains a μ-system M and (2) for every element u of N and every element
x of M there exists an element z of N such that z<ux. If M is void, the only
M-v-system is, by definition, the void set itself.

Let a be an element of L and M a μ-system which does not meet Σ(fl).
Then it is easily verified that the set-union N* of all M-z^-systems, each of
which does not meet Σ(<z), is the unique maximal M-z>-system which does
not meet Σ(<z). N* is uniquely determined by a and M.

Lemma 8. Let a (φ£) be an element of L, M a μ-system, and N an M-v-
system. If Σ(tf) does not meet N, there exists an element q which is maximal in
the set consisting of the elements c such that c>a and Σ (c) does not meet N, and P(q)
contains M.

Proof. Since L is compactly generated, we can prove, by using Zorn's
lemma, the existence of q mentioned in the first part of the lemma. In order
to prove the last part of the lemma, it is sufficient to show that q/x>q implies
x&M. Take an element y of Σ such that y<q/x and y<£q. Then, since q<q
Ujy, we can take an element v of N such that v<q\Jy. Hence we have that
vx<(q U y)x=qx \Jyx<q. If we suppose that x^M, we can choose an element
z of N such that z<vx. Hence z<qy that is, Σ(<?) meets Ny which is a contra-
diction.

Lemma 9. Suppose that MΦφ, a^e. Then Σ'(a) forms an M-v-system
if and only if P(ά) contains M.

Proof. First we suppose that Σ'(fl) is an M-z>-system. If P(a) does
not contain M, we can take an element y such that y<=M and y^P'(ά). Since
a<a/y, there exists an element x of Σ such that x<a/y and x^a. Then we
have that z<a for every element z of Σ satisfying z<xy. On the other hand,
since Σr(^) is an M-z^-system, there exists an element u of Σ such that u<xy
and u ̂ a. This is a contradiction. Next, we suppose that a^pe and P(a)
contains M. Then, since P(a) is contained in Σ'(fl), we have u ̂ a=a/x for any
u of Σ'(β) and x of M. Hence ux is not less than a. Therefore we can take an
element z of Σ such that z<ux and z^a. This shows that Σr(fl) is an M-v-
system.

Lemma 10. Let a (=t=e) be an element of L, let M (Φφ) be a μ-sysΐem such
that it does not meet Σ(«), let N* be the unique maximal M-v-system which does
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not meet Σ(tf), and let S(a, M) be the set of the elements s of L having the properties
that s>a and P(s) contains M. Then the join of the complement of N* in Σ, say
sup(Σ\N*)y is a minimal element in S(a, M).

Proof. By Lemma 8, there exists a maximal element q such that q>a and

Σ(#) does not meet TV*, and P(q) contains M. Since Σ'(<?) contains P(q), it
forms an M-z>-system by the "if part" of Lemma 9. Obviously Σ'(q) contains

TV*. Hence Σ'(?)=#* by the maximality of N*. Hence Σ(?)=ΣVV*.
Therefore we have that #=suρ Σ(#)=suρ (Σ\N*). It remains to prove that
P(c) does not contain M for every c such that q>c>a. If we suppose that P(c)

contains M, then Σ'(^) is an M-z^-system by Lemma 9, and meets Σ(fl). Hence
we can find an element u of Σ such that u is less than a and not less than c, a

contradiction.

Lemma 11. Suppose that a, M, N* and S(a, M) are the same as in Lemma
10. If q is a minimal element in S(a, M) and q^pe then q=sup(Σ\N*).

Proof. By Lemma 9, Σ'(<?) is an Λf-z -system, and it is evident that
Σ'(<7) does not meet Σ(#). By using Lemma 10, we have that <z<sup(Σ*\Λ^)
= q f , and q' is a minimal element such that Σ(#') contains M. Then, since
Σ'(<?) is contained in TV*, we have that <7=sup Σ(ϊ)>sup(ΣVV*)=j'. Therefore
we obtain q=q' by the minimality of q.

DEFINITION 7. Let a be an element of L, and let M be a μ-system which
does not meet Σ(fl). A (right) upper M-component of a is the join of all
elements x of Σ such that every M-z/-system which contains x meets Σ(fl). The
upper M-component of a will be denoted by u(a, M).

Theorem 3. Let a be an element of L, M (Φφ) a μ-system which does not

meet Σ(«), and N* the unique maximal M-v-system which does not meet Σ(#).
If S(a, M) contains an element Φ £, then

u(a, M) = inf(S(a, M)) = sup (Σ\N*) .

Proof. For simplisity, we put <?=inf (S(a, M)). First, we shall prove that

q = sup (Σ VV*). Since q/x = inf,esCβf ^{J/ΛT} = infeesCe§M){i} = inf(S(a, M)) = q
for every element x of M, P(q) contains M. Hence, by Lemma 1 1 we obtain

q=sup(Σ\N*). Next we prove that u(a, M)=q. Evidently every element

of Σ(<?) is not contained in JV*. Since Λf* is the unique maximal M-z -system

which does not meet Σ(β), every M-z^-system which contains x of Σ(<?) meets

Σ(0), that is, x is less than u(a, M). This implies that q<u(a, M). Let x be

any element of {#eΣ|#eΛ/'(M-^-system)=^Λ/' (Ί Σ(α) is not void}. Then

evidently x is not contained in TV*. Hence x is less than sup(Σ\N*)=q.

Therefore we have u(a, M)<q, completing the proof.
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Corollary 1. Let a, b be two elements of L such that a>b, and let M be
a μ-system which does not meet Σ(#). Then u(a, M)>u(b, M).

Proof. Since S(b, M) contains S(a, M), this is immediate by Theorem 3.

Corollary 2. Let a be an element of Ly and let Mlf M2 be two μ-systems
such that Ml contains M2) and M1 does not meet Σ(0). Then u(a, M^)>u(a, M2).

Proof. Let Nf be the maximal Mrz;-systems (/=!, 2), each of which
does not meet Σ(fl). Then it is easy to see that N$ is contained in Nf. There-
fore we obtain that u(a, Λf1)=sup(ΣWf)^sup(ΣWf)=u(a, M2).

DEFINITION 8. Let p be a prime element such that p>a, and let M=

Σ'(p) u(a, M) is called a (right) upper isolated p-component of α, and denoted

by u(a, p).
Suppose that (*) in §3 is a decomposition of a into primary elements qi9

and suppose that each Σ' (rad(^£)) contains the unique maximal μ-system

Mi9 ί=l, — , n. If p is a prime element such that Mx32'(/>),'" > ^*^2'(/>),
Λf,+1^Σ'(p), — , Mn^2'(/>), then u(aίp)=qίΓ( — Π qs. Because, for ί=l, — , s,
we have u(a, p)<u(a, M{) by Corollary 2 to Theorem 3. Now by Lemma 5,
we have P(ίf )3Σ'(rad (#/)). Hence P(<fc) contains Mt-. Hence we have, by
Theorem 3, u(a, Mt.)<^t . Therefore u(a, p)<q1Γ\ ••• Γ\qs. If J=w, we obtain

a<u(ay p)<qlΓi ••• Π?Λ=Λ, M(Λ,/>)=?ιΠ ••• n?n. If ί<Λ, then, since Σr(/>)
is not contained in Σ^rad^y)), we have rad(gy)^/), and have q^^p forj>s (by
Theorem 1). Hence we can take elements Xj such that Xj<qj and Λ?ye 2'(/>),
j=ί+l, ••-,». Since Σ'(/>) is a μ-system, there exists a finite number of

elements yy in 2'(/>) such that Js+1<^+1 ^+2, J5+2<%+ι ^+3, — ,y«-ι<3;«-2^-

Then we have ^n-ι<( ((^+r^+2K+3) )^^ ?»+ιΠ — Π ?„. Let ar be an
arbitrary element of Σ such that s^g^ΓI ••• (Ί&. Then we obtain zyn_λ<

(^Π ••• Π ?,)n (ft+iΠ ••• n #„)=#. Now, take any Σ'(^>)-ϊ>-system JV containing
ST. Then there exists an element v of N such that v-<%yn_l. Since v<a, N
meets Σ(fl). Hence we have z<u(a, p), qtΓ\ ••• Π qs<u(a, p). Therefore we
obtain ^Π ••• Π qs=u(a, p), completing the proof.

5. Ascending chain condition, Condition (N)

We shall assume, throughout this section, that the ascending chain condition
(a. c. c.) holds for elements of L.

Lemma 12. Every element of L has a finite number of minimal primes
belonging to it.

Proof. Let c be an element of L. If c is prime, the lemma is trivially
evident. Suppose now that c is not prime. If there exists an infinite number
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of minimal primes px belonging to c, then, since a^c, b^c and ajb^<c for
suitable elements aί9 b1 of L, a^ or ̂  is less than px for an infinite number of pλ.
Suppose that it is aly and put c1=c\Ja1. Then evidently c<^cl and cl<pλ. c1 is
not prime. Hence c± has the same property as that of c. Continuing in this
way, we obtain an ascending chain c<c1<c2< ~, which is a contradiction.

Lemma 13. Let pί9 , pn be the minimal primes belonging to an element c
of L. Then there exists a product *β( pfl, , p{ J which is less than c, where *β
denote a product-form of some type of weight my and i^ ",ίm is some finite
permutation of 1, ••• , n with repetitions allowed.

Proof. The lemma is evident if c is prime. Suppose that c is not prime.
Then there exist two elements x and y of Σ such that x ̂ c, y^c and xy<c.
Put a1=c\Jx and b1=c\Jy. Then c<al and c<bλ. Now, let />/, ••• ,_/>/ and
pί'y tps" De the minimal primes belonging to a1 and b1 respectively. If we
suppose that both a1 and bλ have the same property that we wish to prove of c, so

that φ'ίpj^-^ίj^βi and ^"(ρll9 ••• , p"kμ) < bl9 then, since aίbί = (c\Jx)^
(c\Jy)<c(Jxy = c, we have φ '(p^ - , p'Jλ) φ(p"kl), - , #μ) < ί. The interval
[c, /)Jp] contains a minimal prime belonging to c, p — 1 , , λ, and similarly for

ί^ίU' o =l, ,^ Hence we have ^(/>|V — ,/>f J < c, where p^—yp^ are
minimal primes belonging to £, and *p=*p'-^p". Hence, if the lemma is false for
c, it is false for aλ or for bl9 Continuing in this way, we atain a contradiction
of the a. c. c.

DEFINITION 9. A product-form &(Xί9 ••• , Xm) = (—((X1X2)X3) ~)Xm is
called that it has a (right) nested type of weight my where X{ are indeterminates
over L.

We now consider the following condition:
(N) For every product-form *β of weight n, and for every elements cιy ••• , cn

(repetitions allowed) of L, there exists a product-form Q with nested type of weight
m such that

where i1< <im.
If L is associative, the condition (N) is satisfied trivially. But there are

important examples which are compactly generated non-associative multiplicative
lattices satisfying the condition (N), which will be shown in the last section of
this paper.

Lemma 14. Suppose that the condition (N) holds for L. Then, for every
element a (φtf) of L, there exists a minimal prime p of a such that a\

Proof. If a is prime, the lemma is trivially evident. Suppose that a is not
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prime. Then by Lemma 13 and the condition (N), there exist minimal primes

Pι>'">Pm (not necessarily distinct) belonging to a and a product form jQ of
nested type such that d(p19 ••• ,/>w)<β. It is then easy to see that ra>l, and
that there exists pi such that a\p{>a. This completes the proof.

Behrens showed in [2] that the radicals of primary ideals in non-associative
rings are not necessarily prime. He gave two examples in that paper. Eqph of

those examples is a commutative algebra with some finite base over a field.
It is now easily verified that the ideals in each of the algebras is a compactly

generated multiplicative lattice. Accordingly, those examples assure the ex-

istence of the lattices in which the radicals of primary elements are not prime.
Now we have the following

Theorem 4. Suppose that the condition (N) holds for L. Then the radical
of every primary element is prime.

Proof. Let q be a primary element of L. If <?—£, the theorem is evident.

We suppose that q<e. Then by Lemma 14, we can find a minimal prime p
belonging to q such that xz z<q and xz^q for an arbitrary element z of Σ(^>) and

a suitable element xz of Σ. Hence #<rad(<7), and hence ^><rad(<?). On the
other hand, since rad(<?)</> by Theorem 1, we obtain rad(q)=p, as desired.

REMARK. Under the condition (N) for L, we can show that if rad(c)=^>

is prime for an element £(φe), then c/p>c. Because, the assertion is trivially
evident if p=c. Hence we can suppose that p>c. Then by Lemma 13 and

the condition (N), there exists a nested product Q of p such that &=£ι'p<c.
If we suppose that c/p=c, then £ϊ' = £l"p<c. Continuing in this way, we
obtain p=c, which is a contradiction.

Theorem 5. Suppose that (*) (in §3) is a decomposition of a into primary

elements q{ with prime radicals p{. Then the minimal primes belonging to a coincide

with the minimal elements in the po-set {p^ •••, pn}.

Proof. By Lemma 13, we have that $βcί)(/>,) = φco(A , •••,pi) < qt for
suitable product-forms *βco, i=l, ,n. Hence, for any product-form of τz-th

weight, we obtain φ (φ«( A), - , *βw(A,)) < Φ (?» , ?*) < ?ι Π - Π qn = a.
This implies the existence of pi such that/) {<p for any prime p satisfy ing p>a.

In particular, any minimal prime belonging to a coincides with some piy and

there is no pj such that pj<pf. Conversely, let p{ be any minimal element in

the ^o-set {pi, ,pt} If p is a prime element contained in [α,/>,-]> we can

show, similarly as above, the existence of a prime element/^ such thatpk<p.

We obtain therefore pk<piy pk=pn completing the proof.
The following theorem have been established by the last part of §4.

Theorem 6. Suppose that (*) is a decomposition of a into primary elements
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qt with prime radicals p{. Ifp(^e) is a prime element such that p^<p, ••• ,ps<p,

, then

Theorem 7. Suppose that (*) is a short decomposition of a into primary
elements q{ with prime radicals p{. If p is any minimal prime element belonging
to a then u(a, p)=qifor some i, and u(a, p) is primary.

Proof. By Theorem 5, we have p=pf for some /. Since there exists no j

such that pj<p (j=t=0> we obtain u(a, p)=qi by Theorem 6.

REMARK. If p=e in Theorem 7, a is primary such as rad (#)=£.

Corollary 1. Suppose that (*) is a short decomposition of a, and let p19 ,
ps be the minimal primes belonging to a (/=!, ••• , s). Then

a = u(a, A)Π - Π u(a, ps)Γίqs+1Γ\ ••• Π qn

Corollary 2. Suppose that a has a decomposition into primary elements

with prime radicals. If pu ,ps are the minimal primes belonging to a, then
u(a, p,), , u(a, ps) are primary.

Proof. This is immediate by Theorems 2, 5 and 7.

Now let V be a compactly generated lattice with compact generator system
Σ. If Σ is a join-semi-lattice, Σ is said to be join-closed. Let Σ be any
compact generator system of V. Then it can be proved that the join-semi-lattice
Σ' generated by Σ satisfies the conditions (1) and (2) in §1. Hence Σ' is a
join-closed compact generator system of V.

In the rest of this section we suppose that Σ is join-closed. Then it is
easy to see by the a.c.c. that Σ coincides with L. But it is convenient to remain
the symbol Σ.

Lemma 15. Let ply ,pnbea finite number of prime elements of a compactly
generated multiplicative lattice with a join-closed compact generator system. If

Σ(«) is contained in the set-union V?=ιΣ (/>,-), there exists p£ such that p{>a.

Proof. If w=l, the lemma is trivially evident. If n=2, then Σ(α) is
contained in Σ(^>1)VΣ(^)2). Suppose that a ̂ pl and a-^p2. Then we can
take Zf of Σ such that z{<a, z{<p{ (i=l, 2), zί^£,p2 and z2-^pλ. Since zl (Jz
is less than 0, ΣfoU^) is contained in Σ(^i) or Σ(/>2). This implies z2<p1

or zl < p2y which is a contradiction. If n > 3, we can assume, no loss of generality,

that Σ(fl) is contained in V?-ιΣ(/>f) (m<n), and not contained in V*^ϊΣ(/>, )
V VΓ=fe+ιΣ(^) for every k=2, ••• , m—l. Then we can take elements zk of Σ

such that zk<a, zk<pk and zk^pi for ι"ΦΛ; ί, &=!,•••, 01. Since z2, ,zm

are contained in a /^-system Σ'̂ ), we can find a finite number of elements

2
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«Ί> — ,««-20f Σ'(A) such that ^<*2*3> ^2<^ι#4> >^2<^-3*w Then we
have ^cl)Ξe;m_2<(( (( 2̂ 03X) -μw-ι)^<^y for j=2, ••• , w, and v^^p^
Similarly, we can find v^ of Σ'(^>t ) such that va)<pj (/Φ*) and v^ ^pf for
ί=2, ••• , w. Now let ^Ξ^cυ U ••• U^cιw:>. Then, since Σ is closed under finite
join operation, v is contained in Σ(fl). Hence we have v<p{ for a suitable
prime pit This implies va)<piy which is a contradiction. This completes

the proof.

Theorem 8. Suppose that (*) is a short decomposition of a with prime

radicals, and let p be a prime element such that a<p^pe. Then p=rad(qi) for

some <?,-, if and only if u(ay p)/p>u(a, p).

Proof. We have, by Theorem 6, u(a, p)=q1Γi - Γ\qk> where qly ••• , qk are

those whose radicals p{ are less than p. This is a short decomposition of u(a, p),

and^> is one of ply ••• , pk. Since an element x of Σ— L is contained in P'(u(a, p))

if and only if x<p, we have u(a, p)/p>u(a, p). Conversely, let u(a, p)/p>u(a, p).

Then the minimal primes of a are the minimal elements in the^>0-set {/>ι, •••,/>»} •

Hence pi<p for some p{. We let pιy ypk be the primes such that pι<p

(ί=l, ,Λ). Then u(a, p)=qlΓ\ ••• Π ?Λ, rad(gf

ί)=/>ί, and that is a short de-

composition of u(a,p). Now by the assumption Σ(/>) is contained in P'(u(a,p))

— V*=ιΣ(/>, ). Hence, we have by Lemma 15 p<pf for a suitable pi(\<i<k).

We obtain therefore p=pι.

6. Artin-Rees property

In this section, we let L be a compactly generated integral multiplicative

lattice with the compact generator system Σ.

DEFINITION 10. L is said to have the (right) weak Artin-Rees property, if

for any a in L and any x in Σ, there exists a product β̂ of x such that <2 (

Theorem 9. Suppose that the a. ex. holds for elements of L. If every element

of L may be decomposed into a meet of a finite number of primary elements y then

the weak Artin-Rees property holds for L.

Proof. Let α^L, and #eΣ, and suppose that ax=qlΓ\ ••• (Ί qn is a primary
decomposition of ax. If a<q{ for every /=!,•••, n, we have that aΠ x<a— ax.

Hence we can suppose that a <}C qί for / = 1 , , m, where 1 < m < n. Then

ax— aΓ\qιΓ\ ••• Γ\qm Since there exists an element u of Σ such that ux<q{

and u ̂ qi (l<i<m), we obtain #<rad (<?,-) (l<i<m). Hence we have that

*($,• = $&•(#, ••• , x) <qι for suitable product-forms ^βt (!</<m). Hence ^3' =

(-((^•^2m-)^<?in-n^. Therefore we obtain αnφ'^
=ax, completing the proof.
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Let Σ* be the multiplicative monoid generated by Σ.

DEFINITION 11. L is called a strictly upper semi-modular lattice related to

Σ*, if the relations aΓ\ u<b<a<a\Ju hold for a, b^Ly and weΣ*, then there
exists an element c of L such that a Π u<c<u and (c U b) Π a=b.

This is a modification of the semi-modular lattice defined in [19, §45].

Lemma 16. Let L be a strictly upper semi-modular lattice related to Σ*,
and let q be an irreducible element of L. If qΓ\u=aΓ\u and q<,afor β Eϊ L, u Gϊ Σ* ,
then u<q.

Proof. Put b=(q\Ju)Γ\a. Then q<b. If b=qy then since q=(q{Ju)ΐ\a
and q<.a, we have q=q(Ju, u<q. Next we suppose that q<b. Now we have
that aΓ\u<q<a<a\Ju. If a=a\Ju, thenw<α, u=aΓ\ u=qΠ u. This implies
u<q. If βΠw=<7, then q(~}u=q, q<u. This implies gΊJw=M. Hence we
have b = aΓ\u = qΓ\u = q, a contradiction. Now it remains to consider the

case of aΓ\u<q<a<a\Ju. Then there exists an element c of L such that
aΠ u<c<u and <?— (q(Jc)Γi a. Since q is irredicible, we have q=q\Jc. Hence

c<q<a, c<aΓ\u. This contradicts α(Ί #<£.

Lemma 17. ^4 non-void μ-system M meets Σ(^(Λ:, ••• , Λ;)) for every element

x^M and every product-form *β.

Proof. The proof will be given by induction with respect to the weight
m of φ. If m=l, the lemma is evident. We suppose that the lemma has been

proved for *β' with any weight m'<m. Now $β is expressible as ^β=^β1-^P2

Of course the weight of $βz is strictly less than that of φ. Hence by the

induction hypothesis M meets Σ(^βt ); accordingly there exists u{ such that

and w^^βί (ί'=l, 2). Since there exists an element u of M such that

2, M meets Σ(^β), as desired.

Theorem 10. Let L be a strictly upper semi-modular lattice related to Σ*,
and suppose that the a. c. c. holds for elements of L. If the weak Artin-Rees
property holds for L, every element of L is decomposed into a meet of a finite
number of primary elements.

Proof. Since L satisfies the a. c. c., it is sufficient to show that every
irreducible element of L is primary. Suppose that q is irreducible, and let

xy<q but x ̂ q for two elements #, y in Σ. Put a=x\Jq. Then a>q and
ay=(x\Jq)y = xy\Jqy<q. Now let ^β=^(y9 ••• ,y) be a product of y such
that aΓ\?β<ay<q. Then we have 0Γ!^3<#n^β. Hence aft($ = qΓ}<>$.

Since q<a, we have by Lemma 16 ^β<#. Next, we let M be an arbitrary
μ,-system containing y. Then by Lemma 17 MΛΣ(^β) is not void. Since

*β<2, we have that ΛfΛΣ($β)cΛf ΛΣ(j). Therefore M meets Σ(?), that
is, y<τad(q)y as desired.
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7. Applications

[1] Let R be a non-associative (not necessarily) ring with or without
unity quantity. The word ''ideals" will mean always "two-sided ideals" of R.
Ideals of R will be denoted by A, B, P, £), •••. For an element x of R, (x) will
denote the principal ideal generated by x. (x) consists of the elements u such
of that w—Σ^β( , x, •••), where Sβ.( , x, •••) is a product with x as its factor,
and 2 is a finite sum.

Now it can be proved that the set of all ideals of R forms a compactly gener-
ated integral multiplicative lattice with the compact generator system consisting
of the principal ideals. The results in the preceding sections are accordingly
applicable to the ideals of R.

Throughout [1], there is a complete parallelism between the theory of
right-side and that of left-side. We shall therefore state the results for right-
side only.

For any two ideals A and B, the (right) quotient A by B, denoted by A/B,
is the set of the elements u in R such that (u)B^A (Cf. [2], [8]). Then A\E is an
ideal of R, and it can be proved easily that A/B coincides with the set-union of
all the principal ideals (u) such that (u)BcιA. An element x of R is said to be
(right) related an ideal A, if and only if Af(x) contains A properly. Otherwise
x is said to be (right) unrelated to A. It is then easily seen that if x is related to
Ay every element in (x) is also related to A.

A family 3JΪ of principal ideals of R is called a μ-system, if there exists (z) of
3JI such that (z)<^(x)(y) for any two principal ideals (x) and (y) in 2JΪ. The
void set is also defined to be a μ-system. Let P be a prime ideal of R (Cf. [2]).
It is then easily verified that the family of principal ideals $JlP={(x)\(x) is not
contained in P} forms a μ-system. Conversely, if 9JίP is a μ-system for an ideal
P, then P is prime. Let A be an ideal of R, and let 9Dt be a μ-system which
does not contain any ideal (x)^A. Then we can show that the existence of
the (maximal) prime ideal P such that P contains A and every principal ideal
in P does not contained in 9Jί (Cf. [16, §14]).

Let M be an M-system in the sense of Behrens [2]. If we make the family
yjl={(x)\x^M} of principal ideals, it is easily verified that 3ϊί is a μ-system.
But, for any μ-system 3JΪ, it can not be proved in general, that the set {x \ (#)£Ξ9Dΐ}
is an M-system in the sense of Behrens. By Definition 2, we define the radical
of an ideal A, which is denoted by rad(^4), is the ideal generated by the set-union
of principal ideals (x) with the property that every μ-system which contains
(x) contains a principal ideal in A. Definition of a minimal prime ideal of an
ideal is the same as in the case of an associative ring (Cf. [11]). Then by
Corollary to Theorem 1, we obtain that the radical of an ideal A is the intersection
of all the minimal prime ideals of A. Therefore we obtain that rad(^4) coin-
cides with the Behrens' radical ΐ(A).
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In order that an ideal Q of R is (right) primary (Cf. [2]) it is necessary and
sufficient that every element which is (right) related to Q is contained in
Irredimdant decomposition of an ideal of R is defined as usual. Let

be an irredundant decomposition of an ideal A into primary components Q£.
The representation (*) of A is called a short decomposition of A, if none

of the meets of two (or more) of Qί9 •••, Qn are primary. By Theorem 2, we
obtain the following statement.

1) If an ideal A of R can be decomposed as an intersection of a finite number
of primary ideals, A has a short decomposition. In any two short decompositions
of A, the number of primary components as well as their radicals are necessarily the
same.

Let TO be a non-void μ-system. A family 31 of principal ideals of R is
called a (right) 3JI-P -system of R, if 31 contains TO and if for every (u) in 31
and every (x) in TO, there exists an ideal (#) in 31 such that (z)<Ξ^(u)(x). If TO
is void, the TO-z -system is also void. Let TO be a μ-system such that every
ideal in TO is not contained in an ideal A. A (right) upper 331- component of

A is defined to be the ideal generated by the set-union of all the principal ideals
(x) having the property that every TO-z -system which contains (x) has an ideal
in A. The upper TO-component of A will be denoted by U(Ay TO). Let P be a
prime ideal containing A. Then the (right) upper isolated P-component of Ay

which is denoted by U(A, P), means U(A, TO), where TO— {(#)!(#) is not con-
tained in P}. If P is a minimal prime of A, U(A, P) is called an isolated (right)
primary component of A. Now let TO (Φφ) be a μ-system which does not
contain any ideal in A, and let 5ft* be the (unique) maximal TO-z -system such
that every ideal in 5ft* is not contained in A. Then by Theorem 3 U(A, TO) is
the intersection of all the ideals B having the property that (1) B contains A
and (2) {(x)\B/(x)=B} contains TO. Moreover U(A, TO) is the ideal generated
by the set-union of all the principal ideals, each of which is not in 5R*.

A product-form &(X19 •••, ̂ w)=( ((̂ 1̂ 2)JQ )̂ m is called that it has
a (right) nested type of weight m, where X{ are indeterminates over the ideal-m-
lattice of R.

A non-associative ring R is called here an (N)-ring if it satisfies the following
condition:

(N) For every product-form φ of weight n, and for every ideals Aly ••• , An

(repetitions allowed) of R, there exists a product-form Q with nested type of weight
m such that

where z\< •••</„
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Any associative ring is evidently an (N)-ring. Any nilpotent Lie ring is also
an (N)-ring. Now we have the following statement.

2) Suppose that the a. c. c. holds for ideals of an (N)-ring R. Then the
radical of every primary ideal of R is prime, (by Theorem 4).

We now suppose that (*) in this section is an irredundant decomposition

of an ideal A of a ring R into primary ideals £), with prime radicals P, . If

the a. c. c. holds for ideals of R, the minimal primes belonging to A coincide
with the minimal elements in the po-set {P^ •••jPj. This is the immediate
consequence of Theorem 5. In particular, we obtain the following:

3) Assume that the a. c. c. holds for ideals of an (N)-rίng R. If (*) is a

decomposition of an ideal A into primary ideals Qiy the minimal primes belonging to
A coincide with the minimal elements in the po-set consisting of the radicals of Q{

(by Theorem 5).

In the rest of this paragraph, we let R be an (N)-ring with the a. c. c. for

ideals of R. Then by Theorems 6, 7, 8, 9 and 10 we have the followings 4)~8).

4) Suppose that (*) is a decomposition of an ideal A of R into primary ideals
Qi with prime radicals P{. If P( Φ R) is a prime ideal such that P, c P, - , Ps c: P,

Ps+13ΞP,. ,PMc£P, then

5) Suppose that (*) is a short decomposition of A with (prime) radicals

P~rad(Qf). If P is any minimal prime ideal belonging to A and PΦP, then
U(A, P)=:Qifor some i, and U(A, P) is primary.

6) Suppose that (*) is a short decomposition of A, and let Ply ••• , Ps be the

minimal primes belonging to A. Then

A = u(A, PO n - n U(A, PS) n Qs+1 n - n Qn .

7) Suppose that (*) is a short decomposition of A, and let P be a prime
ideal such that A^P^R. Then P = rad(Q^) for some Qiy if and only if

R is said to have the (right) weak Artin-Rees property, if for any ideal A
and any principal ideal (x) of R, there exists a product φ of (x) such that A (Ί β̂

^A(x). (Cf. [8]). Then we have
8) In order that every ideal of R is decomposed into a meet of a finite number

of primary ideals, it is necessary and sufficient that the weak Artin-Rees property

holds for R.
[2] Let G be a group. The set of all normal subgroups A, β, N, ••• of G

is a commutative residuated cm-lattice under commutator-product [A, B] and

the set-inclusion relation. The residual of A by B, which is denoted by A:B,

is defined as the set-union of the elements u^G such that [(u), B] ci^l, where (u)

is the normal subgroup generated by u^G, that is, (u)={Tlx^'Lupxp\x^G,
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(the integers)}. Then it can be proved that A: B is a normal subgroup of G. It

is easily be seen that the £m-lattice has the zero element 1 (the group identity)

(Cf. [3]). Now we can show that the set of the normal subgroups of G is a

compactly generated multiplicative lattice with the compact generator system

consisting of normal subgroups, each of which is generated by a single element.

An element x of G is said to be unrelated to a normal subgroup N, if N: (x)

=N. Otherwise, x is related to N. A family M consisting of normal subgroups

with single generators is called a μ-system, if there exists (z) of M such that (z)
c: [(χ)y (y)] for any two (x) and (y) or M. The void set is also defined to be a

μ,-system. A normal subgroup P of G is said to be prime, if [A, E\ czP implies

Aς^P or Bς^P. Then it can be proved that P is prime if and only if [(x), (y)]

c P implies (#)c:P or (y)cιP. If P is prime, the family {(x)\x<ζP} forms a
μ-system. Moreover a normal subgroup P( Φ G) of G is prime if and only

if {(x) I x is related to P} is a μ-system.

Let M be a μ-system which does not contain (x) such that (x)ς^A. Then
there exists a normal subgroup P which is maximal in the family of normal

subgroups B such that B Ξ> A and (b) $ M for every b e B. Pis necessariry prime.

A radical of normal subgroup N of G is the normal subgroup generated by
the set-union of (x) with the property that the every μ-system containing (x)

contains a subgroup in N. In symbol: rad(TV). Minimal primes of a normal

subgroup is defined in the obvious way. Then by Corollary to Theorem 1 we

obtain that rad (N) is the intersection of all minimal primes of N.

A normal subgroup Q of G is called primary, if [(x), (y)]^Q and (j)$
rad(g) imply that (x)^Q.

Let

N=QlΓί nQΛ (**)

be an irredundant decomposition of a normal subgroup TV into primary normal

subgroups Q£. The representation (**) of N is called a short decomposition of

N, if none of the meets of two (or more) of Qly ", Qn

 are primary. By Theorem

2, we obtain the following statement.

1) If a normal subgroup N of G can be decomposed as an intersection of a finite
number of primary normal subgroups, then N has a short decomposition. In any
two short decompositions of N, the number of primary components as well as their

radicals are necessarily the same.
Let M be a non-void μ-system. A family N of principal normal subgroups

of G is called an M-v-system, if N contains M and if for every (u) in N and

every (x) in M there exists (z) in N such that (#)<Ξ[(w), (x)]. If Mis void, the
Λf-^-system is also void. By using M-^-system, the upper M-component

U(N, M) of N is defined in an obvious way. In particular, upper isolated P-

component U(N, P) of N is defined for any minimal prime of N. Now let M
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be a μ-system which does not contain a normal subgroup (of G) in N, and let N*

be the (unique) maximal M-z>-system such that every normal subgroup in JV*
does not contained in N. Then by Theorem 3 U(N, M) is the intersection

of all the normal subgroups H having the property that (1) HΏ.N and

(2) {(a) I H: (ά)=H}^M. Moreover U(N, M) is the normal subgroup generated
by the set-union of all the normal subgroups such that each of which has a
single generator and is not contained in N*.

A product-form Ci(X19 ••• , Xm) = (—((X1X2)Xs))—)Xm is called here that
it has a nested type of weight m, where Xf are the indeterminates over the
ra-lattice of the normal subgroups of G.

A group G is called an (N)-group if it satisfies the following condition:

(N) For every product-form ^β of weight ny and for every normal subgroup

Nί9 ,Nn (repetitions allowed) of G, there exists a product-form D with nested
type of weight m such that

where ίΊ< <im>
Nilpotent groups are evidently (N)-groups.
Now we let G be an (TV)-group with the a. c. c. for normal subgroups.

Then by Theorems 4, 5, 6, 7, 8, 9 and 10 we obtain the following statements:

2) The radical of any normal subgroup of G is prime.

3) If (**) is an ίrredundant decomposition of a normal subgroup N of G into
primary normal subgroups Oiy the minimal primes belonging to N coincide with the

minimal elements in thepo-set consisting of the rad(Qf).
4) Suppose that (**) is a decomposition of a normal subgroup N of G into

primary normal subgroups Q{ with prime radicals Pz . If P( Φ G) is a prime normal

subgroup such that P^P, — , P5^P, PS+Ϊ<£P, ••• , PM3=P, then

5) Suppose that (**) is a short decomposition of N with (prime) radicals
P~rad(Qi). If P is any minimal prime belonging to N and Pφ G, then U(Ny P)

— Qifor some *y and U(N, P) is primary.
6) Suppose that (**) is a short decompolition of N, and let P19 ••• , Ps be the

minimal primes belonging to N such that P. ΦG (i=l9 ,s). Then

N = u(N, pon - n U(N, P.)Π ρ,+1n - n Qn .
7) Suppose that (**) is a short decomposition of N, and let P be a prime normal

subgroup such that TVciPφG. Then P=rad(Qi) for some Q{, if and only if

G is said to have the weak Artin-Rees property, if for any normal subgroup

N of G and for any normal subgroup (x) with single generator x, there exists

a commutator-product *β of (x) such that Λf Π^β<Ξ[Λf, (x)]. Then we obtain
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8) In order that every normal subgroup of G is decomposed into a finite number

of primary normal subgroups, it is necessary and sufficient that the weak Artin-Rees
property holds for G.
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