Murata, K. Osaka J. Math. 7 (1970), 97-115

PRIMARY DECOMPOSITION OF ELEMENTS IN COMPACTLY GENERATED INTEGRAL MULTIPLICATIVE LATTICES

Dedicated to Professor Keizo Asano on his 60th birthday

Kentaro MURATA

(Received December 9, 1969) (Revised February 6, 1970)

1. Introduction

A complete lattice L is said to be compactly generated, when it has a subset Σ which satisfies that (1) if $x \leq \sup N$ for an element x of Σ and a subset N of Σ , there exists a finite number of elements x_1, \dots, x_n of N satisfying $x_1 \cup \dots \cup x_n \geq x$, and (2) every element of L is expressible as a join (supremum) of a subset of Σ . Σ is called a compact generator system of L^{1} . The purpose of the present paper is to investigate primary decompositions of elements in compactly generated integral multiplicative lattices².

Throughout this paper, we let L be a compactly generated integral multiplicative lattice with a compact generator system Σ . In Section 2 we define a μ -system as a suitable subset of Σ , which is somewhat different from the one introduced in [13]. By using the μ -systems, we define radicals of elements in L and consider meet decompositions of radicals by prime elements. In Section 3 right primary elements are defined by using radicals defined in Section 2. The result in this section is a uniqueness theorem of short decomposition for elements having right primary decompositions. Section 4 deals with right upper *M*-components of elements, where *M* is a μ -system. A right upper *M*-component is defined by using the concept of M- ν -systems, which are also somewhat different from the one introduced in [13]. It will be shown in this section that the right upper M-component of an element has two different representations (Theorem 3). Section 5 is mainly concerned with minimal primes of elements and decompositions of upper isolated p-components of elements. The results in this section are obtained under two conditions. The

¹⁾ In [12, §9] Σ is called an *aj*-system of *L*. It can be proved that a lattice is compactly generated in the sense of Dilworth and Crawley ([5], [6]), if and only if it has an *aj*-system, that is, it is compactly generated in our sense.

²⁾ Cf. [3, CHAP. XIII].

one is the ascending chain condition for elements, and the other is the condition (N), which is concerned with weight and type of product-forms. Under some modified semi-modularity for L, it can be proved, in Section 6, that every element of L has right primary decomposition if and only if L has right weak Artin-Rees property. The proofs of the results obtained in this section are similar as in [7], [9] and [10]. But in order to make this paper self-contained we include proofs of the results. Section 7 lays two applications. The ideal theory in non-associative rings has been developed in [2] and [8]. The results obtained in the first half of this section are generalizations of the classical primary decompositions of ideals in commutative rings to ideals in (N)-rings (nonassociative and non-commutative), and which are concerned with [2], [8], [10] and [15]. In [3] Birkhoff has pointed out that the lattice of normal subgroups of a group is a commutative integral residuated cm-lattice under the commutatorproduct and the set-inclusion. It is easy to see that the set of the normal subgroups with single generators is a compact generator system of the lattice. In the latter half of this section, primary decompositions of normal subgroups of (N)-groups are obtained as an application of the results in the preceding sections, where (N)-groups are regarded as a generalization of nilpotent groups. Recently primary decomposition theory has been studied in various algebraic systems ([1], [17], [18], etc.). In particular, the theory in groupoids is obtained, among others, in [1]. We shall note here that the results in Sections $2\sim 6$ are applicable to subsystems of some sorts of groupoids, but which is not collected in this paper.

Elements of L will be denoted, throughout this paper, by a, b, c, \cdots , and those of Σ , in particular, by x, y, z, \cdots with or without suffices. The greatest element of L will be denoted by e, which is not necessarily multiplicative unit of L ([3, CHAP. XIII]). $ab \leq a$ and $ab \leq b$ are assumed for two elements a, bof L. An element a is said to be less than b if $a \leq b$. The symbols \vee and \wedge will denote the set-theoretic union and the intersection respectively. By $\{a \in A \mid a \text{ has property } P\}$ we mean the set of all elements a in A, each of which has property P.

2. Radicals of elements

Let a, b be any two elements of L. The set of the elements x of Σ such that $xb \le a$ is not void. The join (supremum) of such elements x will be denoted by a/b, and called a (right) quotient of a by b. It is easily verified that a/b is not necessarily the join of the elements c of L such that $cb \le a$. The quotient has the following properties: (1) $a \le a/b$, (2) $(a/b)b \le a$, (3) $b \le a$ implies a/b = e, (4) $b \le a$ implies $b/c \le a/c$, (5) $c \le b$ implies $a/b \le a/c$, (6) $\inf_{\lambda} (a/b_{\lambda}) = a/(\sup_{\lambda} b_{\lambda})$ and (7) $\inf_{\lambda} (a_{\lambda}/b) = (\inf_{\lambda} a_{\lambda})/b$.

From now on, the symbols P(a) and $\Sigma(a)$ will mean the sets $\{x \in \Sigma \mid a \mid a = a\}$ and $\{x \in \Sigma \mid x \leq a\}$, respectively. The complements of P(a) and $\Sigma(a)$ in Σ will be denoted by P'(a) and $\Sigma'(a)$ respectively. It is then easy to see that P(a) is contained in $\Sigma'(a)$ for every element $a \neq e$.

DEFINITION 1. A subset M of Σ is called a μ -system, if there exists an z of M such that $z \leq xy$ for any two elements x, y of M. The void set is to be element considered as a μ -system.

An element p of L is said to be prime if whenever a product of two elements of L is less than p, then at least one of the factors is less than p.

Lemma 1. The following conditions are equivalent to one another.

1) p is prime,

, 2) $xy \le p$ (x, $y \in \Sigma$) implies $x \le p$ or $y \le p$,

3) $\Sigma'(p)$ is a μ -system.

Lemma 2. An element $p (\neq e)$ is prime if and only if $P(p) = \Sigma'(p)$.

Proofs. These two lemmas are immediate. The following lemma is somewhat different from Lemma 1 in [14].

Lemma 3. Let a be an element of L, and let M be a μ -system which does not meet $\Sigma(a)$. Then there exists an element p which is maximal in the set consisting of the elements b such that $b \ge a$ and $\Sigma(b)$ does not meet M. p is necessarily a prime element.

Proof. Since L is compactly generated, we can show, by Zorn's lemma, the existence of p mentioned in the first part of the lemma. To prove the last part of the lemma, we suppose that $xy \le p$, $x \le p$ and $y \le p$ for x, y in Σ . Then there exist x' and y' in M such that $x' \le p \cup x$ and $y' \le p \cup y$. Since there exists an element u of M such that $u \le x'y'$, we obtain that $u \le (p \cup x)$ $(p \cup y) \le p \cup xy = p$. This is a contradiction.

DEFINITION 2. Let *a* be an element of *L*. A *radical* of *a*, denoted by rad(a), is the join of all elements *x* of Σ having the property that every μ -system which contains *x* meets $\Sigma(a)$.

Theorem 1. For every element a of L, rad(a) is the meet (infimum) of the primes p_{λ} such that $p_{\lambda} \ge a$.

Proof. First we shall show that $\operatorname{rad}(a) \leq p_{\lambda}$ for every prime p_{λ} such that $p_{\lambda} \geq a$. If we suppose that there exists p such that $p \geq a$ and $p \geq \operatorname{rad}(a)$, we can take an element x of Σ such that $x \leq p$ and $x \leq \operatorname{rad}(a)$. Then there exists a finite number of elements x_1, \dots, x_n such that $x \leq x_1 \cup \dots \cup x_n$ and each x_i has the property that every μ -system which contains x_i meets $\Sigma(a)$. Now, since

there exists x_j such that $x_j \leq p$, $\Sigma'(p)$ meets $\Sigma(a)$, which is a contradiction. We have therefore $\operatorname{rad}(a) \leq \inf_{\lambda} p_{\lambda}$. Next, let x be any element of Σ such that it is not less than $\operatorname{rad}(a)$. Then there exists a μ -system M which does not meet $\Sigma(a)$ and contains x. Hence by using Lemma 3 we can take a prime element p such that $p \geq a$ and $\Sigma(p)$ does not meet M. Then evidently x is not less than p. Therefore x is not less than $\inf_{\lambda} p_{\lambda}$. This completes the proof.

DEFINITION 3. Let a be an element of L. A prime element p of L is said to be a *minimal prime belonging to a*, if (1) $p \ge a$ and (2) there exists no prime element p' such that $a \le p' < p$.

Let p be a prime element such that $p \ge a$. Then it is proved that the set of the primes which are in the closed interval [a, p] is inductive for downwards; that is, for every descending chain C consisting of primes in [a, p], inf C is a prime in [a, p]. Hence Zorn's lemma assures the existence of a minimal prime belonging to a which is less than p. Therefore we obtain the following

Corollary. For every element a of L, rad(a) is the meet of the minimal primes belonging to a.

For radicals we can prove the following

Lemma 4. (1°) $a \leq \operatorname{rad}(a)$, (2°) $a \leq b$ implies $\operatorname{rad}(a) \leq \operatorname{rad}(b)$, (3°) $\operatorname{rad}(\operatorname{rad}(a)) = \operatorname{rad}(a)$, (4°) $\operatorname{rad}(a \cap b) = \operatorname{rad}(a) \cap \operatorname{rad}(b) = \operatorname{rad}(ab)$.

3. Elements with right primary decompositions

DEFINITION 4. An element q of L is said to be (right) primary, if whenever $xy \le q$ and $y \le \operatorname{rad}(q)$ for x, y in Σ , then $x \le q$.

It is easy to see that q is primary if and only if $ab \le q$ and $b \le rad(q)$ imply $a \le q$ for a, b in L.

Lemma 5. An element q of L is primary if and only if $\Sigma(rad(q))$ contains P'(q).

Proof. This is immediate.

Lemma 6. If q_1, \dots, q_n is a finite number of primary elements with the same radicals, say $rad(q_i) = c(i=1,\dots,n)$, then $q=q_1 \cap \dots \cap q_n$ is primary and has the radical c.

Proof. It is evident that $\operatorname{rad}(q) = c$ by the property (4°) in Lemma 4. In order to prove that q is primary, we suppose that $xy \le q$ and $y \le \operatorname{rad}(q) = c$. Then $xy \le q_i$ and $y \le \operatorname{rad}(q_i)$; hence $x \le q_i$ for $i=1, \dots, n$. We obtain therefore $x \le q_1 \cap \cdots \cap q_n = q$, completing the proof.

Lemma 7. Let $a=q_1 \cap \cdots \cap q_n$ be an irredundant decomposition of a into

a finite number of primary elements q_i . If $rad(q_i) \neq rad(q_k)$ for some *i* and *k*, a is not primary.

Proof. Put $t_j = q_1 \cap \cdots \cap q_{j-1} \cap q_{j+1} \cap \cdots \cap q_n$. Then $t_j q_j \le a$. Since $t_j \le a$, we have $q_j \le \operatorname{rad}(a) = \bigcap_{i=1}^n \operatorname{rad}(q_i)$. Hence $\operatorname{rad}(q_j) \le \bigcap_{i=1}^n \operatorname{rad}(q_i)$ for $j=1,\cdots,n$. We obtain therefore $\operatorname{rad}(q_i) = \cdots = \operatorname{rad}(q_n)$, a contradiction.

DEFINITION 5. An irredudant decomposition

$$a = q_1 \cap \dots \cap q_n \tag{(*)}$$

of a into primary elements q_i is called a *short decomposition* of a, if none of the meets of two (or more) of q_1, \dots, q_n are primary.

Theorem 2. If an element a of L can be decomposed as a meet of a finite number of primary elements, a has a short decomposition. In any two short decompositions of a, the number of primary components as well as their radicals are necessarily the same.

Proof. By Lemmas 6 and 7, *a* has a short decomposition. Now, let (*) and $a=q_1^*\cap\cdots\cap q_m^*$ be any two short decompositions of *a*. Take a maximal element in the *po*-set $\{\operatorname{rad}(q_1), \cdots, \operatorname{rad}(q_n), \operatorname{rad}(q_1^*), \cdots, \operatorname{rad}(q_m^*)\}$. We may suppose, without loss of generality, that the maximal element is $\operatorname{rad}(q_1)$. We now show that $\operatorname{rad}(q_1)$ occurs among $\operatorname{rad}(q_k^*)$, $k=1, \cdots, m$. Assume that $\operatorname{rad}(q_1) \neq \operatorname{rad}(q_k^*)$ for all *k*. Then we have that $q_1 \leq \operatorname{rad}(q_k^*)$ for all *k*. Because, if cotrary, we have a contradiction by using (2°) , (3°) in Lemma 4 and the maximality of $\operatorname{rad}(q_1)$. On the other hand it is easily verified that $q_i/q_1=q_i$ for $i \neq 1$, and $q_k^*/q_1=q_k^*$ for $k=1, \cdots, m$. Hence we obtain that $a=q_1^*\cap\cdots\cap q_m^*=(q_1^*/q_1)\cap\cdots\cap(q_m/q_1)=e\cap q_2\cap\cdots\cap q_n=q_2\cap\cdots\cap q_n$, which is a contradiction. We can now suppose, without loss of generality, that $\operatorname{rad}(q_i)=\operatorname{rad}(q_1^*)$, and make

$$(q_2/q_1)\cap\cdots\cap(q_n/q_1)=(q_1^*/q_1)\cap\cdots\cap(q_m^*/q_1) \qquad (\alpha).$$

Then since $q_1 \leq \operatorname{rad}(q_i)$ for $i \neq 1$, and $q_1 \leq \operatorname{rad}(q_k^*)$ for $k \neq 1$, we have $q_i/q_1 = q_i$ $(i \neq 1)$, and $q_k^*/q_1 = q_k^*$ $(k \neq 1)$. Hence by (α) we have $q_2 \cap \cdots \cap q_n = (q_1^*/q_1) \cap q_2^*$ $\cap \cdots \cap q_m^*$, and have

$$(q_{2}/q_{1}^{*})\cap \cdots \cap (q_{n}/q_{1}^{*}) = ((q_{1}^{*}/q_{1})/q_{1}^{*})\cap (q_{2}^{*}/q_{1}^{*})\cap \cdots \cap (q_{m}^{*}/q_{1}^{*}) \qquad (\beta).$$

Since it is easily verified that $q_1^* \leq \operatorname{rad}(q_i)$ for $i \neq 1$, and $q_1^* \leq \operatorname{rad}(q_k^*)$ for $k \neq 1$, and since $q_1^*/q_1 \geq q_1^*$, we have $q_i/q_1^* = q_i$ for $i \neq 1$; $q_k^*/q_1^* = q_k^*$ for $k \neq 1$ and $(q_1^*/q_1)/q_1^* = e$. Hence by (β) , we have

$$q_2 \cap \cdots \cap q_n = q_2^* \cap \cdots \cap q_m^* \tag{(\gamma)}.$$

Continuing an exactly similar argument for (γ) , we atain after a finite number of steps that m=n, and $rad(q_i)=rad(q_i^*)$ for $i=1,\dots,m=n$.

4. Isolated components of elements

DEFINITION 6. A subset N of Σ is called a (right) *M*-*v*-system, if (1) N contains a μ -system M and (2) for every element u of N and every element x of M there exists an element z of N such that $z \leq ux$. If M is void, the only M-*v*-system is, by definition, the void set itself.

Let *a* be an element of *L* and *M* a μ -system which does not meet $\Sigma(a)$. Then it is easily verified that the set-union N^* of all M- ν -systems, each of which does not meet $\Sigma(a)$, is the unique maximal M- ν -system which does not meet $\Sigma(a)$. N^* is uniquely determined by *a* and *M*.

Lemma 8. Let $a (\pm e)$ be an element of L, $M \ a \mu$ -system, and N an M- ν -system. If $\Sigma(a)$ does not meet N, there exists an element q which is maximal in the set consisting of the elements c such that $c \ge a$ and $\Sigma(c)$ does not meet N, and P(q) contains M.

Proof. Since L is compactly generated, we can prove, by using Zorn's lemma, the existence of q mentioned in the first part of the lemma. In order to prove the last part of the lemma, it is sufficient to show that q/x > q implies $x \notin M$. Take an element y of Σ such that $y \leq q/x$ and $y \leq q$. Then, since $q < q \cup y$, we can take an element v of N such that $v \leq q \cup y$. Hence we have that $vx \leq (q \cup y)x = qx \cup yx \leq q$. If we suppose that $x \in M$, we can choose an element z of N such that $z \leq vx$. Hence $z \leq q$, that is, $\Sigma(q)$ meets N, which is a contradiction.

Lemma 9. Suppose that $M \neq \phi$, $a \neq e$. Then $\Sigma'(a)$ forms an M- ν -system if and only if P(a) contains M.

Proof. First we suppose that $\Sigma'(a)$ is an M- ν -system. If P(a) does not contain M, we can take an element y such that $y \in M$ and $y \in P'(a)$. Since a < a/y, there exists an element x of Σ such that $x \le a/y$ and $x \le a$. Then we have that $z \le a$ for every element z of Σ satisfying $z \le xy$. On the other hand, since $\Sigma'(a)$ is an M- ν -system, there exists an element u of Σ such that $u \le xy$ and $u \le a$. This is a contradiction. Next, we suppose that $a \neq e$ and P(a)contains M. Then, since P(a) is contained in $\Sigma'(a)$, we have $u \le a = a/x$ for any u of $\Sigma'(a)$ and x of M. Hence ux is not less than a. Therefore we can take an element z of Σ such that $z \le ux$ and $z \le a$. This shows that $\Sigma'(a)$ is an M- ν system.

Lemma 10. Let $a (\pm e)$ be an element of L, let $M (\pm \phi)$ be a μ -system such that it does not meet $\Sigma(a)$, let N^* be the unique maximal M- ν -system which does

not meet $\Sigma(a)$, and let S(a, M) be the set of the elements s of L having the properties that $s \ge a$ and P(s) contains M. Then the join of the complement of N^* in Σ , say $sup(\Sigma \setminus N^*)$, is a minimal element in S(a, M).

Proof. By Lemma 8, there exists a maximal element q such that $q \ge a$ and $\Sigma(q)$ does not meet N^* , and P(q) contains M. Since $\Sigma'(q)$ contains P(q), it forms an M- ν -system by the "if part" of Lemma 9. Obviously $\Sigma'(q)$ contains N^* . Hence $\Sigma'(q)=N^*$ by the maximality of N^* . Hence $\Sigma(q)=\Sigma\backslash N^*$. Therefore we have that $q=\sup \Sigma(q)=\sup (\Sigma\backslash N^*)$. It remains to prove that P(c) does not contain M for every c such that $q>c\ge a$. If we suppose that P(c) contains M, then $\Sigma'(c)$ is an M- ν -system by Lemma 9, and meets $\Sigma(a)$. Hence we can find an element u of Σ such that u is less than a and not less than c, a contradiction.

Lemma 11. Suppose that a, M, N* and S(a, M) are the same as in Lemma 10. If q is a minimal element in S(a, M) and $q \neq e$ then $q = sup(\Sigma \setminus N^*)$.

Proof. By Lemma 9, $\Sigma'(q)$ is an M- ν -system, and it is evident that $\Sigma'(q)$ does not meet $\Sigma(a)$. By using Lemma 10, we have that $a \leq \sup(\Sigma^* \setminus N) \equiv q'$, and q' is a minimal element such that $\Sigma(q')$ contains M. Then, since $\Sigma'(q)$ is contained in N^* , we have that $q = \sup \Sigma(q) \geq \sup(\Sigma \setminus N^*) = q'$. Therefore we obtain q = q' by the minimality of q.

DEFINITION 7. Let *a* be an element of *L*, and let *M* be a μ -system which does not meet $\Sigma(a)$. A (*right*) upper *M*-component of *a* is the join of all elements *x* of Σ such that every *M*- ν -system which contains *x* meets $\Sigma(a)$. The upper *M*-component of *a* will be denoted by u(a, M).

Theorem 3. Let a be an element of L, $M(\pm \phi)$ a μ -system which does not meet $\Sigma(a)$, and N^* the unique maximal M- ν -system which does not meet $\Sigma(a)$. If S(a, M) contains an element $\pm e$, then

$$u(a, M) = inf(S(a, M)) = sup(\Sigma \setminus N^*).$$

Proof. For simplisity, we put $q=\inf(S(a, M))$. First, we shall prove that $q = \sup(\Sigma \setminus N^*)$. Since $q/x = \inf_{s \in S(a,M)}\{s/x\} = \inf_{s \in S(a,M)}\{s\} = \inf(S(a, M)) = q$ for every element x of M, P(q) contains M. Hence, by Lemma 11 we obtain $q = \sup(\Sigma \setminus N^*)$. Next we prove that u(a, M) = q. Evidently every element of $\Sigma(q)$ is not contained in N^* . Since N^* is the unique maximal M-v-system which does not meet $\Sigma(a)$, every M-v-system which contains x of $\Sigma(q)$ meets $\Sigma(a)$, that is, x is less than u(a, M). This implies that $q \le u(a, M)$. Let x be any element of $\{x \in \Sigma \mid x \in N(M-v-system) \Rightarrow N \cap \Sigma(a)$ is not void}. Then evidently x is not contained in N^* . Hence x is less than $\sup(\Sigma \setminus N^*) = q$.

Corollary 1. Let a, b be two elements of L such that $a \ge b$, and let M be a μ -system which does not meet $\Sigma(a)$. Then $u(a, M) \ge u(b, M)$.

Proof. Since S(b, M) contains S(a, M), this is immediate by Theorem 3.

Corollary 2. Let a be an element of L, and let M_1 , M_2 be two μ -systems such that M_1 contains M_2 , and M_1 does not meet $\Sigma(a)$. Then $u(a, M_1) \ge u(a, M_2)$.

Proof. Let N_i^* be the maximal M_i - ν -systems (i=1, 2), each of which does not meet $\Sigma(a)$. Then it is easy to see that N_1^* is contained in N_2^* . Therefore we obtain that $u(a, M_1) = \sup(\Sigma \setminus N_1^*) \ge \sup(\Sigma \setminus N_2^*) = u(a, M_2)$.

DEFINITION 8. Let p be a prime element such that $p \ge a$, and let $M = \Sigma'(p)$. u(a, M) is called a (right) upper isolated p-component of a, and denoted by u(a, p).

Suppose that (*) in §3 is a decomposition of a into primary elements q_i , and suppose that each $\Sigma'(\operatorname{rad}(q_i))$ contains the unique maximal μ -system M_i , $i=1, \cdots, n$. If p is a prime element such that $M_1 \supseteq \Sigma'(p), \cdots, M_s \supseteq \Sigma'(p)$, $M_{s+1} \not\supseteq \Sigma'(p), \cdots, M_n \not\supseteq \Sigma'(p)$, then $u(a, p) = q_1 \cap \cdots \cap q_s$. Because, for $i=1, \cdots, s$, we have $u(a, p) \le u(a, M_i)$ by Corollary 2 to Theorem 3. Now by Lemma 5, we have $P(q_i) \supseteq \Sigma'(rad(q_i))$. Hence $P(q_i)$ contains M_i . Hence we have, by Theorem 3, $u(a, M_i) \le q_i$. Therefore $u(a, p) \le q_1 \cap \cdots \cap q_s$. If s=n, we obtain $a \leq u(a, p) \leq q_1 \cap \cdots \cap q_n = a$, $u(a, p) = q_1 \cap \cdots \cap q_n$. If s < n, then, since $\Sigma'(p)$ is not contained in $\Sigma'(\operatorname{rad}(q_i))$, we have $\operatorname{rad}(q_i) \not\leq p$, and have $q_i \not\leq p$ for j > s (by Theorem 1). Hence we can take elements x_j such that $x_j \leq q_j$ and $x_j \in \Sigma'(p)$, $j=s+1,\cdots,n$. Since $\Sigma'(p)$ is a μ -system, there exists a finite number of elements y_j in $\Sigma'(p)$ such that $y_{s+1} \le x_{s+1} \cdot x_{s+2}$, $y_{s+2} \le y_{s+1} \cdot x_{s+3}$, \cdots , $y_{n-1} \le y_{n-2} x_n$. Then we have $y_{n-1} \leq (\cdots ((x_{s+1} \cdot x_{s+2})x_{s+3}) \cdots) x_n \leq q_{s+1} \cap \cdots \cap q_n$. Let z be an arbitrary element of Σ such that $z \leq q_1 \cap \cdots \cap q_s$. Then we obtain $zy_{n-1} \leq z_{n-1}$ $(q_1 \cap \cdots \cap q_s) \cap (q_{s+1} \cap \cdots \cap q_n) = a$. Now, take any $\Sigma'(p)$ -v-system N containing z. Then there exists an element v of N such that $v \le zy_{n-1}$. Since $v \le a, N$ meets $\Sigma(a)$. Hence we have $z \le u(a, p), q_1 \cap \cdots \cap q_s \le u(a, p)$. Therefore we obtain $q_1 \cap \cdots \cap q_s = u(a, p)$, completing the proof.

5. Ascending chain condition, Condition (N)

We shall assume, throughout this section, that the ascending chain condition (a. c. c.) holds for elements of L.

Lemma 12. Every element of L has a finite number of minimal primes belonging to it.

Proof. Let c be an element of L. If c is prime, the lemma is trivially evident. Suppose now that c is not prime. If there exists an infinite number

of minimal primes p_{λ} belonging to c, then, since $a_1 \leq c$, $b_1 \leq c$ and $a_1 b_1 \leq c$ for suitable elements a_1 , b_1 of L, a_1 or b_1 is less than p_{λ} for an infinite number of p_{λ} . Suppose that it is a_1 , and put $c_1 = c \cup a_1$. Then evidently $c < c_1$ and $c_1 \leq p_{\lambda}$. c_1 is not prime. Hence c_1 has the same property as that of c. Continuing in this way, we obtain an ascending chain $c < c_1 < c_2 < \cdots$, which is a contradiction.

Lemma 13. Let p_1, \dots, p_n be the minimal primes belonging to an element c of L. Then there exists a product $\mathfrak{P}(p_{i_1}, \dots, p_{i_m})$ which is less than c, where \mathfrak{P} denote a product-form of some type of weight m, and i_1, \dots, i_m is some finite permutation of $1, \dots, n$ with repetitions allowed.

Proof. The lemma is evident if c is prime. Suppose that c is not prime. Then there exist two elements x and y of Σ such that $x \leq c$, $y \leq c$ and $xy \leq c$. Put $a_1 = c \cup x$ and $b_1 = c \cup y$. Then $c < a_1$ and $c < b_1$. Now, let p_1', \dots, p_r' and p_1'', \dots, p_s'' be the minimal primes belonging to a_1 and b_1 respectively. If we suppose that both a_1 and b_1 have the same property that we wish to prove of c, so that $\mathfrak{P}'(p'_{j_1}, \dots, p'_{j_\lambda}) \leq a_1$ and $\mathfrak{P}''(p''_{k_1}, \dots, p''_{k_\mu}) \leq b_1$, then, since $a_i b_1 = (c \cup x) \cdot (c \cup y) \leq c \cup xy = c$, we have $\mathfrak{P}'(p'_{j_1}, \dots, p'_{j_\lambda}) \cdot \mathfrak{P}''(p''_{k_1}), \dots, p''_{k_\mu}) \leq c$. The interval $[c, p'_{j_\rho}]$ contains a minimal prime belonging to c, $\rho = 1, \dots, \lambda$, and similarly for $[c, p''_{k_\sigma}]$, $\sigma = 1, \dots, \mu$. Hence we have $\mathfrak{P}(p_{i_1}, \dots, p_{i_m}) \leq c$, where p_{i_1}, \dots, p_{i_m} are minimal primes belonging to c, and $\mathfrak{P} = \mathfrak{P}' \cdot \mathfrak{P}''$. Hence, if the lemma is false for c, it is false for a_1 or for b_1 . Continuing in this way, we atain a contradiction of the a. c. c.

DEFINITION 9. A product-form $\mathfrak{Q}(X_1, \dots, X_m) = (\dots((X_1X_2)X_3)\dots)X_m$ is called that it has a *(right) nested type* of weight *m*, where X_i are indeterminates over *L*.

We now consider the following condition:

(N) For every product-form \mathfrak{P} of weight n, and for every elements c_1, \dots, c_n (repetitions allowed) of L, there exists a product-form \mathfrak{Q} with nested type of weight m such that

$$\mathfrak{Q}(c_{i_1},\cdots,c_{i_m}) \leq \mathfrak{P}(c_1,\cdots,c_n),$$

where $i_1 \leq \cdots \leq i_m$.

If L is associative, the condition (N) is satisfied trivially. But there are important examples which are compactly generated non-associative multiplicative lattices satisfying the condition (N), which will be shown in the last section of this paper.

Lemma 14. Suppose that the condition (N) holds for L. Then, for every element $a (\neq e)$ of L, there exists a minimal prime p of a such that a|p>a.

Proof. If a is prime, the lemma is trivially evident. Suppose that a is not

prime. Then by Lemma 13 and the condition (N), there exist minimal primes p_1, \dots, p_m (not necessarily distinct) belonging to a and a product form \mathfrak{Q} of nested type such that $\mathfrak{Q}(p_1, \dots, p_m) \leq a$. It is then easy to see that m>1, and that there exists p_i such that $a/p_i>a$. This completes the proof.

Behrens showed in [2] that the radicals of primary ideals in non-associative rings are not necessarily prime. He gave two examples in that paper. Each of those examples is a commutative algebra with some finite base over a field. It is now easily verified that the ideals in each of the algebras is a compactly generated multiplicative lattice. Accordingly, those examples assure the existence of the lattices in which the radicals of primary elements are not prime. Now we have the following

Theorem 4. Suppose that the condition (N) holds for L. Then the radical of every primary element is prime.

Proof. Let q be a primary element of L. If q=e, the theorem is evident. We suppose that q < e. Then by Lemma 14, we can find a minimal prime p belonging to q such that $x_z \cdot z \le q$ and $x_z \le q$ for an arbitrary element z of $\Sigma(p)$ and a suitable element x_z of Σ . Hence $z \le \operatorname{rad}(q)$, and hence $p \le \operatorname{rad}(q)$. On the other hand, since $\operatorname{rad}(q) \le p$ by Theorem 1, we obtain $\operatorname{rad}(q) = p$, as desired.

REMARK. Under the condition (N) for L, we can show that if $\operatorname{rad}(c) = p$ is prime for an element $c(\pm e)$, then c/p > c. Because, the assertion is trivially evident if p=c. Hence we can suppose that p>c. Then by Lemma 13 and the condition (N), there exists a nested product \mathfrak{Q} of p such that $\mathfrak{Q} \equiv \mathfrak{Q}' p \leq c$. If we suppose that c/p=c, then $\mathfrak{Q}' \equiv \mathfrak{Q}'' p \leq c$. Continuing in this way, we obtain p=c, which is a contradiction.

Theorem 5. Suppose that (*) (in §3) is a decomposition of a into primary elements q_i with prime radicals p_i . Then the minimal primes belonging to a coincide with the minimal elements in the po-set $\{p_1, \dots, p_n\}$.

Proof. By Lemma 13, we have that $\mathfrak{P}^{(i)}(p_i) \equiv \mathfrak{P}^{(i)}(p_i, \dots, p_i) \leq q_i$ for suitable product-forms $\mathfrak{P}^{(i)}, i=1,\dots,n$. Hence, for any product-form of *n*-th weight, we obtain $\mathfrak{P}(\mathfrak{P}^{(1)}(p_1),\dots,\mathfrak{P}^{(n)}(p_n)) \leq \mathfrak{P}(q_1,\dots,q_n) \leq q_1 \cap \dots \cap q_n = a$. This implies the existence of p_i such that $p_i \leq p$ for any prime p satisfying $p \geq a$. In particular, any minimal prime belonging to a coincides with some p_i , and there is no p_j such that $p_j < p_i$. Conversely, let p_i be any minimal element in the *po*-set $\{p_i,\dots,p_n\}$. If p is a prime element contained in $[a, p_i]$, we can show, similarly as above, the existence of a prime element p_k such that $p_k \leq p$. We obtain therefore $p_k \leq p_i, p_k = p_i$, completing the proof.

The following theorem have been established by the last part of §4.

Theorem 6. Suppose that (*) is a decomposition of a into primary elements

 q_i with prime radicals p_i . If $p(\pm e)$ is a prime element such that $p_1 \le p, \dots, p_s \le p$, $p_{s+1} \le p, \dots, p_n \le p$, then

$$u(a, p) = q_1 \cap \cdots \cap q_s.$$

Theorem 7. Suppose that (*) is a short decomposition of a into primary elements q_i with prime radicals p_i . If p is any minimal prime element belonging to a then $u(a, p) = q_i$ for some i, and u(a, p) is primary.

Proof. By Theorem 5, we have $p=p_i$ for some *i*. Since there exists no *j* such that $p_j \le p$ $(j \ne i)$, we obtain $u(a, p)=q_i$ by Theorem 6.

REMARK. If p=e in Theorem 7, *a* is primary such as rad(a)=e.

Corollary 1. Suppose that (*) is a short decomposition of a, and let p_1, \dots, p_s be the minimal primes belonging to a $(i=1,\dots,s)$. Then

$$a = u(a, p_1) \cap \cdots \cap u(a, p_s) \cap q_{s+1} \cap \cdots \cap q_n.$$

Corollary 2. Suppose that a has a decomposition into primary elements with prime radicals. If p_1, \dots, p_s are the minimal primes belonging to a, then $u(a, p_1), \dots, u(a, p_s)$ are primary.

Proof. This is immediate by Theorems 2, 5 and 7.

Now let V be a compactly generated lattice with compact generator system Σ . If Σ is a join-semi-lattice, Σ is said to be join-closed. Let Σ be any compact generator system of V. Then it can be proved that the join-semi-lattice Σ' generated by Σ satisfies the conditions (1) and (2) in §1. Hence Σ' is a join-closed compact generator system of V.

In the rest of this section we suppose that Σ is join-closed. Then it is easy to see by the a.c.c. that Σ coincides with L. But it is convenient to remain the symbol Σ .

Lemma 15. Let p_1, \dots, p_n be a finite number of prime elements of a compactly generated multiplicative lattice with a join-closed compact generator system. If $\Sigma(a)$ is contained in the set-union $\bigvee_{i=1}^{n} \Sigma(p_i)$, there exists p_i such that $p_i \ge a$.

Proof. If n=1, the lemma is trivially evident. If n=2, then $\Sigma(a)$ is contained in $\Sigma(p_1) \vee \Sigma(p_2)$. Suppose that $a \leq p_1$ and $a \leq p_2$. Then we can take z_i of Σ such that $z_i \leq a$, $z_i \leq p_i$ (i=1, 2), $z_1 \leq p_2$ and $z_2 \leq p_1$. Since $z_1 \cup z_2$ is less than a, $\Sigma(z_1 \cup z_2)$ is contained in $\Sigma(p_1)$ or $\Sigma(p_2)$. This implies $z_2 \leq p_1$ or $z_1 \leq p_2$, which is a contradiction. If $n \geq 3$, we can assume, no loss of generality, that $\Sigma(a)$ is contained in $\bigvee_{i=1}^{m} \Sigma(p_i)$ $(m \leq n)$, and not contained in $\bigvee_{i=1}^{k-1} \Sigma(p_i)$ $\vee \bigvee_{i=k+1}^{m} \Sigma(p_i)$ for every $k=2, \cdots, m-1$. Then we can take elements z_k of Σ such that $z_k \leq a$, $z_k \leq p_k$ and $z_k \leq p_i$ for $i \neq k$; $i, k=1, \cdots, m$. Since z_2, \cdots, z_m are contained in a μ -system $\Sigma'(p_i)$, we can find a finite number of elements

 v_1, \dots, v_{m-2} of $\Sigma'(p_1)$ such that $v_1 \leq z_2 z_3$, $v_2 \leq v_1 z_4, \dots, v_{m-2} \leq v_{m-3} z_m$. Then we have $v^{(1)} \equiv v_{m-2} \leq ((\dots((z_2 \cdot z_3) z_4) \dots) z_{m-1}) z_m \leq p_j$ for $j = 2, \dots, m$, and $v^{(1)} \leq p_1$. Similarly, we can find $v^{(i)}$ of $\Sigma'(p_i)$ such that $v^{(i)} \leq p_j$ $(j \neq i)$ and $v^{(i)} \leq p_i$ for $i=2, \dots, m$. Now let $v \equiv v^{(1)} \cup \dots \cup v^{(m)}$. Then, since Σ is closed under finite join operation, v is contained in $\Sigma(a)$. Hence we have $v \leq p_i$ for a suitable prime p_i . This implies $v^{(i)} \leq p_i$, which is a contradiction. This completes the proof.

Theorem 8. Suppose that (*) is a short decomposition of a with prime radicals, and let p be a prime element such that $a \le p = e$. Then $p = rad(q_i)$ for some q_i , if and only if u(a, p)/p > u(a, p).

Proof. We have, by Theorem 6, $u(a, p) = q_1 \cap \cdots \cap q_k$, where q_1, \cdots, q_k are those whose radicals p_i are less than p. This is a short decomposition of u(a, p), and p is one of p_1, \cdots, p_k . Since an element x of $\Sigma = L$ is contained in P'(u(a, p))if and only if $x \le p$, we have u(a, p)/p > u(a, p). Conversely, let u(a, p)/p > u(a, p). Then the minimal primes of a are the minimal elements in the po-set $\{p_1, \cdots, p_n\}$. Hence $p_i \le p$ for some p_i . We let p_1, \cdots, p_k be the primes such that $p_i \le p$ $(i=1, \cdots, k)$. Then $u(a, p) = q_1 \cap \cdots \cap q_k$, rad $(q_i) = p_i$, and that is a short decomposition of u(a, p). Now by the assumption $\Sigma(p)$ is contained in P'(u(a, p)) $= \bigvee_{i=1}^k \Sigma(p_i)$. Hence, we have by Lemma 15 $p \le p_i$ for a suitable $p_i(1 \le i \le k)$. We obtain therefore $p = p_i$.

6. Artin-Rees property

In this section, we let L be a compactly generated integral multiplicative lattice with the compact generator system Σ .

DEFINITION 10. L is said to have the (right) weak Artin-Rees property, if for any a in L and any x in Σ , there exists a product \mathfrak{P} of x such that $a \cap \mathfrak{P} \leq ax$.

Theorem 9. Suppose that the a.c.c. holds for elements of L. If every element of L may be decomposed into a meet of a finite number of primary elements, then the weak Artin-Rees property holds for L.

Proof. Let $a \in L$, and $x \in \Sigma$, and suppose that $ax = q_1 \cap \cdots \cap q_n$ is a primary decomposition of ax. If $a \leq q_i$ for every $i=1, \cdots, n$, we have that $a \cap x \leq a = ax$. Hence we can suppose that $a \leq q_i$ for $i=1, \cdots, m$, where $1 \leq m \leq n$. Then $ax = a \cap q_1 \cap \cdots \cap q_m$. Since there exists an element u of Σ such that $ux \leq q_i$ and $u \leq q_i$ $(1 \leq i \leq m)$, we obtain $x \leq \operatorname{rad}(q_i)$ $(1 \leq i \leq m)$. Hence we have that $\mathfrak{P}_i \equiv \mathfrak{P}_i(x, \cdots, x) \leq q_i$ for suitable product-forms \mathfrak{P}_i $(1 \leq i \leq m)$. Hence $\mathfrak{P}' \equiv$ $(\cdots ((\mathfrak{P}_1 \cdot \mathfrak{P}_2)\mathfrak{P}_3 \cdots)\mathfrak{P}_m \leq q_1 \cap \cdots \cap q_m$. Therefore we obtain $a \cap \mathfrak{P}' \leq a \cap q_1 \cap \cdots \cap q_m$ = ax, completing the proof.

Let Σ^* be the multiplicative monoid generated by Σ .

DEFINITION 11. L is called a strictly upper semi-modular lattice related to Σ^* , if the relations $a \cap u < b < a < a \cup u$ hold for $a, b \in L$, and $u \in \Sigma^*$, then there exists an element c of L such that $a \cap u < c \le u$ and $(c \cup b) \cap a = b$.

This is a modification of the semi-modular lattice defined in [19, §45].

Lemma 16. Let L be a strictly upper semi-modular lattice related to Σ^* , and let q be an irreducible element of L. If $q \cap u = a \cap u$ and q < a for $a \in L$, $u \in \Sigma^*$, then $u \leq q$.

Proof. Put $b=(q \cup u) \cap a$. Then $q \le b$. If b=q, then since $q=(q \cup u) \cap a$ and q < a, we have $q=q \cup u$, $u \le q$. Next we suppose that q < b. Now we have that $a \cap u \le q < a \le a \cup u$. If $a=a \cup u$, then $u \le a$, $u=a \cap u=q \cap u$. This implies $u \le q$. If $a \cap u=q$, then $q \cap u=q$, $q \le u$. This implies $q \cup u=u$. Hence we have $b=a \cap u=q \cap u=q$, a contradiction. Now it remains to consider the case of $a \cap u < q < a < a \cup u$. Then there exists an element c of L such that $a \cap u < c \le u$ and $q=(q \cup c) \cap a$. Since q is irredicible, we have $q=q \cup c$. Hence $c \le q < a$, $c \le a \cap u$. This contradicts $a \cap u < c$.

Lemma 17. A non-void μ -system M meets $\Sigma(\mathfrak{P}(x, \dots, x))$ for every element $x \in M$ and every product-form \mathfrak{P} .

Proof. The proof will be given by induction with respect to the weight m of \mathfrak{P} . If m=1, the lemma is evident. We suppose that the lemma has been proved for \mathfrak{P}' with any weight m' < m. Now \mathfrak{P} is expressible as $\mathfrak{P} = \mathfrak{P}_1 \cdot \mathfrak{P}_2$. Of course the weight of \mathfrak{P}_i is strictly less than that of \mathfrak{P} . Hence by the induction hypothesis M meets $\Sigma(\mathfrak{P}_i)$; accordingly there exists u_i such that $u_i \in M$ and $u_i \leq \mathfrak{P}_i$ (i=1, 2). Since there exists an element u of M such that $u \leq u_1 u_2$, M meets $\Sigma(\mathfrak{P}_i)$, as desired.

Theorem 10. Let L be a strictly upper semi-modular lattice related to Σ^* , and suppose that the a.c. c. holds for elements of L. If the weak Artin-Rees property holds for L, every element of L is decomposed into a meet of a finite number of primary elements.

Proof. Since L satisfies the a. c. c., it is sufficient to show that every irreducible element of L is primary. Suppose that q is irreducible, and let $xy \le q$ but $x \le q$ for two elements x, y in Σ . Put $a=x \cup q$. Then a > q and $ay=(x \cup q)y = xy \cup qy \le q$. Now let $\mathfrak{P} \equiv \mathfrak{P}(y, \dots, y)$ be a product of y such that $a \cap \mathfrak{P} \le ay \le q$. Then we have $a \cap \mathfrak{P} \le q \cap \mathfrak{P}$. Hence $a \cap \mathfrak{P} = q \cap \mathfrak{P}$. Since q < a, we have by Lemma 16 $\mathfrak{P} \le q$. Next, we let M be an arbitrary μ -system containing y. Then by Lemma 17 $M \land \Sigma(\mathfrak{P})$ is not void. Since $\mathfrak{P} \le q$, we have that $M \land \Sigma(\mathfrak{P}) \subseteq M \land \Sigma(q)$. Therefore M meets $\Sigma(q)$, that is, $y \le \operatorname{rad}(q)$, as desired.

7. Applications

[1] Let R be a non-associative (not necessarily) ring with or without unity quantity. The word "ideals" will mean always "two-sided ideals" of R. Ideals of R will be denoted by A, B, P, Q, For an element x of R, (x) will denote the principal ideal generated by x. (x) consists of the elements u such of that $u=\Sigma\Re(\dots, x, \dots)$, where $\Re(\dots, x, \dots)$ is a product with x as its factor, and Σ is a finite sum.

Now it can be proved that the set of all ideals of R forms a compactly generated integral multiplicative lattice with the compact generator system consisting of the principal ideals. The results in the preceding sections are accordingly applicable to the ideals of R.

Throughout [1], there is a complete parallelism between the theory of right-side and that of left-side. We shall therefore state the results for right-side only.

For any two ideals A and B, the (right) quotient A by B, denoted by A/B, is the set of the elements u in R such that $(u)B \subseteq A$ (Cf. [2], [8]). Then A/B is an ideal of R, and it can be proved easily that A/B coincides with the set-union of all the principal ideals (u) such that $(u)B \subseteq A$. An element x of R is said to be (*right*) related an ideal A, if and only if A/(x) contains A properly. Otherwise x is said to be (*right*) unrelated to A. It is then easily seen that if x is related to A, every element in (x) is also related to A.

A family \mathfrak{M} of principal ideals of R is called a μ -system, if there exists (z) of \mathfrak{M} such that $(z) \subseteq (x)(y)$ for any two principal ideals (x) and (y) in \mathfrak{M} . The void set is also defined to be a μ -system. Let P be a prime ideal of R (Cf. [2]). It is then easily verified that the family of principal ideals $\mathfrak{M}_P = \{(x) \mid (x) \text{ is not contained in } P\}$ forms a μ -system. Conversely, if \mathfrak{M}_P is a μ -system for an ideal P, then P is prime. Let A be an ideal of R, and let \mathfrak{M} be a μ -system which does not contain any ideal $(x) \subseteq A$. Then we can show that the existence of the (maximal) prime ideal P such that P contains A and every principal ideal in P does not contained in \mathfrak{M} (Cf. [16, §14]).

Let M be an M-system in the sense of Behrens [2]. If we make the family $\mathfrak{M} = \{(x) | x \in M\}$ of principal ideals, it is easily verified that \mathfrak{M} is a μ -system. But, for any μ -system \mathfrak{M} , it can not be proved in general, that the set $\{x | (x) \in \mathfrak{M}\}$ is an M-system in the sense of Behrens. By Definition 2, we define the radical of an ideal A, which is denoted by $\operatorname{rad}(A)$, is the ideal generated by the set-union of principal ideals (x) with the property that every μ -system which contains (x) contains a principal ideal in A. Definition of a minimal prime ideal of an ideal is the same as in the case of an associative ring (Cf. [11]). Then by Corollary to Theorem 1, we obtain that the radical of an ideal A is the intersection of all the minimal prime ideals of A. Therefore we obtain that $\operatorname{rad}(A)$ coincides with the Behrens' radical $\mathfrak{r}(A)$. In order that an ideal Q of R is (right) primary (Cf. [2]) it is necessary and sufficient that every element which is (right) related to Q is contained in $\mathfrak{r}(Q)$. Irredundant decomposition of an ideal of R is defined as usual. Let

$$A = Q_1 \cap \dots \cap Q_n \tag{(*)}$$

be an irredundant decomposition of an ideal A into primary components Q_i .

The representation (*) of A is called a short decomposition of A, if none of the meets of two (or more) of Q_1, \dots, Q_n are primary. By Theorem 2, we obtain the following statement.

1) If an ideal A of R can be decomposed as an intersection of a finite number of primary ideals, A has a short decomposition. In any two short decompositions of A, the number of primary components as well as their radicals are necessarily the same.

Let \mathfrak{M} be a non-void μ -system. A family \mathfrak{N} of principal ideals of R is called a (right) \mathfrak{M} -v-system of R, if \mathfrak{N} contains \mathfrak{M} and if for every (u) in \mathfrak{N} and every (x) in \mathfrak{M} , there exists an ideal (z) in \mathfrak{N} such that $(z) \subseteq (u)(x)$. If \mathfrak{M} is void, the \mathfrak{M} - ν -system is also void. Let \mathfrak{M} be a μ -system such that every ideal in \mathfrak{M} is not contained in an ideal A. A (right) upper \mathfrak{M} -component of A is defined to be the ideal generated by the set-union of all the principal ideals (x) having the property that every \mathfrak{M} -v-system which contains (x) has an ideal in A. The upper \mathfrak{M} -component of A will be denoted by $U(A, \mathfrak{M})$. Let P be a prime ideal containing A. Then the (right) upper isolated P-component of A, which is denoted by U(A, P), means $U(A, \mathfrak{M})$, where $\mathfrak{M} = \{(x) | (x) \text{ is not con-}$ tained in P. If P is a minimal prime of A, U(A, P) is called an isolated (right) primary component of A. Now let \mathfrak{M} ($\neq \phi$) be a μ -system which does not contain any ideal in A, and let \mathfrak{N}^* be the (unique) maximal \mathfrak{M} -v-system such that every ideal in \mathfrak{N}^* is not contained in A. Then by Theorem 3 $U(A, \mathfrak{M})$ is the intersection of all the ideals B having the property that (1) B contains A and (2) $\{(x)|B/(x)=B\}$ contains \mathfrak{M} . Moreover $U(A, \mathfrak{M})$ is the ideal generated by the set-union of all the principal ideals, each of which is not in \Re^* .

A product-form $\mathfrak{Q}(X_1, \dots, X_m) = (\dots((X_1X_2)X_3)\dots)X_m$ is called that it has a (right) *nested* type of weight *m*, where X_i are indeterminates over the ideal-*m*-lattice of *R*.

A non-associative ring R is called here an (N)-*ring* if it satisfies the following condition:

(N) For every product-form \mathfrak{P} of weight n, and for every ideals A_1, \dots, A_n (repetitions allowed) of R, there exists a product-form \mathfrak{O} with nested type of weight m such that

$$\mathfrak{Q}(A_{i_1}, \cdots, A_{i_m}) \subseteq \mathfrak{P}(A_1, \cdots, A_n),$$

where $i_1 \leq \cdots \leq i_m$.

Any associative ring is evidently an (N)-ring. Any nilpotent Lie ring is also an (N)-ring. Now we have the following statement.

2) Suppose that the a. c. c. holds for ideals of an (N)-ring R. Then the radical of every primary ideal of R is prime. (by Theorem 4).

We now suppose that (*) in this section is an irredundant decomposition of an ideal A of a ring R into primary ideals Q_i with prime radicals P_i . If the a. c. c. holds for ideals of R, the minimal primes belonging to A coincide with the minimal elements in the *po*-set $\{P_1, \dots, P_n\}$. This is the immediate consequence of Theorem 5. In particular, we obtain the following:

3) Assume that the a. c. c. holds for ideals of an (N)-ring R. If (*) is a decomposition of an ideal A into primary ideals Q_i , the minimal primes belonging to A coincide with the minimal elements in the po-set consisting of the radicals of Q_i (by Theorem 5).

In the rest of this paragraph, we let R be an (N)-ring with the a. c. c. for ideals of R. Then by Theorems 6, 7, 8, 9 and 10 we have the followings 4)~8).

4) Suppose that (*) is a decomposition of an ideal A of R into primary ideals Q_i with prime radicals P_i . If $P(\pm R)$ is a prime ideal such that $P_1 \subseteq P, \dots, P_s \subseteq P$, $P_{s+1} \oplus P, \dots, P_n \oplus P$, then

$$U(A, P) = Q_1 \cap \cdots \cap Q_s.$$

5) Suppose that (*) is a short decomposition of A with (prime) radicals $P_i = rad(Q_i)$. If P is any minimal prime ideal belonging to A and $P \neq R$, then $U(A, P) = Q_i$ for some i, and U(A, P) is primary.

6) Suppose that (*) is a short decomposition of A, and let P_1, \dots, P_s be the minimal primes belonging to A. Then

$$A = U(A, P_1) \cap \cdots \cap U(A, P_s) \cap Q_{s+1} \cap \cdots \cap Q_n.$$

7) Suppose that (*) is a short decomposition of A, and let P be a prime ideal such that $A \subseteq P \neq R$. Then $P = rad(Q_i)$ for some Q_i , if and only if $U(A, P)/P \supseteq (A, P)$.

R is said to have the (*right*) weak Artin-Rees property, if for any ideal *A* and any principal ideal (*x*) of *R*, there exists a product \mathfrak{P} of (*x*) such that $A \cap \mathfrak{P} \subseteq A(x)$. (Cf. [8]). Then we have

8) In order that every ideal of R is decomposed into a meet of a finite number of primary ideals, it is necessary and sufficient that the weak Artin-Rees property holds for R.

[2] Let G be a group. The set of all normal subgroups A, B, N, \cdots of G is a commutative residuated *cm*-lattice under commutator-product [A, B] and the set-inclusion relation. The *residual* of A by B, which is denoted by A:B, is defined as the set-union of the elements $u \in G$ such that $[(u), B] \subseteq A$, where (u) is the normal subgroup generated by $u \in G$, that is, $(u) = \{\prod x_{\rho}^{-1} u^{\rho} x_{\rho} | x \in G, \rho \in Z\}$

(the integers). Then it can be proved that A:B is a normal subgroup of G. It is easily be seen that the *cm*-lattice has the *zero element* 1 (the group identity) (Cf. [3]). Now we can show that the set of the normal subgroups of G is a compactly generated multiplicative lattice with the compact generator system consisting of normal subgroups, each of which is generated by a single element.

An element x of G is said to be *unrelated* to a normal subgroup N, if N:(x) =N. Otherwise, x is related to N. A family **M** consisting of normal subgroups with single generators is called a μ -system, if there exists (z) of **M** such that (z) $\subseteq [(x), (y)]$ for any two (x) and (y) or **M**. The void set is also defined to be a μ -system. A normal subgroup P of G is said to be prime, if $[A, B] \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$. Then it can be proved that P is prime if and only if [(x), (y)] $\subseteq P$ implies $(x) \subseteq P$ or $(y) \subseteq P$. If P is prime, the family $\{(x) | x \notin P\}$ forms a μ -system. Moreover a normal subgroup $P(\pm G)$ of G is prime if and only if $\{(x) | x$ is related to P} is a μ -system.

Let M be a μ -system which does not contain (x) such that $(x) \subseteq A$. Then there exists a normal subgroup P which is maximal in the family of normal subgroups B such that $B \supseteq A$ and $(b) \not \equiv M$ for every $b \in B$. P is necessarily prime.

A radical of normal subgroup N of G is the normal subgroup generated by the set-union of (x) with the property that the every μ -system containing (x)contains a subgroup in N. In symbol: rad(N). Minimal primes of a normal subgroup is defined in the obvious way. Then by Corollary to Theorem 1 we obtain that rad(N) is the intersection of all minimal primes of N.

A normal subgroup Q of G is called *primary*, if $[(x), (y)] \subseteq Q$ and $(y) \not\equiv rad(Q)$ imply that $(x) \subseteq Q$.

Let

$$N = Q_1 \cap \dots \cap Q_n \tag{(**)}$$

be an irredundant decomposition of a normal subgroup N into primary normal subgroups Q_i . The representation (**) of N is called a short decomposition of N, if none of the meets of two (or more) of Q_1, \dots, Q_n are primary. By Theorem 2, we obtain the following statement.

1) If a normal subgroup N of G can be decomposed as an intersection of a finite number of primary normal subgroups, then N has a short decomposition. In any two short decompositions of N, the number of primary components as well as their radicals are necessarily the same.

Let M be a non-void μ -system. A family N of principal normal subgroups of G is called an M- ν -system, if N contains M and if for every (u) in N and every (x) in M there exists (z) in N such that $(z) \subseteq [(u), (x)]$. If M is void, the M- ν -system is also void. By using M- ν -system, the upper M-component U(N, M) of N is defined in an obvious way. In particular, upper isolated Pcomponent U(N, P) of N is defined for any minimal prime of N. Now let M

be a μ -system which does not contain a normal subgroup (of G) in N, and let N^* be the (unique) maximal M- ν -system such that every normal subgroup in N^* does not contained in N. Then by Theorem 3 U(N, M) is the intersection of all the normal subgroups H having the property that (1) $H \supseteq N$ and (2) $\{(a) | H: (a) = H\} \supseteq M$. Moreover U(N, M) is the normal subgroup generated by the set-union of all the normal subgroups such that each of which has a single generator and is not contained in N^* .

A product-form $\mathfrak{Q}(X_1, \dots, X_m) = (\dots((X_1X_2)X_3))\dots)X_m$ is called here that it has a *nested* type of weight *m*, where X_i are the indeterminates over the *m*-lattice of the normal subgroups of *G*.

A group G is called an (N)-group if it satisfies the following condition:

(N) For every product-form \mathfrak{P} of weight n, and for every normal subgroup N_1, \dots, N_n (repetitions allowed) of G, there exists a product-form \mathfrak{Q} with nested type of weight m such that

$$\mathfrak{Q}(N_{i_1},\cdots,N_{i_m}) \subseteq \mathfrak{P}(N_1,\cdots,N_n),$$

where $i_1 \leq \cdots \leq i_m$.

Nilpotent groups are evidently (N)-groups.

Now we let G be an (N)-group with the a. c. c. for normal subgroups. Then by Theorems 4, 5, 6, 7, 8, 9 and 10 we obtain the following statements:

2) The radical of any normal subgroup of G is prime.

3) If (**) is an irredundant decomposition of a normal subgroup N of G into primary normal subgroups Q_i , the minimal primes belonging to N coincide with the minimal elements in the po-set consisting of the rad (Q_i) .

4) Suppose that (**) is a decomposition of a normal subgroup N of G into primary normal subgroups Q_i with prime radicals P_i . If $P(\pm G)$ is a prime normal subgroup such that $P_1 \subseteq P, \dots, P_s \subseteq P, P_{s+1} \oplus P, \dots, P_n \oplus P$, then

$$U(N, P) = Q_1 \cap \cdots \cap Q_s.$$

5) Suppose that (**) is a short decomposition of N with (prime) radicals $P_i = rad(Q_i)$. If P is any minimal prime belonging to N and $P \neq G$, then $U(N, P) = Q_i$ for some i, and U(N, P) is primary.

6) Suppose that (**) is a short decomposition of N, and let P_1, \dots, P_s be the minimal primes belonging to N such that $P_i \neq G$ ($i=1,\dots,s$). Then

$$N = U(N, P_1) \cap \cdots \cap U(N, P_s) \cap Q_{s+1} \cap \cdots \cap Q_n.$$

7) Suppose that (**) is a short decomposition of N, and let P be a prime normal subgroup such that $N \subseteq P \neq G$. Then $P = rad(Q_i)$ for some Q_i , if and only if $U(N, P): P \supseteq U(N, P)$.

G is said to have the weak Artin-Rees property, if for any normal subgroup N of G and for any normal subgroup (x) with single generator x, there exists a commutator-product \mathfrak{P} of (x) such that $N \cap \mathfrak{P} \subseteq [N, (x)]$. Then we obtain

8) In order that every normal subgroup of G is decomposed into a finite number of primary normal subgroups, it is necessary and sufficient that the weak Artin-Rees property holds for G.

YAMAGUCHI UNIVERSITY

References

- [1] V.A. Andrunakievič and Ju. M. Rjabuhin: Additive ideal theory of ideals in rings, modules and groupoids, Doklady 163 (translated in English) (1966), 653-657.
- [2] E.A. Behrens: Zur additiven Idealtheorie in nichtassoziativen Ringen, Math. Z. 64 (1956), 169–182.
- [3] G. Birkhoff: Lattice Theory, rev. ed., Amer. Math. Soc. Colloquium Publications, 25, New York, 1948.
- [4] R. Croisot: Théorie noethérienne des idéaux dans les anneaux et les demigroupes non nécessariement commutatifs, Séminaire P. Dubreil et C. Pisot 10, Exposé 22, 1956-57.
- [5] R.P. Dilworth: Lattice Theory, Amer. Math. Soc. Proceedings of Symposia in Pure Mathematics II, 1961.
- [6] R.P. Dilworth and Peter Crawley: Decomposition theory for lattices without chain conditions, Trans. Amer. Math. Soc. 96 (1960), 1-22.
- [7] M.L. Dubreil-Jacotin L. Lesieur et R. Croisot: Leçons sur la Théorie de Trellis de Structures Algébriques Ordonnées et des Trellis Géométriques, Gauthier-Villars, Paris, 1953.
- [8] Y. Kurata: On an additive ideal theory in a non-associative ring, Math. Z. 88 (1963), 129–135.
- [9] L. Lesieur: Sur les demi-groupes reticules satisfaisant à une condition de chaine, Bull. Soc. Math. France 83 (1955), 161–193.
- [10] P.J. McCarthy: Primary decomposition in multiplicative lattices, Math. Z. 90 (1965), 185-189.
- [11] N.H. McCoy: Prime ideals in general rings, Amer. J. Math. 71 (1949), 823-833.
- [12] K. Murata: Additive ideal theory in multiplicative systems, J. Inst. Polytec. Osaka City Univ. 10 (1959), 91–115.
- [13] ——: On isolated components of ideals in multiplicative systems, J. Inst. Polytec. Osaka City Univ. 11 (1960), 1–9.
- [14] -----: On nilpotent-free multiplicative systems, Osaka Math. J. 14 (1962), 53-70.
- [15] D.C. Murdoch: Contributions to noncommutative ideal theory, Canad. J. Math. 4 (1952), 43-57.
- [16] T. Nakayama and G. Azumaya: Algebra II (in Japanese), Tokyo, 1954.
- [17] V. Rolf and P. Holzapfel: Eine allgemeine Primärzerlegungstheorie, Math. Nach.
 41 (1969), 227-245.
- [18] E. Strohmeier: Homogeneous ideal decompositions in general graded rings with ACC, Math. Ann. 181 (1969), 103–108.
- [19] G. Szász: Einführung in die Verbandstheorie, Akadémiai Kiado, Budapest, 1962.