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Introduction

Let n be a given natural number greater than 1. It was shown by several
authors that there exist infinitely many imaginary quadratic number fields whose
ideal class numbers are multiples of n (Nagel [9], Humbert [7], Ankeny and
Chowla [1], Kuroda [8]). For real quadratic number fields, however, there
seems to be no corresponding result except special cases n=2* (/=!, 2, •••)
(Gauss [4]) and n=3 (Honda [6]).

In part I of this paper we show the infiniteness of the number of such real
quadratic number fields for every natural number n (Corollary 1 of Theorem 2),
by modifying the method used in [9]. At the same time we get an infinite
number of imaginary quadratic number fields F each of which has a subgroup
of order n2 isomorphic to the direct product of two cyclic groups of order n in

its ideal class group. Moreover we can impose certain conditions on the be-
haviour of finite number of primes in F. Our method is sketched as follows:
In the first place, we construct a quadratic number field which has two ideal

classes α, α' and satisfies some local conditions on its discriminant D. In case
D<0, both of them are of order n and independent. In case Z>>0, neither
of them may be of order n because of the existence of non-trivial units but the
subgroup <α, cιx)> generated by them contains at least an ideal class b of order n.
Next we show that such fields exist infinitely for either case, using the local
conditions on D.

According to the class field theory, the ideal class group of a number field
is closely related to the maximal unramified abelian extension of the field. In
part II we study other types of unramified Galois extensions of quadratic number
fields. First, as a special case of Hibert's irreducibility theorm, we construct
(infinitely many) Galois extensions of the rational number field Q whose Galois
groups are isomorphic to the symmetric group Sn of degree n and each of which
is defined as a minimal splitting field of a trinomial equation

These fields are unramified over the quadratic number fields corresponding to
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the alternating group An of degree ra, under the condition ((n— 1)#, nb)=l

(Proposition 1). Then we get infinitely many imaginary (resp. real) quadratic
number fields each of which has an unramified (resp. unramified at all finite
prime spots) Galois extension with the Galois group isomorphic to An (called
an ^-extension in the following). This is a generalization of the result in

Honda [6], where the case n= 3 are treated. In the rest of this part, we study
the cases of other types of unramified Galois extensions, the dihedral group Dn

and the symmetric group Sn , for instance.

The author wishes to express his sincere gratitude to Professor Y. Akagawa
and Professor T. Honda for their valuable suggestions. He also wishes to
thank Professor H. Nagao and Professor Y. Nakai for their continuous en-

couragement.

PART I

1. Let n be a natural number. We fix n throughout this part. Denote
by Z and Q the ring of rational integers and the rational number field respectively.
Let F be a quadratic number field with discriminant Z), we assume Z)Φ— 3 or

—4 in order to simplify our argument in the following, and σ be the non-

trivial automorphism of F over Q. Define 8 by

[a fundamental unit of F if Z)>0 ,
£= I 1 if Z><-4.

Lemma 1. Let x, y, z be a solution in Z of the Diophantίne equation

( 1 ) X2- Y2D = 4ZM

satisfying (x, #)=1, then there exist an (integral) ideal α in F such that

(a)

(b) α and ασ are relatively prime,

where (a) means the principal ideal in F generated by an element a of F.

Proof. Set a=~~ . It is an integer in F. It follows from (1)
LJ

that a+aσ=x and aaσ=zn. We have (a)(a*)=(z)*. On the other hand, we
have (a, a*)=l, since (a, aσ)^x, zn arid (x, #)=!. Decomposing the ideal
(z) into the product of prime ideals in F, we get easily that (α)— αn for a suitable

integral ideal α. Condition (b) follows from (α, aσ)=l.

2. Let p be a prime factor of n. Take another prime number / such that

((mod./)) if f > 4 = 2 ,
(2) / = 1 Γ P} P

V ' ((mod. 4) if p = 2.
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It follows from (2) that — 1 is a p-th power residue mod. /.
Suppose we have a solution #, j, z of the Diophantine equation (1) satisfying

(i) (*,*)=!,

(ϋ) /(*,
(iii) x is a p-th power non-residue mod. /.

We get (y ) = 1 fr°m (1) and condition (i), where the left side is the Kronecker

symbol. By the decomposition law of primes we have /^tr0" where r and rσ

are conjugate prime ideals in F different from each other. Put a—X -̂  — .
L*

We have rrσ | (a)(aσ)y hence we may assume r|(ασ) but *X(a) since (a) and
(aσ) are relatively prime from Lemma 1. Then we have:

Lemma 2. If 8 is a p-th power residue mod. r, then ideal (a) is the p-th
power of no principal ideal in F.

Proof. Since ασet, we get x=y\/D (mod. r), hence a = x (mod. r).
Therefore a is a p-th power non-residue mod. r, because the residue class field
mod. r is canonically isomorphic to the prime field Z//Z. Assume (a)=(β)p

with a principal ideal (/?) in F. As a is an integer in F, β is also an integer in
F. We have

for some &eZ. So it follows from (3) and the assumption of the lemma a must
be a p-th power residue mod. r. This is a contradiction. So we get our

lemma.

REMARK. In case p=odd prime, Nagel [9] used the following condition

(iv);

(iv) p\\x

in place of conditions (ii) and (iii).

3. Let

(4) n=ρiιpe

22 pe

ss

be the prime decomposition of n. For each i (l<*i<>s) we fix a prime number
/t satisfying

) if A-Φ2,

/,= 1 (mod. 4) if fr = 2.

Suppose we have a solution x, y, z of (1) satisfying
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( i ) ' (*,*)=!,
(ii)' lf\z for i=l, 2, ••• , s,
(iii)' # is a/>rth power non-residue mod. /,- for /=!, 2, ••• , s.

Put a=x -^ - . From Lemma 1 we have (a)=an with an ideal α in F. It

follows from §2 that every l{ is decomposed in F: / f=r l ϊf

 (Γ. Assume r,- |(ασ).
Denote by [α] the ideal class containing α. We have

[α]" =[(«)] = !.

Proposition 1. Let notations and assumptions be as above. If £ is a p{-th
power residue mod.x£ for every ί (l^ί^ί), then the order of [α] is equal to n.

Proof. Assume [d]m=l for some m (l?gm<w). It is obvious that m
is a divisor of n, so there exists at least a prime divisor p£ of n such that mp{ \ n.
Then [a]n/pi=l. So there exists an integer β in F such that an/pi=(β). Then
(α)=α*=(/3)^, . But this is impossible from Lemma 2. So we have [α]wφl
for m=l, 2, ••• , n — 1. Therefore the order of [α] is equal to n.

REMARK. In case Z><— 4, we do not need the condition on 8 in Lemma
2 or Proposition 1, since 6=1.

Theorem 1. For given finite sets Sly S2, S3 of prime numbers satisfying
S{Γ\ Sj=φ (zΦ7)> there exist infinitely many imaginary quadratic number fields F
such that

(a) the ideal class group of F has a class of order n,
fare decomposed in F (i= 1) ,

(b) all primes contained in Sλ remain prime » (ί=2) ,
[are ramified » (*'=3) .

Proof. Let F(S19 S2, S3) be the set of all imaginary quadratic number
fields which satisfy the conditions (a), (b). It is sufficient to prove the case
53-12, 3}Φφ. Fix a prime number / such that

17 = 1 (mod. q) for #<Ξ S U S2 ,

U = 1 (mod. q2) for q^ S3 U {2} ,

where S is the set of all prime factors of n. Let k be the product of all primes in
S1 . Take a rational integer x satisfying

( i ) x is a pf-th power non-residue mod. / for p j E ϊ S ,
(ii) (*,*)=!,
(iii) x2— 4 is a quadratic non-residue mod. q for q^S2-{2] and

Λ? is odd if 2eS2,
(iv) x=q+2 (mod. <?2) for
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Using the condition (5) on /, it is easy to see the existence of such x. Then put

F = Q(Vx2-4zn)

where z is a rational integer satisfying

( v ) (*,*)=!,

( v i ) A/ 1*,

(vii) z=l (mod. q2) for q^S2\jS3J

(viii) x2-4zn<0.

This time also we see easily the existence of such zy since z is determined by a

congruence condition and the coefficient of zn in (viii) is negative. Let D be the

discriminant of F and put

If q^S19 from (v) and (vi), we have f . . - . ) = !. If q^S29 from (iii) and (vii),

ΛD\ ?'
we have f - -)= — 1. In the case q£ΞS3, from (iv) and (vii), we get

\ ί/

x

2-4zn = (q+2)2-4=4q (mod. q2)

and further if #=2, we get

2 _ A~n
(mod. 4) .

So all primes in 53 are ramified in F. It follows from Proposition 1 that F

has an ideal class of order ny since we have D<. — 4 from the assumption on

53. Therefore F satisfies the conditions (a) and (b). So we have F(S19 S2, S3)

Φφ. The infiniteness follows directly from the existence: Assume there

exist only a finite number of such F's. Let them be Fί , F2 , , Ft9 and S{ be the

set of all prime numbers which are ramified in at least one of F/s. £3 is a

finite set since only a finite number of primes are ramified in Ff . Let q' be a

prime number which is not contained in Sl\jS2\J S'3\j{2, 3}. And put S"

= S'3\j{q}. We have shown already that F(S19 S29 S^)ΦΦ Take an F"

£ΞF(S19S2, Si'). Obviously F"^F(Sly S29 S,). So we get q'ϊΞSί. This

contradict the choice of q'. Therefore F(S19 S2, S3) must be an infinite set.

This completes the proof.

REMARK In Kuroda [8], the case S1=S2=φ is treated and the infiniteness

is proved by an analytic method.

4. Take two systems of prime number {/,.} and {/{}, each satisfying the

condition (2)' in §3. We assume, moreover, that /,-Φ/ί for every i(I^i<^s).



62 Y. YAMAMOTO

The following proposition is fundamental for our purpose.

Proposition 2. Let x, zy x' , z' be a non-trivial solution of the following

Diophantine equation

( 6 ) X2-4Z" = X'2-4Z'n

such that

( i ) " (*,*)=(*', *')=!,

(ii)" Wzmdl'tl*' (l^ί^ί),
(iii)" x (resp. x') is a prth power non-residue mod. /,-

(resp. mod. /{) (l^ί^s),
% I %'

(iv)" — - — is a prth power residue mod. lf (1 <^i^s).

Then the ideal class group H of the field

F = Q(\/xtt&)

has a subgroup N such that

if
β (Z/nZ if D>Q,

where D is the discriminant of F.

Proof. From the equation (6) we set

( 7 ) Λf-4*" - x'2-4z'n = y2D

for some y^Z. Hence we have

( 8 ) of -?D = 4zn ,

( 9 ) x'2-y2D = \z'n .

So we get two solutions x, y, z and x', yf, zr of the Diophantine equation (1).
It follows from Lemma 1 that there are ideals α, α' in Fsuch that (a)=an and

(a')=a'n where a= and a'= . Let τ,, r j (l^ί ̂ j)be the

prime ideals in F such that

l, = ttf r,|(α ),

/{ = tίtr rί|(«/<r),

(cf. § 2). Let Λ,- (resp. R't) be the set of all integers in F which are />,-th power

residues mod. r, (resp. mod. rj). Since
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α = x (mod. rz ), a' = xr (mod. r£)

and

it follows from (iii)" and (iv)" that

(10) <*££,, α'φflj:, and a'etf,

case D<—4. By Proposition 1, both ideal classes [α] and [α'] have
the same order n. Suppose the following equation holds for m>0 and w'>0;

(11) [αΓ[α'Γ'=l.

Then there exists a number /3^jF such that

(12) α-α"' - (/8) .

Taking n-th power of both sides of (12),

(13) amam/ = ±βn .

Define d{ by />fί||(ifi, m'\ and et by />M|« (l^ί^ί). We claim that έf, ̂ έ, for
all /. Suppose df<^ef holds for some /, and set

(14) m = paiimQ9 m' = pΐim& , n = p*m0 ,

where p{ \ n0 . From (13) we have

since F has no root of 1 except ±1- As α / ΛVe/? f and ±βno^Ri> we have
amo^R.t But α <$#,-, so we have ^£ |m0. Then we have α^oe/?; and ±βn°
^R'i, so we also get p{ \ mΌ using a'&R't. Hence and from (14) we have p"i+1 \
(m, m'). This contradicts the definition of d{. Therefore we have d^βf for
every ί, accordingly we have n\m and n\m'. Let N be the subgroup of the
ideal class group H generated by [α] and [α']. Then N is isomorphic to the
direct sum Z/nZ(&Z/nZ.
The case D>0. Set I={i\ε^Ri9 l^i^s}, where £ is a fixed fundamental
unit of F. Let m and m' be the orders of the ideal class [α] and [α'] respectively
(m \ n and mf \ n). It follows from Lemma 2 that m is a multiple of Π pi * . We

ι€=J

claim that m' is a multiple of Π pit . Assume p^' \ n for some /$/, then there
i&

exists a number β in F such that

0'" = («') =

So we have
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a' = ±Skβpi for some k<=Z .

Since a'^Riy βpi e R{ , and 6 $ Λ, , we get pf\k. Hence ± £*/?*«• e #ί . So we
get α'e/^ , while from (10), a'^R(. This is a contradiction. Therefore we

have p^m' XH for all /<$/. So m' is a multiple of Π p\ί . Set

m = m0 Π p\ί and m' = mi Π /><* .
»€ΞI /$/

It is easy to see that the ideal class

[am*a"*S\

has the order just equal to n. So the proof is completed.

REMARK. In the case D>0, we see that the subgroup TV generated by
[a] and [α'J is isomorphic to Z\nZ®Z\nZ if a fundamental unit 8 of F is a
pr\h power residue mod. ϊz and mod. t( for every /=!, 2, ••• , 5.

5. We need one more lemma before we state our main theorem.

Lemma 3. For a given prime number p, there exist infinitely many prime
number Γs such that

(a) 1=1 (mod. p) if pΦ2, l=\(mod. 4) if p = 2,
(b) both 2 and — 1 are p-th power residues mod. I,

(c) 3 is a p-th power non-residue mod. I.

Proof. Set

_ ( Q ( 1 1 / P ) if ^φ2,
~~ (Q(V^Ϊ) if ρ = 2,

K =

Then K/Q is a Galois extension of degree p2(p—1) or 8 according as^>Φ2 or p=2.
It follows from the density theorem that there exist infinitely many prime number
Γs whose decomposition fields are all equal to K(21/p). We can see easily that
such Γs satisfy the conditions of the lemma.

Theorem 2. For given finite sets Sly S29 S3 of prime numbers satisfying
S{Γ\Sj=φ if ίΦy, there exist infinitely many imaginary (resp. real) quadratic
number fields F such that

(a) the ideal class group H of F has a subgroup N which is isomorphic to
(resp. Z\nZ\

are decomposed in F (i= 1),
(b) all primes contained in S{ remain prime

are ramified » (z=3) .

Proof, As in the proof of Theorem 1 we may assume that 53 contains at
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least one prime φ2, 3. Let S be the set of all prime factors of n as in § 3.

For each ̂ eS fix two prime numbers /,- and /£ satisfying the three conditions

in Lemma 3 with^>=^ . We may assume that /f φ/£ and /t , /<Φ*S f

1 U*S f

2 U*S f 3

for all i(\ ̂ i^s). Define a number ep by pβρ\ \n for every prime number p. And

take two rational integers a, b satisfying

(15)

a ΐ 0, b = 0 (mod. /,.)

a = 0, b ΐ 0 (mod. /{)

a = b ̂  0 (mod. q)

a ΞΞ atf*

b=0

a ΞΞ 022
e2+5

b = 0

a= b= ΰ

(mod. qfv+1) Ί

(mod. ^+1) J

(mod. 2'2+
8) Ί

V

(mod. 2*2+8) J

(mod. 2)

if

if

for ί= 1, 2, ••• , ί,

for jeS;-®,

for q<=S2\jS3-{2},

where aq is a rational integer such that

2nagq~e9 is a quadratic non-residue mod.

aq ΐ 0 (mod. )̂

(16)

(17)

(mod. 8)

(mod. 8)

(mod. 4)

'•-t

^22~e2 = 1

= 5

= 3

and fq is defined by

ί for

ί for q(=S3— {2}.

Then take another rational integer t such that

t = a (mod. /z )

ί Ξ i (mod. /{)

t = a (mod. <?) for

t = 1 (mod. <?) for

ί ΞΞ 1 (mod. 8),

(ί, α"-^) - 1 ,

(t-a,2a»-^(a-bγ}=\y

for

for ?eS3-{2}(

if

if
if 2e53

(18)

Referring to the choice of /z , /ί and a, b, we see easily that such ί's exist infinitely
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and they are determined by a congruence condition. Set

x = 2t»+±{(t-ar-(t-b)"} ,

z = t(t-ά) ,

z' = t(t-b) .

Then we have

x2-4zn = x'2-4z'n

and

x = — an (mod. /t ) ,

x' = 3 bn (mod. /{) ,

x+xf = 4an (mod. /,.) .

It follows from this that x9 z, x', z' is a solution of the equation (6) in Proposition
2 satisfying all the conditions (i)", (ii)", (iii)" and (iv)". Since it holds that

x2— 4zn = 2n(a+b)t2n~1+ {terms with lower degrees on t}

and t is determined by a congruence condition, we can let the value of — 4zn be

negative (resp. positive) by taking t suitably. Put F=Q(\/x?— 4zn). Let D

be the discriminant of F. For q^Sl— {2}, we get q\z from (18), so ( — ) — 1.
\q/

As x2— 4z" is a homogeneous polynomial with respect to #, i, ί, we have

χ _ =

 e<,+S«+l) for q^ S2 U 53- {2} ,

* na22
e2+* (mod. 22^+9) if 2e ̂  U ̂  U 58 .

From (16) and (17), (-^=— 1 or (-"]= 0 holds if q<=S2or q<=S3 respectively.

/D\ q q

And we have ί — J = l for the case 2e*S1. Therefore there exists at least one

imaginary (resp. real) field F which satisfies the conditions (a), (b) of the theorem.
The infiniteness is shown in the same way as in the proof of Theorem 1 .

Corollary 1. There exist infinitely many real quadratic number fields each

with the class number divisible by a given number n.

Corollary 2. For a given number n and a given prime number p, there exist

infinitely many imaginary quadratic number field F's such that

(a) p is decomposed into the product of two distinct prime ideals p, pσ in F
(b) the cyclic subgroup generated by the class [p] has the index divisible by n.
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REMARK. In a sense, Corollary 1 can be regarded as a special case when
^—infinity of Corollary 2. In this connection it is conjectured that there exist
infinitely many imaginary quadratic number field F's whose ideal class groups
are cyclic and generated by the class [£].

PART II

1. Throughout this part we fix a natural number

g(X) = at

Let

be two polynomials of degrees n and ri(n^ri) with coefficients in a field (in the

above, both polynomials are written as those of degree n, so it may happen that
40=0). Set

n-\

R = R(g, h) =

a,

0 β, βl

0 a0 b,

0

o . .
a« 0

A. 0

•

•

• 0

• 0

• 0

• 0

•

• an

and let Rk=Rk(g, h) be the determinant derived from R by deleting the last
2k rows and the last 2k columns.

Lemma 1. The degree of the greatest common divisor of g(X) and h(X)
is equal to d, if and only if R=Q, /?ι=0, ••• , Rd_1=Q and Rd^0.

We get this lemma from classical theory of equations (see, for example,
Dickson [2]).

2. We consider trinomials of the form

(*) X*+aX+b (a,bt=Z).

be given by (*) and/'(^Q be its derivative. By simple calculations we

R = R(f,f) = (-\)n^/2{(-l)n-\n-\)n-lan+nnbn-1} ,

get

( 1 )

2
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From (1) and (2), it follows;

Lemma 2. If (n—\)a and nb are relatively prime, then R and R1 are also
relatively prime.

Let p be a prime number. Denote by f ( X ) mod. p the image of f ( X ) by
the canonical homomorphism

Lemma 3. If (n — \]a and nb are relatively prime, then, for every prime
number p, f(x) mod. p has at most one multiple root, which is of multiplicity 2 if

there exists.

Proof. Let g(X) be the greatest common divisor of f ( X ) mod. p and f(X)
mod. p. If a is a root off(X) mod.p of multiplicity ra, then it is a root of g(X)
of multiplicity not less than m— 1. From Lemma 1 and Lemma 2, it follows
that the degree of g(X] is equal to 0 or 1. So all roots of f ( X ) mod. p are of
multiplicity 1 or 2. And among them there is at most one which is of multiplicity
2.

3. Let α?!, #2, ••• , an be n roots off(X). Denote the discriminant oίf(X)
by D ( f ) . It holds that

Let K be the (minimal) splitting field of f ( X ) over the rational number field Q.

We have

K = Q(a^ a2ί ••• , an).

K is a Galois extension over Q and the Galois group G=G(K/Q) is isomorphic
to a subgroup (also denoted by G, if there is no confusion) of the symmetric
group Sn of degree n as a permutation group acting on the set {aly α2, ••• , oίn}.

Proposition 1. If

( i ) (n — l)a and nb are relatively prime

and

( ii ) G(K/Q) is isomorphic to Sn ,

then K is an An-extensίon of Q(\/D(f)) unramified at all finite prime spots, where
an An-extensίon means a Galois extension whose Galois group is isomorphic to the
alternating group An of degree n.

Proof. From the definition of D(f)y we see easily that Q(VD(f)) is the

fixed field of An in K/Q. So K is an ^-extension over Q(\/D(f)). Set F=
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Q(\/D(f)). Take any prime ideal p in F. Let^> be the prime number such that

p=$Γ(Z. By Lemma 3, f ( X ) mod. p has case 1) no multiple root or case 2)
one double root and n — 1 simple roots. In case 1), p is not ramified in

Q(a.i)IQ for z'=l, 2, ••• , w, accordingly so in K/Q. Hence p is not ramified in

K/F. In case 2), we have

f(X) = (X-c)*h(X) (mod. p)

for some c^Z and a polynomial h(X)^Z[X] of degree rc— 2 such that h(X)
mod. ^> has no multiple root and h(c)^ 0 (mod. />). By HenseΓs lemma, we get

f(X) = g(X)h(X) ,
where g(X) and h(X) are polynomials of degrees 2 and n— 2 respectively with
coefficients in the />-adic number field Qp such that

(mod. />) .

Let 3̂ be a prime ideal in K satisfying *β | p and ίΓφ be the ^-completion of K.
K<$ contains Qp canonically and then it is a Galois extension over Qp . Let L and

L' be the splitting fields of g(X) and h(X) respectively over Qp. We may set
Ky=L\jL'. Let Zy$ and Tφ be the decomposition group and the inertia group

of *β with respect to Q. Zy$ is ,dentified with the Galois group G(K^/Qp). Since
L'IQP is unramified, K<$/Qp is ramified or not according as L/Q^ is ramified or
not. The Galois group Z<$ being regarded as a permutation group on n roots of
f(X)j we see that T<$ is either a cyclic group of order 2 generated by a trans-
position of two roots of f ( X ) or the trivial group 1 according as the extension
L/Qp is ramified or not. In either case, the inertia group of 3̂ with respect to F,
which is given by TφΠ An, is equal to 1. So p is not ramified in K. Therefore
K/F is unramified at all finite prime spots. This completes the proof.

4. Let f ( X ) be a trinomial of the form (*) and K be the splitting field of
f ( X ) over Q. In order to determine the Galois group G=G(K/Q) which is called
the Galois group off(X) in the following, we use the following

Lemma 4 (cf. [11], §61). If there exist three prime numbers llt /2, /3 which
satisfy the following conditions:

( i ) f(X) mod. /j is irreducible.
(ii) f ( X ) mod. 12 is the product of two irreducible polynomials of degrees 1

and n—l.

(iii) f ( X ) mod. /3 is the product of distinct n—2 polynomials of degree 1 and
an irreducible polynomial of degree 2.

Then G is ίsomorphίc to Sn .
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Conversely, from the density theorem of the prime ideals with a given

type of decomposition in a Galois extension, we get

Lemma 5. // G is isomorphic to Sn, then, for each one of conditions (i),

(ii), (iii) of Lemma 4, there exist infinitely many prime numbers which satisfy the

condition.
The following is fundamental in this part together with Proposition 1.

Proposition 2. There exist infinitely many trinomials of the form (*) whose

Galois groups are isomorphic to Sn .

Proof. Let /x be a prime number such that ^=1 (mod. n) and c1 be a

primitive root mod. lλ. Then polynomial Xn— c1 is irreducible mod. / x . Let
/2 and c2 be a prime number such that 12= 1 (mod. n— 1) and a primitive root mod.
/2, then Xn— c2X satisfies the condition (ii) of Lemma 4. Finally, let's find a
trinomial f ( X ) of the form (*) which satisfies the condition (iii) of Lemma 4. Let
p be a prime number such that p= 1 (mod. 4) and pXn (n — 1). Take c,

satisfying c2—4d=p. Let

be the formal expansion with respect to ty then we have

for f = l , 2 , —

2) for i^3 .

Put g(X)=X2+cX+d and h(X)=Xn-2+e,Xn^-\ ----- \-en_s. We have

g(X)h(X) = X»-en_,X+den_2.

Here we claim that discriminants D(g) and D(h) are relatively prime. Since
D(g)=c2—W=p and D(gh)=D(g)D(h)R(g, A)2, it is sufficient to show that
D(gh) is divisible by p but not by p2. Equation g(X)=Q gives a ramified quad-

ratic extension kp over Qp. Let α, β^kp be roots of ̂ (̂ ), then it holds

and π=a— β is a prime element of kp while α and β are both units. Calculating
the expansion (3) in the ring of formal power series with coefficients in kp,
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1 1

1+ct+df (\-at)(\-βt]

(a— β)t(l — at \ —

= — ί-Σ(«A+1-£*+1)f*,
a—β * °̂

we get
sykM Ofc I 1

ek =
 a -%— for A =1,2, -.

or— /3

Replace α by /3-f-τr, and we get

S*-'*+(* J 1),8*-V (mod.

Applying this congruence relation to D(gh),

= ( _ l)C"-ιχ -«v»n"+i(n_i)-/gc"+ικ«-»v (mod- ̂  _
8

In the last member of the congruence, the coefficient of π2 being a unit of kpy

D(gh) is not divisible by π3. Hence, returning to Zy D(gh) is just divisible by

p and not by p2, since π2=p. Now that D(g) and D(h) are relatively prime,

two splitting fields Kg and Kh of ̂ (̂  and A(^) over Q are independent, that

is, ^Π Kh=Q. From the density theorem it follows that there exist infinitely

many prime numbers which remain prime in Kg but are decomposed completely

in Kh. Let /3 be one of them such that 4/K/Λ D(gh\ then f(X)=g(X)h(X)

satisfies the condition (iii) of Lemma 4. Now take a,b^Z such that

a = 0, b = — c1 (mod. /x)

a = — c2, b = 0 (mod. /2)

β = — ̂ _!, i = ώw_2 (mod. /3) .

By Lemma 4, the polynomial Xn-\-aX-\-b has the Galois group isomorphic to

5W . It is obvious that there are infinitely many pair (α, b) which satisfy above

conditions. So the proof is completed.

5. Now we prove our main theorem:

Theorem 1. Let S be the set of all prime factors of n(n — 1), and Sr be a

given finite set of prime numbers satisfying S Π S'=φ. Then there exist infinitely

many imaginary (resp. real) quadratic number field F's which satisfy the following

conditions (a), (i), (c).
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(a) F has an An-extension K which is unramified at all prime (resp. all finite

prime) spots of F.

(b) K is an Sn-extension of Q.

(c) All primes in S' are ramified in F.

Proof. From Proposition 2, there is a trinomial

f(X) = X»+a0X+b0

whose Galois group is isomorphic to Sn. Take three prime numbers /1? / 2 , 4

which satisfy the conditions (i), (ii), (iii) of Lemma 4 respectively. By Lemma

5, we may assume that l^S U S' for /==!, 2, 3. First we consider the case n is

odd. Take and fix b<=Z such that

b = b0 (mod./,-) for ί=l,2, 3 ,

b = n— 1 (mod. p2) for p(= S' ,

(i,n-l)=l,

and then take fl^Z such that

a = a0 (mod. /,-) for i = 1, 2, 3 ,

a = p—n (mod. p2) for

(a,fA)=Λ.

Set

As α is determined by a suitable congruence condition, we may safely assume

that Z)(/)<0 (resp.>0). Then it is easily seen that/( J£) satisfies the conditions
(i), (ii) of Proposition 1. Moreover for p^S', it holds that

(mod.

This implies that p \ \ D ( f ) . Hence F=Q(VD(f)) and the splitting field K of
/(Jf) over Q satisfy the conditions (a), (b), (c) of the theorem. The case n is even

is discussed in almost same way by exchanging the roles of a and b. And the
infiniteness is shown in the same way as in the proof of Theorem 1 of part I.

REMARK. Theorem 1 is considered a sort of generalizations of [6], where
the case n=3 is treated.

6. Here is an interesting example. Set

Then we get
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f ( X ) = (^+l)(^4+^3+^2+^+l) (mod. 2) ,

f ( X ) = X5+2X+l (mod. 3),

f ( X ) = (^2+9^+10)μΓ3+8^2+3^+12) (mod. 17) ,

where each factor in the right sides is irreducible with respect to its modulus.
Hence the Galois group of f ( X ) over Q is isomorphic to S5 (cf. [11] §61). Let

K be the splitting field of f(X) over Q and F=Q(\/D[f)) where Z)(/)=11317
(prime number). It follows from Proposition 1 that K is an ^-extension of
F and all finite prime spots of F are unramified in K. Since K is imaginary,
however, the two infinite prime spots of F are ramified in K.

On the other hand, after a little tedious calculations on continuous
fractions, we see that the ideal class number of F is equal to 1 and the norm of
the fundamental unit of F is equal to —1. So there is no abelian extension
of F which is unramified at all finite prime spots of F. (for another example,
cf. Fujisaki [3], but the real quadratic field in it has a fundamental unit with
norm 1)

7. In this section we consider the case n—3. Put

(a, = -2*2+18* ίa2 = -2t2-l8t

\b1 = t3-lβt2-432 \b2 = t3+l6t2+432

where t^Z satisfying

(t= 37 (mod. 210)

^ ' U Ξf= ±9 (mod. 37)

For ι'=l, 2 set

f(X) = >
Then we get

= 5 ί6+2533ί4-293¥-2839

and

(2βlt 3*0 = (ί-9, ί3-16*2-432)

= (ί-9, 3337)

*• y

(2a2, 3ό2) = (ί+9, t*+16^+432)

= (ί+9, 3337)

= 1.

Moreover for every t satisfying condition (4) we get
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f,(X) = X3+3X+2 (mod. 5),

f2(X) = X*+X+4 (mod. 5),

where both trinomials in the right sides are irreducible mod. 5. So both f^X)

and f2(X) are irreducible over Q and have the Galois group isomorphic to S3

(cf. [6]). Let Kt be the splitting field of ff(X) over Q (ί=l, 2). Then Kt is

a cyclic extension of Ft=Q(\/D(t)) of degree 3 and unramified at all finite
prime spots. On the other hand we have

f,(X] = X3+2 = irreducible (mod. 7)

f2(X) = X3+5X = X(X+3)(X+4) (mod. 7).

So KI must be different from K2, since prime ideal 7 in Q has different types
of prime decompositions in A^ and K2.

Consider the following Diophantine equation:

( 5 ) dY2 = 5x*+25yχ*-2gyχ2-2sy
where d is a fixed rational integer. Since the affine curve defined by (5) has
genus 2, from SiegeΓs theorem (cf. [10]) the equation has only a finite number

of integral solutions. Hence, for infinitely many values of t satisfying (4), Ft

represents infinitely many real quadratic number fields. So we get the following
theorem, which is a supplement of Theorem 2 of Part I.

Theorem 2. There exist infinitely many real quadratic number fields whose
ideal class groups have non-cyclic 3-subgroups.

REMARK. For imaginary case we have the corresponding result by setting,

for example,

taι = t+9 (a2=t-9

[b, = t2+25 (b2 = t2+29

where t^Z satisfying

t = 2 (mod. 30),

t^9 (mod. 11),

t * -9 (mod. 53).

But we have got more stronger results in part I.

REMARK. We can add a local conditions to this theorem as in part I. For

that purpose we need further investigations on the ramifications of the spots

p=2 or 3.

8. In the rest of this paper, we shall study other types of unramified

Galois extensions of quadratic number fields.
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Lemma 6. (cf. Herz [5]). Every unramίfied abelian extension A of a

quadratic number field F is absolutely normal and the Galois group G(A/Q) is
ίsomorphic to the semi-direct product of G(F/Q) and G(A/F). Moreover if G(A/F)

is cyclic then G(A/Q) is dihedral.

Proposition 3. Let FQ be a quadratic number field with discriminant D0

and K0 be a Galois extension of F0 unramified at all finite prime spots. If K0 is
absolutely normal then, for a quadratic number field F with discriminant D satisfying

DQ\D and Z)0ΦZ>, tne field K=K0(jF is a Galois extension of F such that

(a) G(K/F) ^ G(KQ/Q).
( b ) All finite prime spots of F are unramίfied in K.

Proof. Since FQΓ(F=Q, it is easily seen that there is a canonical iso-
morphism G(KIF)^G(KQ/Q) and KIF0(JF is unramified except at infinite prime

spots. On the other hand, F0 U F/F also is unramified except at the infinities,
so K/F is unramified at all finite prime spots. So the proof is completed.

Corollary 1. For a group G such that

G = Π Dm.X Π Sn. (direct product)

where Dm is the dihedral group of order 2m and

there exist infinitely many imaginary (resp. real) quadratic number fields each of
which has an unramified (resp. unramified except at infinities) Galois extension with
Galois group ίsomorphic to G.

This is a direct consequence of Theorem 1 and Theorem 2 of part I, Theorem
1, Lemma 6 and Proposition 3 of this part. Moreover for a little more com-

plicated group G the corresponding results can be proved. The precise proofs
of all these facts will be left to the interested reader.
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