Nobusawa, N.
Osaka J. Math.
7 (1970), 77-80

# ON SPLITTING OF A FACTOR SET IN A RING 

Dedicated to Professor Keizo Asano on his 60th birthday

Nobuo NOBUSAWA

(Received October 6, 1969)

## 1. Introduction

In [1] and [2], the present author developed the theory of crossed products, especially, the splitting property of factor sets in division and simple rings. If one takes a close look at the proofs given in these works, one can find a few simple principles making all the results obtainable. The purpose of this note is to give a simpler proof of a generalized theorem in case of a general ring. Let $R$ be a ring with unity 1 and $G$ a finite automorphism group of $R$. A factor set $\left\{c_{\sigma, \tau}\right\}$ is defined to be a system of units $c_{\sigma, \tau}(\sigma, \tau \in G)$ in the center of $R$ such that

$$
\begin{equation*}
c_{\tau, \rho} c_{\sigma, \tau \rho}=c_{\sigma, \tau} \rho_{\sigma, \tau}^{\rho} \quad(\sigma, \tau, \rho \in G) \tag{1}
\end{equation*}
$$

The factor set $\left\{c_{\sigma, \tau}\right\}$ is called splitting if one can find $d_{\sigma}$ in the center of $R$ such that

$$
\begin{equation*}
d_{\sigma}^{\tau}=d_{\tau}^{-1} d_{\sigma \tau} c_{\sigma, \tau} \tag{2}
\end{equation*}
$$

A theorem we want to establish is that there exist a subring $B^{\prime}$ in $R$ containing the fixed subring $S$ and a (skew-) Kronecker product of $R$ and $B^{\prime}$ over $S$ so that $\left\{c_{\sigma, \tau}\right\}$ becomes splitting; provided $R$ satisfies some Galois conditions which we shall discuss in 2.

## 2. Galois conditions

Denote $G=\left\{\sigma_{1}(=\right.$ the identity $\left.), \sigma_{2}, \cdots, \sigma_{n}\right\} . \quad S$ denotes a subring of $R$ consisting of all elements $t$ in $R$ such that $t^{\sigma}=t$ for all $\sigma$ in $G$. Consider the following conditions.
[I] There exist $u_{1}, \cdots, u_{n}, v_{1}, \cdots, v_{n}$ in $R$ such that $\sum_{i} v_{i}^{\sigma} u_{i}=0$ unless $\sigma=\sigma_{1}$, and $=1$ in the latter case.
[II] The elements $u_{i}$ and $v_{j}$ in [I] satisfy $\sum_{\sigma}\left(u_{i} v_{j}\right)^{\sigma}=\delta_{i, j}$.
The conditions [I] and [II] are used, in the following, to prove the main theorem in a very effective way. But the true meaning of them lies in that $R$ satisfies [I] and [II] if

$$
R=S u_{1} \oplus \cdots \oplus S u_{n} \quad \text { (direct), }
$$

$$
R_{r} G=\operatorname{Hom}_{s_{l}}(R, R),
$$

$$
R_{r} G=R_{r} \sigma_{1} \oplus \cdots \oplus R_{r} \sigma_{n} \quad \text { (direct) }
$$

Here $R_{r}$ stands for the ring of right multiplication by elements of $R$, and $S_{l}$ the ring of left multiplication by elements of $S$. In this note, we apply operators from right. For example, $t \cdot a_{r} \sigma=(t a)^{\sigma}$. Now let us prove that [ $\left.\mathrm{I}^{\prime}\right]$, [II'] and [III'] imply [I] and [II]. Due to [II'], every $S_{l}$ homomorphism $\phi$ of $R$ to $R$ is in $R_{r} G$, and hence $\phi=\sum_{i} a_{i r} \sigma_{i}$ with $a_{i}$ in $R$. Moreover, if $\phi$ maps $R$ to $S$, then $t \phi$ is in $S$, i.e., $(t \phi)^{\sigma}=t \phi$ for all $t$ in $R$. But this implies $\left(\sum a_{i r} \sigma_{i}\right) \sigma=\sum a_{i r} \sigma_{i}$. From the condition [III'], we have $a_{1}=\cdots=a_{n}$. Therefore, $\phi=a_{r}\left(\sum_{\sigma} \sigma\right)$ with an element $a$. Especially, $S_{l}$ homomorphisms which map $u_{i}$ to 1 and $u_{j}(j \neq i)$ to 0 (which are possible because of [ $\left.\mathrm{I}^{\prime}\right]$ ) are expressed as $v_{i r}\left(\sum \sigma\right)$ with $v_{i}$ in $R$. Now [I] follows, since $\sum_{i} v_{i r}\left(\sum \sigma\right) u_{i r}$ $=1$ in $G R_{r}$ and the left hand term is $\sum_{\sigma} \sigma \sum_{i}\left(v_{i}\right)_{r}^{\sigma} u_{i r}$ and then we use [III']. [II] is an immediate consequence of the definition of $v_{i r}\left(\sum \sigma\right)$, because then $u_{i} \cdot v_{j r}\left(\sum \sigma\right)=\delta_{i, j}$ which implies $\sum_{\sigma}\left(u_{i} v_{j}\right)^{\sigma}=\delta_{i, j}$. Conversely, suppose [I] and [II]. Set $s_{i}=\sum_{\sigma}\left(t v_{i}\right)^{\sigma}$ for an element $t$ in $R$. We have $\sum_{i} s_{i} u_{i}$ $=\sum_{i} \sum_{\sigma}\left(t v_{i}\right)^{\sigma} u_{i}=\sum_{\sigma} t^{\sigma}\left(\sum_{i} v_{i}^{\sigma} u_{i}\right)=t$ by [I]. On the other hand, if $\sum s_{i}^{\prime} u_{i}=0$ for $s_{i}^{\prime}$ in $S$, then $0=\sum_{\sigma} \sum_{i}\left(s_{i}^{\prime} u_{i}\right)^{\sigma} v_{j}=\sum_{i} s_{i}^{\prime} \sum_{\sigma}\left(u_{i}^{\sigma} v_{j}\right)=s_{j}^{\prime}$ for every $j$, which shows the condition [ $\mathrm{I}^{\prime}$ ] is satisfied. [II] also implies that $v_{i r}\left(\sum \sigma\right)$ map $u_{i}$ to 1 and $u_{j}$ to 0 , so that under the assumption [ $\mathrm{I}^{\prime}$ ] the condition [ $\mathrm{II}^{\prime}$ ] is satisfied.

## 3. Polynomial ring $R\left[x_{1}, \cdots, x_{n}, x_{1}^{-1}, \cdots, x_{n}^{-1}\right]$

Let $x_{2}, \cdots, x_{n}$ be $n-1$ variables. For the sake of convenience, we set $x_{1}=1$. We consider a polynomial ring $A=R\left[x_{1}, \cdots, x_{n}, x_{1}^{-1}, \cdots, x_{n}^{-1}\right]$, where $x_{2}, \cdots, x_{n}$ are supposed to be in the center of the ring. Every element of $A$ is a sum of a finite number of monomials $a\left(i_{2}, \cdots, i_{n}\right) x_{2}^{\prime}{ }^{\prime} \cdots x_{n}^{\prime} n$ where $i_{j}$ are some positive or negative integers and $a\left(i_{2}, \cdots, i_{n}\right)$ are elements in $R$. Now, corresponding to a given factor set $\left\{c_{\sigma, \tau}\right\}$, we shall extend the automorphism group $G$ of $R$ to one of $A$ as follows. First, write $x_{i}=x_{\sigma}$. We define

$$
\begin{equation*}
x_{\sigma}^{\tau}=x_{\tau}^{-1} x_{\sigma \tau} c_{\sigma, \tau} \quad\left(\sigma_{i} \tau \text { in } G\right) \tag{3}
\end{equation*}
$$

Without losing generality, we suppose $c_{\sigma, \tau}=1$ if $\sigma=\sigma_{1}$ or $\tau=\sigma_{1}$. Thus $x_{\sigma^{1}}^{\sigma_{1}}=x_{\sigma}$. Then, in a natural way, an automorphism $\tau$ of $R$ in $G$ is extended to a homomorphism of $A$ to $A$. If $\tau$ and $\rho$ are two elements in $G$, we can show that $\left(x_{\sigma}^{\tau}\right)^{\rho}=x_{\sigma}^{\tau \rho}$ by following routine computation. $\left(x_{\sigma}^{\tau}\right)^{\rho}=\left(x_{\tau}^{\rho}\right)^{-1} x_{\sigma \tau}^{\rho} c_{\sigma, \tau}^{\rho}=x_{\rho} x_{\tau \rho}^{-1}$
$c_{\tau, \rho}^{-1} x_{\rho}^{-1} x_{\sigma \tau \rho} c_{\sigma \tau, \rho} c_{\sigma, \tau}^{\rho}=x_{\tau \rho}^{-1} x_{\sigma \tau \rho} c_{\sigma, \tau \rho}=x_{\sigma}^{\tau \rho}$ by making use of (1). Especially, for $\rho=\tau^{-1}$, we have $\left(x_{\sigma}^{\tau} \tau^{\tau^{-1}}=x_{\sigma}\right.$, showing $\tau^{-1}$, and hence every element of $G$ gives an automorphism of $A$ (i.e., an onto-monomorphism). Thus $G$ is extended to an automorphism group of $A$ isomorphic to $G$, for which we use the same letter $G$. Denote the fixed subring of $A$ (by $G$ ) by $B$. Important is that $A / B$ is a Galois extension satisfying [I] and [II]. Therefore by the discussion in $2, A=B u_{1}$ $\oplus \cdots \oplus B u_{n}$ (direct). This result is a successfull consequence of rather technical conditions [I] and [II]. Note also that in the former papers [1] and [2] a quotient ring of a usual polynomial ring was used, the existence of which in general case might be a problem. Here we can avoid the use of it. Returning to $A$, in the following, we express elements of $A$ by $\sum_{i} b_{i} u_{i}$ with $b_{i}$ in $B$. The uniqueness of the expression has been guaranteed in the above.

## 4. (Skew-) Kronecker products and the final result

Set $\quad P(B)=\left\{f\left(x_{1}, \cdots, x_{n}, x_{1}^{-1}, \cdots, x_{n}^{-1}\right) \in B \mid f(1, \cdots, 1,1, \cdots, 1)=0\right\}$, and $P=\left\{\sum b_{i} u_{i} \in A \mid b_{i} \in P(B)\right\}$.

Lemma. $P$ is an ideal of $A$.
Proof. It is sufficient to show that $u_{i} p \in P$ for every element $p$ of $P(B)$ $(i=1, \cdots, n)$. To do so, express $u_{i} p=\sum_{\kappa} b_{k} u_{k}$ with $b_{k}$ in $B$. Then, $\sum_{\sigma}\left(u_{i} p v_{j}\right)^{\sigma}$ $=\sum_{\sigma} \sum_{\kappa}\left(b_{k} u_{k} v_{j}\right)^{\sigma}=b_{j} . \quad$ But $\sum_{\sigma}\left(u_{i} p v_{j}\right)^{\sigma}=\sum_{\sigma} u_{i}^{\sigma} p v_{j}^{\sigma}$ become 0 if we set $x_{1}=\cdots$ $=x_{n}=1$, showing $b_{j} \in P(B)$. This completes the proof.
Now, we consider the residue class ring $A / P$ and denote it by $A^{\prime}$. Let us investigate $A^{\prime}$ more closely. First of all, we have $R \cap P=0$. Therefore we may identify $R$ with its isomorphic image in $A^{\prime}$. Secondly, we see that $P$ is invariant under $G$ as a whole. Therefore, $G$ induces an automorphism group of $A^{\prime}$. Observing the effect of $G$ on $R$ in $A^{\prime}$, the group is seen to be isomorphic to $G$, so we identify both. The question is, what is the fixed subring? Before discussing that question, we investigate the homomorphic image of $B$ in $A^{\prime}$. Let $1=\sum_{i} c_{i} u_{i}$ with $c_{i}$ in $S$. Then every element $b$ of $B$ is expressed as $\sum_{i} b_{i} u_{i}$ where $b_{i}=b c_{i}$. This implies $b$ is contained in $P$ if and only if $b c_{i} \in P(B)$, namely, $b \in P(B)$. Thus we may identify $B / P(B)$ with a homomorphic image of $B$ in $A^{\prime}$. We denote this by $B^{\prime}$. In this case, every element of $A^{\prime}$ is uniquely expressed as $\sum_{i} b_{i}^{\prime} u_{1}$ with $b_{i}^{\prime}$ in $B^{\prime}$. That is, $A^{\prime}=B^{\prime} u_{1} \oplus \cdots \oplus B^{\prime} u_{n}$ (direct). On the other hand, $B^{\prime}$ is obviously contained in the fixed ring of $G$ in $A^{\prime}$. Comparing with the discussion in 2 , we seet that the fixed subring coincides with $B^{\prime}$. Here, note that even in $A^{\prime}$ the conditions [I] and [II] hold. From the above, we also have that $B^{\prime} \cap R=S . \quad A^{\prime}$ is, thus, a (skew-) Kronecker product of $R$ and $B^{\prime}$ over $S$, (if we may give such a definition.) Now we are in a
position to conclude our final goal. Recalling the definition of $P$, we can see that $x_{\sigma}$ as well as $x_{\sigma}^{\tau}$ are not contained in $P$. Denote the elements of $A^{\prime}$ represented by $x_{\sigma}$ by $d_{\sigma}$. From (3), we have the identities (2).

Main theorem. Let $R / S$ be a Galois extension satisfying [I] and [II], and let $\left\{c_{\sigma, \tau}\right\}$ be a factor set. Then there exists a subring $B^{\prime}$ in $R$ containing $S$ such that we can construct a (skew-) Kronecker product of $B^{\prime}$ and $R$ over $S$ and that this Kronecker product $A^{\prime}$ is a Galois extension over $B^{\prime}$ satisfying [I] and [II] (with the same Galois group with that of $R / S)$. In $A^{\prime}$, the factor set $\left\{c_{\sigma, \tau}\right\}$ is splitting.

University of Hawail

## References

[1] N. Nobusawa: On a crossed product of a division ring, Nagoya Math. J. 35 (1969), 47-51.
[2] N. Nobusawa: Crossed products of simple rings, Proc. Amer. Math. Soc. 24 (1970), 18-21.

