A KÜNNETH FORMULA FOR EQUIVARIANT K-THEORY

Dedicated to Professor Atuo Komatu for his 60th birthday

HARUO MINAMI

(Received December 9, 1968)

1. In this note we prove the following theorem for equivariant K-theory which is a generalization of Atiyah's Künneth formula for K-theory [1].

Theorem. Let X and Y be compact Hausdorff spaces on which operate compact Lie groups G and H respectively. If the orbit spaces X/G and Y/H are of finite covering dimension and X (or Y) is locally G—(or H—) contractible, there holds an exact sequence

$$0 \to \sum_{i+j=k} K_G^i(X) \otimes K_H^j(Y) \to K_{G \times H}^k(X \times Y) \to \sum_{i+j=k+1} \operatorname{Tor} (K_G^i(X), K_H^j(Y)) \to 0$$

where indices i, j and k are regarded as elements of Z_2 .

The author wishes to express his thanks to Professor S. Araki for his many valuable suggestions and discussions.

2. Let G and H be compact Lie groups, (X, A) be a compact G-pair and (Y, B) a compact H-pair. Put

$$h_{1,(Y,B)}^{*}(X, A) = K_{G}^{*}(X, A) \otimes K_{H}^{*}(Y, B)$$

 $h_{2,(Y,B)}^{*}(X, A) = K_{G\times H}^{*}((X, A) \times (Y, B))$.

When $K_H^*(Y, B)$ is a free abelian group, $h_{1,(Y,B)}^*$ and $h_{2,(Y,B)}^*$ define Z_2 -graded cohomology theories on the category whose objects are compact G-pairs.

If E is a G-vector bundle on X and F an H-vector bundle on Y, then $E \otimes F$ is a $G \times H$ -vector bundle on $X \times Y$. This defines a natural pairing

$$\mu' : K_G(X) \otimes K_H(Y) \to K_{G \times H}(X \times Y)$$
.

And then we can extend this pairing to a homomorphism

$$\mu'': K_G^{-m}(X, A) \otimes K_H^{-n}(Y, B) \to K_{G \times H}^{-m-n}((X, A) \times (Y, B))$$

making use of the canonical decomposition

T44 H. Minami

$$\tilde{K}_{G\times H}^{-1}(X'\times Y')\cong \tilde{K}_{G\times H}^{-1}(X'\wedge Y')\oplus \tilde{K}_{G\times H}^{-1}(X')\oplus \tilde{K}_{G\times H}^{-1}(Y')$$

where X' and Y' are G-space and H-space with basepoints respectively. Clearly μ'' commutes with the Bott isomorphism and coboundary homomorphisms with respect to (X, A). Thus μ'' defines a cohomology operation

$$\mu: h_{1,(Y,B)}^* \to h_{2,(Y,B)}^*$$
.

3. Let Z be a compact Hausdorff space with an action of a compact Lie group G on Z, Z' be a compact Hausdorff trivial G-space of finite covering dimension and $\pi:Z\to Z'$ a G-map. When $K_H^*(Y,B)$ is a free abelian group, we denote by \mathfrak{S}_i the sheaves corresponding to the presheaves defined by

$$(h_{i,(Y,B)}^{q}\pi)(U)=h_{i,(Y,B)}^{q}(\pi^{-1}(\bar{U}))$$

for any open set U of Z' for i=1, 2. Then we get the following results by parallel discussions to [2], Lecture 3.

Proposition 1. There are strongly convergent spectral sequences $\{E_{r,(i,(Y,B))}\}$ such that

$$E_{2,(i,(Y,B))} = H^*(Z,\mathfrak{S}_i)$$

and $E_{\infty,(i,(Y,B))}$ are the graded groups associated with filtrations of $h_{i,(Y,B)}^*(Z)$ respectively, and μ induces a morphism of these spectral sequences

$$\{\mu_r\}\colon \left\{E_{r,(1,(Y,B))}\right\} \to \left\{E_{r,(2,(Y,B))}\right\}.$$

Next we show

Proposition 2. Let G and H be compact Lie groups, and X'' and Y'' be compact Hausdorff G-space and H-space respectively. If the orbit spaces X''/G and Y''/H are of finite covering dimension, then we obtain isomorphisms

(i)
$$K_G^*(X'') \otimes K_H^*(H/H_0) \cong K_{G \times H}^*(X'' \times H/H_0)$$

for any closed subgroup H_0 of H, and

(ii) when $K_H^*(Y'')$ is a free abelian group,

$$K_G^*(X'') \otimes K_H^*(Y'') \cong K_{G \times H}^*(X'' \times Y'')$$
.

Proof. Since $K_H^*(H/H_0) \cong R(H_0)$ [2] and $R(H_0)$ is a free abelian group, we can apply Proposition 1. If we put Z=X'', Z'=X''/G, $(Y, B)=(H/H_0, \phi)$ and $\pi: X'' \to X''/G$, the projection, then $\mu_2: E_{2,,(1,H/H_0)} \to E_{2,(2,H/H_0)}$ is an isomorphism. Because, when we write $\pi(x)=[x]$ for any element x in X'' and denote the isotropy subgroup of G at x by G_x ,

$$\pi^{-1}[x] = G/G_x$$

and

$$h_{1,H/H_{0}}^{*}(\pi^{-1}[x]) = K_{G}^{*}(\pi^{-1}[x]) \otimes K_{H}^{*}(H/H_{0})$$

$$\cong K_{G}^{*}(G/G_{x}) \otimes K_{H}^{*}(H/H_{0})$$

$$\cong R(G_{x}) \otimes R(H_{0})$$

$$\cong R(G_{x} \times H_{0}) \qquad \text{by [3], Lemma 3.2}$$

$$\cong K_{G \times H}^{*}(G \times H/G_{x} \times H_{0})$$

$$\cong K_{G \times H}^{*}(\pi^{-1}[x] \times H/H_{0})$$

$$= h_{2}^{*},_{H/H_{0}}(\pi^{-1}[x]).$$

Hence μ induces an isomorphism of sheaves $\mathfrak{S}_1 \cong \mathfrak{S}_2$. And so μ_2 induces an isomorphism of the spectral sequences

$$\{\mu_r\}\colon \{E_{r,(1,H/H_0)}\}\cong \{E_{r,(2,H/H_0)}\} \qquad r\geqq 2$$
,

Since the both spectral sequences are strongly convergent by Proposition 1, this completes the proof of (i). We can prove (ii) by a parallel argument making use of (i).

Proof of Theorem. Suppose that X is locally G-contractible. Under this hypothesis and the condition that $\dim X/G < \infty$, L. Hodgkin [4] proved that there exist a compact differentiable manifold N on which operates G and G-map $f: X \rightarrow N$ such that $f^*: K_G^*(N) \rightarrow K_G^*(X)$ is an epimorphism and $K_G^*(N)$ is a free abelian group.

Then we get a short exact sequence

$$0 \to \tilde{K}_G^*(M_f/X) \to K_G^*(M_f) \to K_G^*(X) \to 0$$

where M_f is the mapping cylinder. Since $K_c^*(M_f) \cong K_c^*(N)$, $K_c^*(M_f)$ and $\tilde{K}_c^*(M_f/X)$ are free abelian groups. Further, $\dim M_f/G \leq \operatorname{Max} (\dim N, \dim X/G + 1)$ [5] and so is $\dim (M_f/X)/G$. Therefore we can deduce

$$K_G^*(M_f) \otimes K_H^*(Y) \cong K_{G \times H}^*(M_f \times Y),$$

 $\tilde{K}_G^*(M_f/X) \otimes K_H^*(Y) \cong \tilde{K}_{G \times H}^*(M_f \times Y/X \times Y)$

from Proposition 2, (ii).

Next consider the following commutative diagram with exact rows

146 H. Minami

We see that there exists a homomorphism $J: K_{G \times H}^*(X \times Y) \to K_G^*(X) * K_H^*(Y)$ determined uniquely by the above diagram and so that the sequence

$$0 \to K^*_{G}(X) \otimes K^*_{H}(Y) \overset{\mu}{\to} K^*_{G \times H}(X \times Y) \overset{J}{\to} K^*_{G}(X) * K^*_{H}(Y) \to 0$$

is exact.

OSAKA CITY UNIVERSITY

References

- [1] M.F. Atiyah: Vector bundles and the Künneth formula, Topology 1 (1962), 245-248.
- [2] M.F. Atiyah and G.B. Segal: Equivariant K-theory, Lecture note at Oxford, University of Warwick preprint, 1965.
- [3] L. Hodgkin: On the K-theory of Lie group, Topology 6 (1967), 1-36.
- [4] L. Hodgkin: An Equivariant Künneth formula in K-theory, 1968, University of Warwick preprint.
- [5] R.S. Palais: The classification of G-spaces, Mem. Amer. Math. Soc. 36, 1960.