# A NON-STABLE SECONDARY OPERATION AND HOMOTOPY CLASSIFICATION OF MAPS 

Dedicated to Professor A. Komatu on his 60th birthday

Yasutoshi NOMURA

(Received October 26, 1968)

## 1. Introduction

Let $p: E \rightarrow A$ be the principal fibration with classifying map $\theta: A \rightarrow B$ and let $q: T \rightarrow E$ be the principal fibration induced by a map $\rho: E \rightarrow C$. We assume that $A, B$ and $C$ are $H$-spaces. Given a map $v: X \rightarrow E, \mathrm{I} . \mathrm{M}$. James and E. Thomas [5, 7] have defined the homomorphisms

$$
\begin{gathered}
\Delta(\theta, u):[X, \Omega A] \rightarrow[X, \Omega B] \\
\Delta_{p}(\rho, v):\left[X, \Omega^{2} B\right] \rightarrow[X, \Omega C]
\end{gathered}
$$

where $u$ is the composite $p \circ v, \Omega$ is the loop functor and $[Y, Z]$ denotes the set of based homotopy classes of based maps $Y \rightarrow Z$.

The action $\Omega C \times T \rightarrow T$ of the principal fibration $q$ induces the function

$$
[X, \Omega C] \times[X, T] \rightarrow[X, T]
$$

the image of $(\tau, w) \in[X, \Omega C] \times[X, T]$ under which is denoted by $\tau \cdot w$. The subgroup

$$
\mathrm{I}(w)=\{\tau \in[X, \Omega C] ; \tau \cdot w=w\}
$$

of $[X, \Omega C]$ is called the isotropy group of $w$ under the action of $[X, \Omega C]$ on [ $X, T]$. Our first main result is the following:

Theorem A. Suppose $w: X \rightarrow T$ is a lifting of $v$. If $\Delta(\theta, u)$ is injective, then $\mathrm{I}(w)$ coincides with the image of $\Delta_{p}(\rho, v)$.

This is obtained as a direct consequence of a property (Theorem 4.2) of a non-stable secondary operation $\Phi_{\theta}(\rho, v)$ which is inspired by an operation due to N. Shimada [14, p. 141].

The prime concern in this paper is to examine a few situations to which Theorem A is applicable.

Consider first the real projective space $P_{n}(R)$, where the dimension $n$ is odd $>1$. Let $X$ be a path-connected $(n+1)$-dimensional complex and let $\delta^{*}$
denote the Bockstein homomorphism associated with $0 \rightarrow Z \rightarrow Z \rightarrow Z_{2} \rightarrow 0$. We define

$$
\varphi:\left[X, P_{n}(R)\right] \rightarrow H^{1}\left(X ; Z_{2}\right)
$$

by $\varphi(g)=g^{*} \iota$, where $g: X \rightarrow P_{n}(R)$ and $\iota$ denotes the generator of $H^{1}\left(P_{n}(R) ; Z_{2}\right)$. The following extends a result due to P . Olum [10].

Theorem B. Let $u$ be an element of $H^{1}\left(X ; Z_{2}\right)$ such that $\left(\delta^{*} u\right)^{(n+1) / 2}=0$. Then $\varphi^{-1}(u)$ is equivalent to:

$$
\begin{array}{ll}
H^{n}(X ; Z) \times H^{n+1}\left(X ; Z_{2}\right) /\left(S q^{2}+u^{2} \cup\right) H^{n-1}(X ; Z) & \text { for } n \equiv 1(\bmod 4) \\
H^{n}(X ; Z) \times H^{n+1}\left(X ; Z_{2}\right) / S q^{2} H^{n-1}(X ; Z) & \text { for } n \equiv 3(\bmod 4)
\end{array}
$$

Next, let $\eta$ be the reduced stable class of the canonical line bundle over the real projective space and let $N_{n}(\xi ; X)$ denote the number of classes of $n$-plane bundles over $X$ which are stably equivalent to a stable reduced bundle $\xi$ over $X$. The following is a partial extension of a result due to I. M. James and E. Thomas [5].

Theorem C. Let $k$ be an integer and let $\binom{k}{n+1}$ be even. Then
(1) for $n \equiv 1(\bmod 4)$ and $\binom{k}{2}$ odd, $N_{n}\left(k \eta ; P_{n+1}(R)\right)=1$ or 2 according as $\binom{k-1}{n-1}$ is odd or even;
(2) $\quad N_{n}\left(k \eta ; P_{n+1}(R)\right)=2$ if $n \equiv 1(\bmod 4),\binom{k}{2}$ even and $\binom{k-1}{n-1}$ odd;
(3) $N_{n}\left(k \eta ; P_{n+2}(R)\right)=2$ if $n \equiv 3(\bmod 4)$ and $\binom{k-1}{n-1}$ odd.

Finally, let $\mathcal{E}(X)$ denote the group of homotopy classes of homotopy equivalences of $X$ whose group structure is induced by map-composition. Consider the tower

where $B$ and $C$ are $H$-spaces such that $\pi_{r}(B) \neq 0$ only for $n+2 \leqq r \leqq m(n>1)$ and $\pi_{s}(C) \neq 0$ only for $m+1 \leqq s \leqq m+n-1$. The following theorem can be obtained by applying the results of [9] to the fibration $q$ and observing the fact $H^{n-1}(T ; \pi)=0$.

Theorem D. The following sequence of groups and homomorphisms is exact:

$$
\left[T, \Omega^{2} B\right] \xrightarrow{\Delta_{p}(\rho, q)} q^{*}[E, \Omega C] \rightarrow \mathcal{E}(T) \rightarrow \mathcal{E}(E) \times \mathcal{E}(\Omega C)
$$

in which the image of the last homomorphism consists of $(\bar{g}, \Omega h) \in \mathcal{E}(E) \times \mathcal{E}(\Omega C)$ such that $\rho \bar{g} \simeq h \rho$.

The results stated in sections 2,3 and 4 can be dualized in a cofibre space and will be considered elsewhere.

## 2. Preliminaries

We shall here fix the notations and recall some definitions given in [5, 6, 7]. We work in the category of spaces with basepoints (usually denoted by *) and basepoint preserving maps. The spaces considered are assumed to have the homotopy type of a $C W$ complex. We blur the distinction between maps and their homotopy classes. We use the additive notation for path-composition and path-inversion. The suspension functor is denoted by $S$.

For a space $X$, let $\Omega^{*} X$ denote the space of free loops in $X$. One has a fibration

$$
\Omega X \xrightarrow{i_{X}} \Omega^{*} X \xrightarrow{r_{X}} X
$$

with section $s_{X}: X \rightarrow \Omega^{*} X$ given by $s_{X}(x)=$ the constant loop at $x \in X$. A map $f: X \rightarrow Y$ induces the map $\Omega^{*} f: \Omega^{*} X \rightarrow \Omega^{*} Y$ in an obvious way.

Lemma 2.1. $\left(i_{X}\right)_{*} \xi=\left(i_{X}\right)_{*} \xi^{\prime}$ for $\xi, \xi^{\prime} \in[V, \Omega X]$ if and only if $\xi$ and $\xi^{\prime}$ are conjugate to each other.

This can be proved directly or by replacing $i_{X}$ by a principal fibration.
Corollary 2.2. (Theorem 2.6 of [5]) The group $[V, \Omega X]$ is abelian if and only if $\left(i_{X}\right)_{*}:[V, \Omega X] \rightarrow\left[V, \Omega^{*} X\right]$ is injective.

Given a fibration $p: E \rightarrow A$ and a map $u: X \rightarrow A$, we denote by $[X, E ; u]$ the set of $u$-homotopy classes of $u$-maps $X \rightarrow E$ (see [6])

Let $p: E \rightarrow A$ be a fibration with fibre inclusion $j: F \rightarrow E$ and let $q: T \rightarrow E$ be the principal fibration with classifying map $\rho: E \rightarrow C$. Given a map $w: X \rightarrow T$, let $v=q \circ w$ and $u=p \circ v$. We define the $u$-isotropy group $\mathrm{I}_{u}(w)$ of $w$ by setting

$$
\mathrm{I}_{u}(w)=\{\tau \in[X, \Omega C] ; \quad \tau \cdot w=w \text { in }[X, T ; u]\}
$$

$q$ induces the function

$$
q_{*}:[X, T ; u] \rightarrow[X, E ; u]
$$

and there is a bijection between $q_{*}^{-1}(v)$ and the totality of left cosets $[X, \Omega C] /$ $\mathrm{I}_{u}(w)$. The following is obvious:

Proposition 2.3. (1) For the trivial map $*: X \rightarrow T, \mathrm{I}_{*}(*)$ is the image of
$(\Omega \rho)_{*}(\Omega j)_{*}:[X, \Omega F] \rightarrow[X, \Omega C] ;$
(2) $\mathrm{I}_{u}(\tau \cdot w)=\boldsymbol{\tau}+\mathrm{I}_{u}(w)-\boldsymbol{\tau}$ for $\boldsymbol{\tau} \in[X, \Omega C]$;
(3) $g^{*} \mathrm{I}_{u}(w) \subset \mathrm{I}_{u \circ g}\left(g^{*} w\right)$ for $g: Y \rightarrow X$;
(4) Let $i: \Omega C \rightarrow T$ denote the inclusion. Then $\mathrm{I}_{*}(i)=1+(\Omega \rho)_{*}(\Omega j)_{*}[\Omega C$, $\Omega F]-1$, where 1 is the identity map of $\Omega C$.

Let $\Omega_{p}^{*} E$ denote the subspace of $\Omega^{*} E$ consisting of free loops $\lambda$ such that $\left(\Omega^{*} p\right) \lambda \in s_{A}(A)$. Then one obtains a fibration $r: \Omega_{p}^{*} E \rightarrow E$ with fibre $\Omega F$.

Theorem 2.4. $\tau \in[X, \Omega C]$ is $\rho$-correlated (see §3 of [7]) to $v \in[X, E ; u]$, if and only if there exists an $\eta \in[X, T ; u]$ such that $\tau \in I_{u}(\eta)$ and $q_{* \eta=v}$.

Proof. The "if" part is proved in Lemma (3.3) of [7]. We shall prove the "only if" part. Assume that there exists a $\psi \in\left[X, \Omega_{p}^{*} E ; u\right]$ such that $r_{*} \psi=v$ and $\rho_{*}^{\prime} \psi=\left(i_{c}\right)_{*} \tau$ in the following commutative diagram

$$
\begin{aligned}
{\left[X, \Omega_{p}^{*} E ; u\right] \xrightarrow{r_{*}}[X, E ; u] } \\
{\left.[X, \Omega C] \xrightarrow{\left(i_{C}\right)_{*}}\left[X, \rho_{*}^{*} C\right] \xrightarrow{\left(r_{C}\right)_{*}}\left[\begin{array}{l}
\downarrow \\
\rho_{*}
\end{array}\right], C\right] }
\end{aligned}
$$

where $\rho^{\prime}: \Omega_{p}^{*} E \rightarrow \Omega^{*} C$ denotes the restriction of $\Omega^{*} \rho$ to $\Omega_{p}^{*} E$.
Since $r$ is a fibration, we may assume $\psi: X \rightarrow \Omega_{p}^{*} E$ is a lift of $v$. Let $F_{t}: X \rightarrow \Omega^{*} C$ be a homotopy with $F_{0}=i_{C} \tau, F_{1}=\rho^{\prime} \psi$. Consider $\gamma: X \rightarrow C^{I}$ defined by $\gamma(x)(t)=r_{C} \circ F_{t}(x), x \in X, 0 \leqq t \leqq 1$. It is easy to see that $\tau=\gamma+\rho^{\prime} \psi$ $-\gamma$ in $[X, \Omega C]$. Take $\eta: X \rightarrow T$ given by $\eta(x)=(v, \gamma)$; then it follows that $\left(\gamma+\rho^{\prime} \psi-\gamma\right) \cdot \eta=\eta$ in $[X, T ; u]$. This proves the only if part.

Corollary 2.5. Suppose $p: E \rightarrow A$ is a principal fibration with fibre $F$ in the sense of $[12]$. Then $[X, \Omega F]=0$ implies $\mathrm{I}_{u}(w)=0$.

Proof. Let $\mu: F \times E \rightarrow E$ denote the action map and let $\mu^{\prime}: \Omega F \times E \rightarrow \Omega_{p}^{*} E$ be the induced map defined as in §4 of [7]. Then, by Theorem (4.1) of [7],

$$
\mu_{*}^{\prime}:[X, \Omega F] \times[X, E ; u] \rightarrow\left[X, \Omega_{p}^{*} E ; u\right]
$$

is bijective. Note that $\mu^{\prime}\left\{*, 1_{E}\right\}: E \rightarrow \Omega_{p}^{*} E$ is $p$-homotopic to the canonical section $s: E \rightarrow \Omega_{p}^{*} E$ of $r$, so that both $s$ and $r$ induce the bijections between $[X, E ; u]$ and $\left[X, \Omega_{p}^{*} E ; u\right]$ because of $[X, \Omega F]=0$.

Now let $\tau \in[X, \Omega C]$ be $\rho$-correlated to $v$, i.e., there is an element $\psi \in$ $\left[X, \Omega_{p}^{*} E ; u\right]$ such that $r_{*} \psi=v, \rho_{*}^{\prime} \psi=\left(i_{C}\right)_{*} \tau$. Then, since $q_{*} w=v$,

$$
\left(i_{C}\right)_{*} \tau=\rho_{*}^{\prime} s_{*} v=\left(s_{C}\right)_{*} \rho_{*} v=0
$$

which implies $\tau=0$ by virtue of $\operatorname{ker}\left(i_{C}\right)_{*}=0$.
Taking $A=*$ in the above situation, we obtain

Corollary 2.6. $\tau \in[X, \Omega C]$ is $\rho$-correlated to $v \in[X, E]$ (see §2 of [5]), if and only if there is an element $\eta \in[X, T]$ such that $\tau \in \mathrm{I}(\eta)$ and $q_{*} \eta=v$. If $E$ is an $H$-space with $[X, \Omega E]=0$, then $\mathrm{I}(\eta)=0$ for any lifting $\eta$ of $v: X \rightarrow E$.

## 3. The homomorphisms $\Delta(\theta, \boldsymbol{u})$ and $\Delta_{p}(\rho, \boldsymbol{v})$

Consider the situation

in which $p$ and $q$ are the principal fibrations with classifying maps $\theta$ and $\rho$ respectively, and $B$ and $C$ are $H$-spaces with multiplications $t: B \times B \rightarrow B$ and $n: C \times C \rightarrow C$. Let $\mu: F \times E \rightarrow E$ denote the action of $F$ on $E$.

In case $A$ is an $H$-space with multiplication $m: A \times A \rightarrow A$ and there is given a map $v: X \rightarrow E$ with $u=p \circ v$, I. M. James and E. Thomas have defined in $[5,7]$ the homomorphisms

$$
\begin{array}{r}
\Delta(\theta, u):[X, \Omega A] \rightarrow[X, \Omega B] \\
\Delta_{p}(\rho, v):[X, \Omega F] \rightarrow[X, \Omega C]
\end{array}
$$

as follows. Let

$$
\begin{aligned}
& \mu^{\prime}:(\Omega F \times E, \Omega F \times F) \rightarrow\left(\Omega_{p}^{*} E, \Omega^{*} F\right) \\
& m^{\prime}: \Omega A \times A \rightarrow \Omega^{*} A, t^{\prime}: \Omega B \times B \rightarrow \Omega^{*} B, \quad n^{\prime}: \Omega C \times C \rightarrow \Omega^{*} C
\end{aligned}
$$

denote the "right translations" determined by $\mu, m, t$ and $n$; then the equations

$$
\begin{array}{lll}
\left(\Omega^{*} \theta\right)_{*} m_{*}^{\prime}\{\alpha, u\}=t_{*}^{\prime}\left\{\Delta(\theta, u) \alpha, \theta_{*} u\right\} & \text { for } & \alpha \in[X, \Omega A] \\
\rho_{*}^{\prime} \mu_{*}^{\prime}\{\beta, v\}=n_{*}^{\prime}\left\{\Delta_{p}(\rho, v) \beta, \rho_{*} v\right\} & \text { for } & \beta \in[X, \Omega F]
\end{array}
$$

determine $\Delta(\theta, u) \alpha$ and $\Delta_{p}(\rho, v) \beta$ uniquely by virtue of Theorem 2.7 of [5]. The following is proven in [7, Theorem (4.2)]:

Theorem 3.2. $\tau \in[X, \Omega C]$ is $\rho$-correlated to $v \in[X, E ; u]$ if and only if, first, $\rho_{*} v=0$ and, secondly, $\tau$ lies in the image of $\Delta_{p}(\rho, v) . \quad$ Thus, $\mathrm{I}_{u}(w)=\Delta_{p}(\rho, v)$ $[X, \Omega F]$ for any lift $w$ of $v$.

The homomorphism $\Delta(\theta, u)$ has also been introduced by J. W. Rutter [13], who has examined various properties of it. In the similar way we can obtain analogous theorems for $\Delta_{p}(\rho, v)$, so that the proofs are mostly omitted.

Triviality Theorem 3.3. $\Delta_{p}(\rho, *)=(\Omega \rho)_{*}(\Omega j)_{*} . \quad$ More generally, if $j \circ \hat{v}$ $=v$ for a map $\hat{v}: X \rightarrow F$, then $\Delta_{p}(\rho, v)=\Delta(\rho j, \hat{v})$.

In order to state the next theorem we define the dual Hopf invariant $\nu(\rho) \in$ [ $F \times E, C$ ] of $\rho$ to be

$$
\nu(\rho)=-\left(j \circ p_{1}\right)^{*} \rho+\mu^{*} \rho-p_{2}^{*} \rho
$$

where $p_{1}: F \times E \rightarrow F$ and $p_{2}: F \times E \rightarrow E$ are the projections. If $\nu(\rho)=0$, we say that $\rho$ is primitive with respect to $\mu$.

Primitivity Theorem 3.4. If $\rho$ is primitive with respect to $\mu$, then $\Delta_{p}(\rho, v)$ $=(\Omega \rho)_{*}(\Omega j)_{*}$.

Theorem 3.5. If $X$ is an $H$ cogroup (see [15]), then $\Delta_{p}(\rho, v)=(\Omega \rho)_{*}(\Omega j)_{*}$.
Composition Theorem 3.6. Let $\alpha: C \rightarrow D$ be a map to an $H$ space. Then $\Delta_{p}(\alpha \rho, v)=\Delta(\alpha, \rho v) \Delta_{p}(\rho, v)$.

Cartesian Product Theorem 3.7. Let $\rho_{1}: E \rightarrow C_{1}, \rho_{2}: E \rightarrow C_{2}$ be maps to $H$-spaces and let $\left\{\rho_{1}, \rho_{2}\right\}=\left(\rho_{1} \times \rho_{2}\right) \circ d: E \rightarrow C_{1} \times C_{2}$ be the composite with diagonal map d. Then

$$
\Delta_{p}\left(\left\{\rho_{1}, \rho_{2}\right\}, v\right) \beta=\left(\Delta_{p}\left(\rho_{1}, v\right) \beta, \Delta_{p}\left(\rho_{2}, v\right) \beta\right) .
$$

Additivity Theorem 3.8. Let $\rho_{1}, \rho_{2}: E \rightarrow C$ be maps. Then

$$
\begin{aligned}
& \Delta_{p}\left(\rho_{1}+\rho_{2}, v\right) \beta=\Delta_{p}\left(\rho_{1}, v\right) \beta+\left(\rho_{1} v\right)_{\square} \Delta_{p}\left(\rho_{2}, v\right) \beta, \\
& \Delta_{p}(-\rho, v) \beta=-(-\rho v)_{\square} \Delta_{p}(\rho, v) \beta,
\end{aligned}
$$

where $\left(\rho_{1} v\right)_{\square}$ and $(-\rho v)_{\square}$ are the endomorphisms as defined in [13, p. 383].
Cup Product Theorem 3.9. Given $\rho \in H^{a}(E ; \pi)$ and $\rho^{\prime} \in H^{b}\left(E ; \pi^{\prime}\right)$, let $\rho \cup \rho^{\prime}$ denote the cup product with respect to a pairing $\pi \otimes \pi^{\prime} \rightarrow G$. Then

$$
\Delta_{p}\left(\rho \cup \rho^{\prime}, v\right) \beta=\Delta_{p}(\rho, v) \beta \cup v^{*} \rho^{\prime}+(-1)^{a} v^{*} \rho \cup \Delta_{p}\left(\rho^{\prime}, v\right) \beta
$$

The following theorem will be useful in computing $\Delta_{p}(\rho, v)$ in terms of deviation of $\rho$ from primitivity and corresponds to Corollary 1.4 of [5] or Theorem 2.4.1 of [13].

Theorem 3.10. Suppose $C$ is homotopy abelian or $\rho_{*} v=0$. Then

$$
\Delta_{p}(\rho, v) \beta=(\Omega \rho)_{*}(\Omega j)_{*} \beta+\Delta_{p p_{2}}(\nu(\rho),\{*, v\})\{\beta, *\}
$$

Assume further that $C$ is an Eilenberg-MacLane space and that

$$
\nu(\rho)=\sum u_{i} \times v_{i}+\sum \delta^{\sharp}\left(u_{j}^{\prime} \times v_{j}^{\prime}\right),
$$

where $\delta^{\sharp}$ is the Bockstein. Then

$$
\Delta_{p}(\rho, v) \beta=(\Omega \rho)_{*}(\Omega j)_{*} \beta+\sum\left(\Omega u_{i}\right) \beta \cup v^{*} v_{i}-\sum \delta^{\sharp}\left(\Omega u_{j}^{\prime}\right) \beta \cup v^{*} v_{j}^{\prime} .
$$

Proof. We imitate the proof of Theorem 2.4.1 of Rutter [13]. Consider the diagram


Note that the action $\bar{\mu}:(F \times F) \times(F \times E) \rightarrow F \times E$ of the principal fibration $p^{\circ} p_{2}$ is given by $\bar{\mu}\left(x, x^{\prime} ; x^{\prime \prime}, y\right)=\left(x+x^{\prime \prime}, \mu\left(x^{\prime}, y\right)\right)$. Thus, the right translation $\bar{\mu}^{\prime}$ : $\Omega(F \times F) \times(F \times E) \rightarrow \Omega_{p p_{2}}^{*}(F \times E)$ satisfies the following:

$$
\begin{aligned}
& (\rho \mu)_{*}^{\prime} \bar{\mu}_{*}^{\prime}(\{\beta, *\},\{*, v\})=\rho_{*}^{\prime} \mu_{*}^{\prime}\{\beta, v\}, \\
& \left(\rho p_{2}\right)_{*}^{\prime} \bar{\mu}_{*}^{\prime}(\{\beta, *\},\{*, v\})=\left(s_{C}\right)_{*} \rho_{*} v, \\
& p_{1 *}^{\prime} \mu_{*}^{\prime}(\{\beta, *\},\{*, v\})=\left(i_{F}\right)_{*} \beta
\end{aligned}
$$

Using these and by 3.8 and 3.6 we have that

$$
\begin{aligned}
\Delta_{p}(\rho, v) \beta= & \Delta_{p p_{2}}(\rho \mu,\{*, v\})\{\beta, *\} \\
= & \Delta_{p p_{2}}\left(\rho j p_{1},\{*, v\}\right)\{\beta, *)+\Delta_{p p_{2}}(\nu(\rho),\{*, v\})\{\beta, *) \\
& +\Delta_{p p_{2}}\left(\rho p_{2},\{*, v\}\right)\{\beta, *\} \\
= & \Delta(\rho j, *) \Delta_{p p_{2}}\left(p_{1},\{*, v\}\right)\{\beta, *\}+\Delta_{p p_{2}}(\nu(\rho),\{*, v\})\{\beta, *\} \\
= & (\Omega \rho)_{*}(\Omega j)_{*} \beta+\Delta_{p p_{2}}(\nu(\rho),\{*, v\})\{\beta, *\} .
\end{aligned}
$$

Now it follows from 3.9, 3.6 and 1.4.1 of [13] that

$$
\begin{aligned}
& \Delta_{p p_{2}}\left(u_{i} \times v_{i},\{*, v\}\right)\{\beta, *\}=\Delta_{p p_{2}}\left(p_{1}^{*} u_{i},\{*, v\}\right)\{\beta, *\} \cup v_{i} p_{2}\{*, v\} \\
&+(-1)^{\operatorname{dim} u_{i} u_{i} p_{1}\{*, v\} \cup \Delta_{p p_{2}}\left(p_{2}^{*} v_{i},\{*, v\}\right)\{\beta, *\}} \\
&=\Delta\left(u_{i}, *\right) \Delta_{p p_{2}}\left(p_{1},\{*, v\}\right)\{\beta, *\} \cup v^{*} v_{i} \\
&=\left(\Omega u_{i}\right) \beta \cup v^{*} v_{i} .
\end{aligned}
$$

Similarly,

$$
\Delta_{p p_{2}}\left(\delta^{*}\left(u_{j}^{\prime} \times v_{j}^{\prime}\right),\{*, v\}\right)\{\beta, *\}=\left(\Omega \delta^{*}\right)_{*}\left(\Omega u_{j}^{\prime}\right)_{*} \beta \cup v^{*} v_{j}^{\prime} .
$$

This completes the proof of 3.10 .
In [7], James and Thomas have called $\pi=p \circ q$ of (3.1) a stable decomposition of $\pi$ if there exists a map $c: F \times A \rightarrow C$ such that the composite

$$
A \xrightarrow{i_{2}} F \times A \xrightarrow{c} C
$$

is null-homotopic and $\rho \mu \simeq c(1 \times p)+\rho p_{2}$, where $i_{2}$ denotes the injection. Note that, if $\rho$ is primitive with respect to $\mu$, then $\pi=p \circ q$ is stable with $c=\rho j p_{1}$, where $p_{1}$ denotes the projection $F \times A \rightarrow F$. As stated in p. 104 of [7], for $v: X \rightarrow E$ liftable to $T, \tau \cdot v$ is liftable to $T$ if and only if $c_{*}\left\{\tau, p_{*} v\right\}=0$. The following theorem can also be proved in a way similar to 3.10 .

Theorem 3.11. (James and Thomas [7]) If (3.1) is a stable decomposition of $\pi=p \circ q$, then

$$
\Delta_{p}(\rho, v) \beta=c_{*}^{\prime}\left\{\beta, p_{*} v\right\}
$$

where $c^{\prime}: \Omega F \times A \rightarrow \Omega C$ is determined by the composite

$$
\Omega F \times A \xrightarrow{\text { injection }} \Omega(F \times A) \times F \times A \xrightarrow{\approx} \Omega^{*}(F \times A) \xrightarrow{\Omega^{*} c} \Omega^{*} C
$$

## 4. Secondary operation $\Phi_{\theta}(\rho, \boldsymbol{v})$ and proof of Theorem $A$

Consider the situation (3.1) in which $A, B$ and $C$ are $H$-spaces with multiplications $m, t$ and $n$ respectively. Given a map $v: X \rightarrow E$, we set $u=p \circ v$. We shall now define a sort of secondary operation

$$
\Phi_{\theta}(\rho, v): \operatorname{ker} \Delta(\theta, u) \rightarrow \operatorname{coker} \Delta_{p}(\rho, v)
$$

as follows.
Take an element $\alpha \in[X, \Omega A]$ such that $\left(\Omega^{*} \theta\right)_{*} m_{*}^{\prime}\{\alpha, u\}=0$; then it follows from the next Sublemma (i) that there exists an element $\psi \in\left[X, \Omega^{*} E ; u\right]$ such that

$$
\begin{equation*}
\left(\Omega^{*} p\right)_{*} \psi=h m_{*}^{\prime}\{\alpha, u\} \quad \text { and } \quad\left(r_{E}\right)_{*} \psi=v \in[X, E ; u], \tag{4.1}
\end{equation*}
$$

where $h:\left[X, \Omega^{*} A ; m\{*, u\}\right] \rightarrow\left[X, \Omega^{*} A ; u\right]$ is the canonical bijection. The coset of $\gamma \in[X, \Omega C]$ determined by $\left(\Omega^{*} \rho\right)_{*} \psi=n_{*}^{\prime}\left\{\gamma, \rho_{*} v\right\}$ is, by definition, $\Phi_{\theta}(\rho, v) \alpha$.

Observe that, if there exists another $\psi^{\prime}$ such that $\left(\Omega^{*} p\right) \psi^{\prime}=\left(\Omega^{*} p\right)_{*} \psi$ in $\left[X, \Omega^{*} A ; u\right]$ and $\left(r_{E}\right)_{*} \psi^{\prime}=v$ in $[X, E ; u]$, then we may assume $\left(r_{E}\right) \psi^{\prime}=v=$ $\left(r_{E}\right) \psi$ as maps and, applying Sublemma (ii) to $\varphi=\psi+\left(-\psi^{\prime}\right)$, we conclude that $\left(\Omega^{*} \rho\right)_{*} \psi-\left(\Omega^{*} \rho\right)_{*} \psi^{\prime}$ lies in the image of $\Delta_{p}(\rho, v)$. This ensures that $\Phi_{\theta}(\rho, v)$ is well defined.

Sublemma. (i) Given an element $\beta \in\left[X, \Omega^{*} A ; u\right]$ lying in the image of $\left(\Omega^{*} p\right)_{*} ;\left[X, \Omega^{*} E\right] \rightarrow\left[X, \Omega^{*} A\right]$, there exists a $\psi \in\left[X, \Omega^{*} E ; u\right]$ such that $\left(\Omega^{*} p\right)_{*} \psi$ $=\beta$ and $\left(r_{E}\right) * \psi=v$.
(ii) If $\varphi \in\left[X, \Omega^{*} E\right.$; $\left.u\right]$ satisfies $\left(\Omega^{*} p\right)_{*} \varphi=\left(s_{A}\right)_{*} u$, then $\varphi$ is contained in the image of the natural map $\left[X, \Omega_{v}^{*} E ; u\right] \rightarrow\left[X, \Omega^{*} E ; u\right]$.

Proof. (i) Let $\hat{\mu}: F \times \Omega^{*} E \rightarrow \Omega^{*} E$ be the map induced by the action $\mu: F \times$ $E \rightarrow E$. It is easily verified that

$$
\left(\Omega^{*} p\right) \hat{\mu}(x, \gamma)=\left(\Omega^{*} p\right) \gamma, \mu\left(1 \times r_{E}\right)=r_{E} \hat{\mu}\left(x \in F, \gamma \in \Omega^{*} E\right)
$$

By assumption we can take $\tilde{\psi}: X \rightarrow \Omega^{*} E$ with $\left(\Omega^{*} p\right) \tilde{\psi} \simeq \beta$, so that there is a $u$-map $\psi_{0}: X \rightarrow \Omega^{*} E$ with $\left(\Omega^{*} p\right) \psi_{0}=\beta$, since $\Omega^{*} p$ is a fibration. Choose $\omega$ : $X \rightarrow F$ such that $\mu\left\{\omega, r_{E} \psi_{0}\right\}$ is $u$-homotopic to $v$. Then $\psi=\hat{\mu}\left\{\omega, \psi_{0}\right\}$ has the desired property.
(ii) This is a simple application of homotopy lifting property.

Theorem $A$ in the introduction follows immediately from 3.2 and the following theorem which states a main property of $\Phi_{\theta}(\rho, v)$.

Theorem 4.2. If $w: X \rightarrow T$ is a lifting of $v$, then the image of $\Phi_{\theta}(\rho, v)$ coincides with the factor group $\mathrm{I}(w) / \mathrm{I}_{u}(w)$.

Proof. Let $\gamma \in[X, \Omega C]$ lie in the coset $\Phi_{\theta}(\rho, v) \alpha$. Since $\rho_{*} v=0$, we have that

$$
\left(\Omega^{*} \rho\right)_{*} \psi=\left(i_{C}\right)_{*} \gamma \quad \text { and } \quad\left(r_{E}\right)_{*} \psi=v,
$$

which shows that $\gamma$ is $\rho$-correlated to $v$. Hence it follows from Theorem 3.3 of [5] that $\gamma$ lies in I $(w)$.

Conversely, suppose $\gamma \in I(w)$. Then, by Theorem 3.2 of [5], there exists $\psi^{\prime} \in\left[X, \Omega^{*} E\right]$ such that $\left(\Omega^{*} \rho\right)_{*} \psi^{\prime}=\left(i_{C}\right)_{*} \gamma$ and $\left(r_{E}\right)_{*} \psi^{\prime}=v$ in $[X, E]$. By the homotopy lifting property of $r_{E}$ we see that $\psi \simeq \psi^{\prime}$ for a map $\psi: X \rightarrow \Omega^{*} E$ with $r_{E} \psi=v$. Then there is an $\alpha \in[X, \Omega A]$ with $h^{-1}\left(\Omega^{*} p\right)_{*} \psi=m_{*}^{\prime}\{\alpha, u\}$ and, moreover, $\left(\Omega^{*} \theta\right)_{*} m_{*}^{\prime}\{\alpha, u\}=0$. This means that $\gamma$ lies in in the coset $\Phi_{\theta}(\rho, v) \alpha$.

As a special case of Theorem $A$ we obtain
Corollary 4.3. If $[X, \Omega A]=0$, then $\mathrm{I}(w)=\mathrm{I}_{u}(w)$ for any lifting $w$ of $v$.
Remark. The conclusion of 4.3 remains valid without assuming that $B$ is an $H$-space, as shown in what follows. Since $\mathrm{I}_{u}(w) \subset \mathrm{I}(w)$, it suffices to prove $\mathrm{I}(w) \subset \mathrm{I}_{u}(w)$. Let $\tau \in \mathrm{I}(w)$, then, by Theorem 3.2 of [5], there is a $\psi \in\left[X, \Omega^{*} E\right]$ such that $\left(\Omega^{*} \rho\right)_{*} \psi=\left(i_{C}\right)_{*} \tau$ and $\left(r_{E}\right)_{*} \psi=v$. As above we may represent $\psi$ by a $v$-map $\tilde{\psi}: X \rightarrow \Omega^{*} E$. The assumption implies that $\left(r_{A}\right)_{*}:\left[X, \Omega^{*} A\right] \rightarrow[X, A]$ is a bijection with inverse $\left(s_{A}\right)_{*}$ and hence there is a homotopy deforming $\left(\Omega^{*} p\right) \tilde{\psi}$ into a map $X \rightarrow s_{A}(A)$. Since $\Omega^{*} p$ is a fibration, it follows that there is a map $\psi_{0}: X \rightarrow \Omega_{p}^{*} E$ homotopic to $\tilde{\psi}$ in $\Omega^{*} E$. Now the composite $\Omega_{p}^{*} E \xrightarrow{r} E \xrightarrow{p} A$ is a fibration, so that we can find a map $\psi_{1}: X \rightarrow \Omega_{p}^{*} E$ such that $p r \psi_{1}=u$ and $\psi_{0} \simeq \psi_{1}$ in $\Omega_{p}^{*} E$. Consequently, if we can show that $r \psi_{1}: X \rightarrow E$ is $u$-homotopic to $v$, then we infer from 2.4 that $\tau \in \mathrm{I}_{u}(w)$. Now, since $p r \psi_{1}=p v$, there is an $\omega: X \rightarrow F$ such that $\omega \cdot v$ and $r \psi_{1}$ are $u$-homotopic, whence $r \psi_{1} \simeq r_{E} \tilde{\psi}=v$ implies $\omega \in \mathrm{I}(v)$. Thus, by $2.6, \omega=0$, which shows that $r \psi_{1}$ is $u$-homotopic to $v$.

Now let

$$
p_{*}:[X, E] \rightarrow[X, A], \quad q_{*}:[X, T] \rightarrow[X, E]
$$

be the induced functions and let $v: X \rightarrow E$ be liftable to $T$. We set $u=p \circ v$. We see that $(p \circ q)_{*^{-1}}(u)$ coincides with the union

$$
\cup q_{*}^{-1}(\omega \cdot v),
$$

where $\omega$ runs over the cosets in $[X, F] / \Delta(\theta, u)[X, \Omega A]$ such that $\nu(\rho)_{*}\{\omega, v\}+$ $(\rho j)_{*} \omega=0$. We conclude from Theorem $A$ that

A Classification Theorem 4.4. Let $\pi=p \circ q$ in (3.1) be a stable decomposition with $c: F \times A \rightarrow C$ such that $\Delta(\theta, u)$ is injective. Then $(p \circ q)_{*^{-1}(u) ~ i s ~ e q u i v a l e n t ~}^{\text {s }}$ to the product

$$
\begin{aligned}
\left\{\omega \in[X, F] ; c_{*}\{\omega, u\}=\right. & 0\} / \Delta(\theta, u)[X, \Omega A] \\
& \times[X, \Omega C] /\left\{c_{*}^{\prime}\{\beta, u\} ; \beta \in[X, \Omega F]\right\}
\end{aligned}
$$

Finally we list some properties of $\Phi_{\theta}(\rho, v)$.
Triviality Theorem 4.5. $\Phi_{\theta}(\rho, v)$ is the usual (stable) secondary operation $\Phi$ determined by $\Omega \rho: \Omega E \rightarrow \Omega C$ and the image of $\Phi_{\theta}(\rho, v)$ is $(\Omega \rho)_{*}[X, \Omega E] /$ $\Delta_{p}(\rho, v)[X, \Omega F]$ in each of the following cases:
(i) $v$ is the constant map;
(ii) $X$ is an $H$ cogroup;
(iii) $p_{*} v=0, \rho$ is primitive with respect to $\mu$ and $C$ is homotopy abelian;
(iv) $\theta$ is primitive and $\rho$ is primitive with respect to $H$ structure of $E$.

Proof. (i) follows from the fact that $\left[X, \Omega^{*} A ; *\right]$ can be identified with $[X, \Omega A]$.

In order to prove (ii), note that the following diagram is homotopycommutative:

where $g$ is $H^{\prime}$ structure map, $d$ the diagonal map, $d^{\prime}$ the folding map and $\omega: X \rightarrow \Omega E$. Let $\psi$ be an element of $\left[X, \Omega^{*} E ; u\right]$ which corresponds to $\left(i_{E}\right)_{*} \omega+\left(s_{E}\right)_{*} v \in\left[X, \Omega^{*} E ; *+u\right]$ under the canonical isomorphism. Then,

$$
\left(\Omega^{*} \rho\right)_{*} \psi=\left(i_{c}\right)_{*}(\Omega \rho)_{*} \omega+\left(s_{c}\right)_{*} \rho_{*} v=n_{*}^{\prime}\left\{(\Omega \rho)_{*} \omega, \rho_{*} v\right\}
$$

and we see that $\left(\Omega^{*} p\right)_{*} \psi$ corresponds to $\left(i_{A}\right)_{*}(\Omega p)_{*} \omega+\left(s_{A}\right)_{*} u$, i.e., $\left(\Omega^{*} p\right)_{*} \psi=$ $h m_{*}^{\prime}\{\alpha, u\}$ with $\alpha=(\Omega p)_{*} \omega$. These show that $(\Omega \rho)_{*} \omega$ represents $\Phi_{\theta}(\rho, v) \alpha$.

We prove (iii). Given $\alpha \in[X, \Omega A]$ with $(\Omega \theta)_{*} \alpha=0$ (which is equivalent
to $\left.(\Omega * \theta)_{*} m_{*}^{\prime}\{\alpha, *\}=0\right)$, take $\gamma \in[X, \Omega E]$ such that $(\Omega p)_{*} \gamma=\alpha$. Since $p_{*} v=0$, there is a $\tau \in[X, F]$ with $j_{*} \tau=v$. Using the map $A: F \times \Omega^{*} E \rightarrow \Omega^{*} E$ in the proof of Sublemma, we set $\psi=\hat{\mu}_{*}\left\{\tau,\left(i_{E}\right)_{*} \gamma\right\} \in\left[X, \Omega^{*} E ; *\right]$; then, $\left(r_{E}\right)_{*} \psi=v$. Thus,

$$
\begin{aligned}
\left(\Omega^{*} \rho\right)_{*} \psi & =\left(\Omega^{*} \rho\right)_{*} \hat{\mu}_{*}\left\{T,\left(i_{E}\right)_{*} \gamma\right\}=\bar{n}_{*}\left\{\rho_{*} j_{* T},(\Omega \rho)_{*} \gamma\right\} \\
& =n_{*}^{\prime}\left\{(\Omega \rho)_{*} \gamma, \rho_{*} v\right\}
\end{aligned}
$$

where $\bar{n}: C \times \Omega C \rightarrow \Omega^{*} C$ is the "left translation". This proves (iii). The proof of (iv) is left to the reader.

Composition Theorem 4.6. Let $\sigma: C \rightarrow D$ be a map of $C$ to an $H$ space $D$. Let

$$
\hat{\Delta}(\sigma, \rho v): \text { coker } \Delta_{p}(\rho, v) \rightarrow \operatorname{coker} \Delta_{p}(\sigma \rho, v)
$$

denote the homomorphism induced by $\Delta(\sigma, \rho v)$. Then

$$
\Phi_{\theta}(\sigma \rho, v)=\hat{\Delta}(\sigma, \rho v) \Phi_{\theta}(\rho, v) .
$$

Cartesian Product Theorem 4.7. Suppose $\rho_{1}$ and $\rho_{2}$ are as in 3.7. Then

$$
\Phi_{\theta}\left(\left\{\rho_{1}, \rho_{2}\right\}, v\right) \alpha=\left(\Phi_{\theta}\left(\rho_{1}, v\right) \alpha, \Phi_{\theta}\left(\rho_{2}, v\right) \alpha\right) .
$$

Cup Product Theorem 4.8. Let $\rho, \rho^{\prime}$ and $\rho \cup \rho^{\prime}$ be as in 3.9. Then

$$
\Phi_{\theta}\left(\rho \cup \rho^{\prime}, v\right) \alpha=\Phi_{\theta}(\rho, v) \alpha \cup \rho^{\prime} v+(-1)^{a} \rho v \cup \Phi_{\theta}\left(\rho^{\prime}, v\right) \alpha .
$$

Naturality Theorem 4.9. Let $\alpha$ lie in ker $\Delta(\theta, u)$ and let $f: Y \rightarrow X$ be a map. Then

$$
\Phi_{\theta}\left(\rho, f^{*} v\right)\left(f^{*} \alpha\right)=f^{*} \Phi_{\theta}(\rho, v) \alpha \bmod \Delta_{p}\left(\rho, f^{*} v\right)[Y, \Omega F] .
$$

## 5. Proof of Theorem B

Consider a Postnikov tower for $P_{n}(R), n$ odd $>1$. In (3.1) we take

$$
A=K\left(Z_{2}, 1\right), \quad B=K(Z, n+1), \quad C=K\left(Z_{2}, n+2\right), \quad \theta=\left(\delta^{*} \iota_{1}\right)^{(n+1) / 2}
$$

where $\iota_{1} \in H^{1}\left(Z_{2}, 1 ; Z_{2}\right)$ is the fundamental class; then we have the first two stages and $H^{n_{+2}}\left(E ; Z_{2}\right)=Z_{2}$ whose generator is the second invariant $\rho$ with $j^{*} \rho=S q^{2} \iota_{n}, \iota_{n}$ being the non-zero element of $H^{n}\left(Z, n ; Z_{2}\right)$. We claim that

$$
\mu^{*}(\rho)= \begin{cases}S q^{2} \iota_{n} \times 1+1 \times \rho+\iota_{n} \times p^{*} \iota_{1}{ }^{2} & \text { for } n \equiv 1(4) \\ S q^{2} \iota_{n} \times 1+1 \times \rho & \text { for } n \equiv 3(4)\end{cases}
$$

and hence (3.1) in this case is a stable decomposition with $c=S q^{2} \iota_{n} \times 1+\iota_{n} \times \iota_{1}{ }^{2}$ or $S q^{2} \iota_{n} \times 1$.

Now it follows from Cartan's formula that

$$
S q^{2}\left(\delta^{*} \iota_{1}\right)^{(n+1) / 2}=S q^{2}\left(\iota_{1}^{n+1}\right)=\frac{(n+1) n}{2} \iota_{1}^{n+3}=\left\{\begin{array}{lll}
\iota_{1}^{n+3} & \text { if } n \equiv 1(4) \\
0 & \text { if } n \equiv 3(4)
\end{array}\right.
$$

We shall use an exact sequence due to E. Thomas [16, p. 187]. We see from the above equality that, for the morphism $\tau: H^{n+2}(F \times E, E) \rightarrow H^{n+3}(A)$,

$$
\tau\left(S q^{2} \iota_{n} \times 1+\iota_{n} \times p^{*} \iota_{1}^{2}\right)=0 \quad \text { or } \quad \tau\left(S q^{2} \iota_{n} \times 1\right)=0
$$

according as $n \equiv 1$ or 3 (4), and hence there is a $\tilde{\rho} \in H^{n_{+2}}\left(E ; Z_{2}\right)$ such that

$$
\bar{\mu}(\tilde{\rho})=S q^{2} \iota_{n} \times 1+\iota_{n} \times p^{*} \iota_{1}^{2} \quad \text { or } \quad S q^{2} \iota_{n} \times 1
$$

for the operator $\bar{\mu}: H^{n+2}(E) \rightarrow H^{n+2}(F \times E, E)$ (which is essentially equal to $\left.\mu^{*}-p_{2}{ }^{*}\right)$. Since $\operatorname{ker} p^{*}=\operatorname{ker} l^{*}$ in $\operatorname{dim} n+2$ for a map $l: P_{n}(R) \rightarrow A$ representing $\iota$, we infer that $\rho=\tilde{\rho}$, which proves our assertion. Theorem $B$ now follows from 4.4 and the fact $\left[X, P_{n}(R)\right] \approx[X, T]$.

## 6. Proof of Theorem $\mathbf{C}$

Consider the first two stages of a Moore-Postnikov tower for the inclusion $B O(n) \subset B O$ between the classifying spaces for $n$-plane bundles and stable ones:

where $m=n+2$ or $n+3$ according as $n \equiv 1$ (4) or $n \equiv 3$ (4), $n>2$, and $w_{i}$ denotes the universal Stiefel-Whitney class of dimension $i$. As shown in [7, p. 110], $p \circ q$ forms a stable decomposition with

$$
c=\left\{\begin{array}{lll}
S q^{2} \iota_{n} \times 1+\iota_{n} \times w_{2} & \text { if } & n \equiv 1(4) \\
S q^{2} S q^{1} \iota_{n} \times 1+S q^{1} \iota_{n} \times\left(w_{1}^{2}+w_{2}\right) & \text { if } & n \equiv 3(4),
\end{array}\right.
$$

where $\iota_{n} \in H^{n}\left(Z_{2}, n ; Z_{2}\right)$ is the fundamental class (This can also be shown using Thomas' exact sequence). Thus, we conclude from 4.4 that, for a stable bundle $\xi \in \widetilde{K O}(X)$ with $w_{n+1}(\xi)=0$ such that $\Delta\left(w_{n+1}, \xi\right): \widetilde{K O^{-1}}(X) \rightarrow H^{n}\left(X ; Z_{2}\right)$ is injective,
(a) if $n \equiv 1$ (4) and $\operatorname{dim} X \leqq n+1$, then $N_{n}(\xi ; X)$ is equal to the cardinal of the direct product:

Coker $\Delta\left(w_{n+1}, \xi\right) \times H^{n+1}\left(X ; Z_{2}\right) /\left(S q^{2}+w_{2}(\xi) \cup\right) H^{n-1}\left(X ; Z_{2}\right)$.
(b) if $n \equiv 3$ (4) and $\operatorname{dim} X \leqq n+2$, then $N_{n}(\xi ; X)$ is equal to the cardinal
of the direct product:

$$
\text { Coker } \Delta\left(w_{n+1}, \xi\right) \times H^{n^{+} 2}\left(X ; Z_{2}\right) /\left(S q^{2}+\left(w_{1}(\xi)^{2}+w_{2}(\xi)\right) \cup\right) S q^{1} H^{n-1}\left(X ; Z_{2}\right)
$$

Now take $X=P_{n+1}(R)$ or $P_{n+2}(R)$ according as $n \equiv 1$ or 3 (4). Then $\widetilde{K O^{-1}}(X)=Z_{2}$ by [3] and it follows from a formula of [5, p. 489] that $\Delta\left(w_{n+1}, k \eta\right)$ is injective for $\binom{k-1}{n-1}$ odd and $w_{n+1}(k \eta)=0$ for $\binom{k}{n+1}$ even. Theorem $C$ will be obtained by observing that

$$
w_{2}(k \eta)=\binom{k}{2} x^{2}, \quad S q^{2} x^{n-1}=0 \text { for } n \equiv 1(4), \quad S q^{1} x^{n-1}=0 \text { for odd } n
$$

where $x$ denotes the non-zero element of $H^{1}\left(X ; Z_{2}\right)$.
Note that, for $n \equiv 1$ (4) and $\binom{k}{2}$ odd, $\Delta_{p}(\rho, v): H^{n-1}\left(P_{n+1}(R) ; Z_{2}\right) \rightarrow H^{n+1}$ $\left(P_{n+1}(R) ; Z_{2}\right)$ is surjective for any lift $v$ of $k \eta$ and hence $q_{*}:\left[P_{n+1}(R), T\right] \rightarrow$ [ $\left.P_{n+1}(R), E\right]$ is bijective.

As another illustration, let $n \equiv 1$ (4) and let $X$ be $P_{(n+1) / 2}(C)$, the complex projective space of complex dimension $\frac{n+1}{2}$. Then $\widetilde{K O^{-1}}(X)=0$ by [3]. Since $H^{n}\left(X ; Z_{2}\right)=0$ and $S q^{2}\left(y^{(n-1) / 2}\right)=0$ for the non-zero element $y$ of $H^{2}\left(X ; Z_{2}\right)$, we see that $N_{n}(\xi ; X)=1$ or 2 according as $w_{2}(\xi) \neq 0$ or $w_{2}(\xi)=0$.

## 7. Further examples

7.1. Suppose that, in (3.1), $A$ is an ( $n-1$ )-connected space such that $\pi_{k}(A)=0$ for $k \geqq n+n^{\prime}-2\left(n^{\prime}>n \geqq 2\right), B=K\left(\pi^{\prime}, n^{\prime}+1\right)$ and $C=K\left(G, n+n^{\prime}\right)$. Assume $\rho \in H^{n+n^{\prime}}(E ; G)$ represents $(\bar{\rho}+\psi \cup)_{p}(\theta)$ for $\bar{\rho} \in H^{n+n^{\prime+1}}\left(\pi^{\prime}, n^{\prime}+1 ; G\right)$, $\psi \in H^{n}(A ; \pi)$, where the cup product is taken with respect to the Whitehead product pairing $\pi \otimes \pi^{\prime} \rightarrow G$ in $T, \pi=\pi_{n}(T)$. Then it is proven by F. P. Peterson [11] that

$$
\mu^{*}(\rho)=j^{*} \rho \times 1+1 \times \rho+x^{\prime} \times p^{*}(\psi), \quad x^{\prime} \in H^{n^{\prime}}\left(\pi^{\prime}, n ; \pi^{\prime}\right),
$$

where $j^{*} \rho$ is the suspension of $\bar{\rho}$ and $j^{*} \rho\left(x^{\prime}\right)=j^{*} \rho\left(\iota^{\prime}\right), \iota^{\prime}$ being the fundamental class of $H^{n^{\prime}}\left(\pi^{\prime}, n^{\prime} ; \pi^{\prime}\right)$. Thus, the tower $p \circ q$ in this case is a stable decomposition with $c=j^{*} \rho \times 1+x^{\prime} \times \psi$ (cf. Theorem 3.1 of [4]). Hence, $\Delta_{p}(\rho, v) \beta=$ $\Omega(\rho j)_{*} \beta+\left(\Omega x^{\prime}\right) \beta \cup u^{*} \psi, \beta \in H^{n^{\prime-1}}\left(X ; \pi^{\prime}\right)$.

In case $A=K(\pi, n)$, we can take the basic classes $\iota^{\prime}$ and $\iota \in H^{n}(\pi, n ; \pi)$ for $x^{\prime}$ and $\psi$ respectively.
7.2. Consider a Postnikov tower for the usual lens space $L=S^{2 n+1} / Z_{p}$, where $p$ is an odd prime. We take

$$
A=K\left(Z_{p}, 1\right), \quad B=K(Z, 2 n+2), \quad C=K\left(Z_{2}, 2 n+3\right)
$$

and let $\theta=\left(\delta^{*} \iota\right)^{n+1}$ where $\delta^{*}$ is the Bockstein associated with $0 \rightarrow Z \rightarrow Z \rightarrow Z_{p} \rightarrow 0$ and $\iota$ denotes the basic class of $H^{1}\left(Z_{p}, 1 ; Z_{p}\right)$, and let $\rho$ denote the generator of $H^{2 n+3}\left(E ; Z_{2}\right)=Z_{2}$.

Given a path-connected $(2 n+2)$-dimensional complex $X$, we have $\Delta(\theta, u)$ $=0$ by virtue of $H^{1}\left(S X ; Z_{p}\right)=0$ and $j^{*} \rho=S q^{2} \iota, \bar{\imath}$ being the basic class of $H^{2 n+1}(Z, 2 n+1 ; Z)$. Since $H^{2 n+3}\left(F \times E, F \vee E ; Z_{2}\right)=0, \rho$ is primitive with respect to the action $\mu$, so that $\Delta_{p}(\rho, v)=S q^{2}: H^{2 n}(X ; Z) \rightarrow H^{2 n+2}\left(X ; Z_{2}\right)$. Thus, we see from 4.4 that $[X, L]$ is equivalent to the product

$$
\left\{u \in H^{1}\left(X ; Z_{p}\right) ;\left(\delta^{*} u\right)^{n+1}=0\right\} \times H^{2 n+1}(X ; Z) \times H^{2 n+2}\left(X ; Z_{2}\right) / S q^{2} H^{2 n}(X ; Z) .
$$

This extends a result of P. Olum [10].
7.3. Consider a Postnikov tower for the $n$-sphere $S^{n}, n \geqq 4$. We take

$$
A=K(Z, n), \quad B=K\left(Z_{2}, n+2\right), \quad C=K\left(Z_{2}, n+3\right)
$$

and $S q^{2} \iota$ and the unique non-zero element of $H^{n+3}\left(E ; Z_{2}\right)=Z_{2}$ for $\theta$ and $\rho$, where $\iota$ is the basic class of $H^{n}(Z, n ; Z)$. Then,

$$
\begin{aligned}
& \Delta(\theta, u)=S q^{2}: H^{n-1}(X ; Z) \rightarrow H^{n+1}\left(X ; Z_{2}\right) \\
& \Delta_{p}(\rho, v)=S q^{2}: H^{n}\left(X ; Z_{2}\right) \rightarrow H^{n+2}\left(X ; Z_{2}\right) .
\end{aligned}
$$

Let $X$ be a complex with $\operatorname{dim} X \leqq n+2$; then $v: X \rightarrow E$ is always liftable to $T$. We conclude
(1) (Nakaoka [8, p. 94, Theorem 4]) Assume $S q^{2}: H^{n}\left(X ; Z_{2}\right) \rightarrow H^{n+2}\left(X ; Z_{2}\right)$ is surjective; then $I(w)=I_{u}(w)=H^{n^{2}}\left(X ; Z_{2}\right)$ and hence it follows that $\left[X, S^{n}\right]$ is equivalent to

$$
\left\{u \in H^{n}(X ; Z) ; S q^{2} u=0\right\} \times H^{n+1}\left(X ; Z_{2}\right) / S q^{2} H^{n-1}(X ; Z)
$$

(2) Assume $S q^{2}: H^{n-1}(X ; Z) \rightarrow H^{n+1}\left(X ; Z_{2}\right)$ is injective; then it follows from 4.4 that $\left[X, S^{n}\right]$ is equivalent to the product

$$
\begin{aligned}
\left\{u \in H^{n}(X ; Z) ; S q^{2} u=0\right\} & \times H^{n+1}\left(X ; Z_{2}\right) / S q^{2} H^{n-1}(X ; Z) \\
& \times H^{n+2}\left(X ; Z_{2}\right) / S q^{2} H^{n}\left(X ; Z_{2}\right) .
\end{aligned}
$$

7.4. Consider a Postnikov tower for the complex projective space $P_{m}(C)$. Let

$$
A=K(Z, 2), \quad B=K(Z, 2 m+2), \quad C=K\left(Z_{2}, 2 m+3\right),
$$

and let $\theta=\iota^{m+1}$, where $\iota \in H^{2}(Z, 2 ; Z)$ is the basic class, and $\rho$ be the unique nonzero element $\psi_{m} \in H^{2 m+3}\left(E ; Z_{2}\right)$ (cf. [12]). Then $j^{*} \rho=S q^{2} \iota_{2 m+1}$, where $t_{2 m+1}$ is the generator of $H^{2 m+1}\left(Z, 2 m+1 ; Z_{2}\right)$. The dual Hopf invariant $\nu(\theta)$ with respect to $H$-structure of $A$ is $(\iota \times 1+1 \times \iota)^{m_{+1}}$ and hence

$$
\Delta(\theta, u) \alpha=(m+1) \alpha \cup u^{m}, \alpha \in H^{1}(X ; Z) \quad \text { (cf. [15, p. 452]) }
$$

We see from 7.1 and [11] that

$$
\mu^{*}(\rho)= \begin{cases}\rho j \times 1+1 \times \rho & \text { if } m \text { is odd } \\ \rho j \times 1+1 \times \rho+\bar{\iota}_{2 m+1} \times p^{*} \iota & \text { if } m \text { is even }\end{cases}
$$

where the cross product is taken with respect to the nontrivial pairing $Z \otimes Z \rightarrow Z_{2}$ and $\bar{\iota}_{2 m+1}$ denotes the basic class of $H^{2 m+1}(Z, 2 m+1 ; Z)$.

Given a ( $2 m+2$ )-dimensional complex $X$, we assume that $(m+1) \alpha \cup u^{m}=0$ implies $\alpha=0$ for $\alpha \in H^{1}(X ; Z)$ and a fixed $u \in H^{2}(X ; Z)$. Then it follows from 4.4 that, for the function $\varphi:\left[X, P_{m}(C)\right] \rightarrow H^{2}(X ; Z)$ assigning $f^{*} z$ to $f: X \rightarrow$ $P_{m}(C), z$ being a generator of $H^{2}\left(P_{m}(C) ; Z\right), \varphi^{-1}(u)$ is equivalent to

$$
\begin{aligned}
& H^{2 m+1}(X ; Z) /(m+1) u^{m} \cup H^{1}(X ; Z) \times H^{2 m+2}\left(X ; Z_{2}\right) / S q^{2} H^{2 m}(X ; Z) \quad \text { for } m \text { odd } \\
& H^{2 m+1}(X ; Z) /(m+1) u^{m} \cup H^{1}(X ; Z) \times H^{2 m+2}\left(X ; Z_{2}\right) /\left(S q^{2}+u \cup\right) H^{2 m}(X ; Z) \\
& \text { for } m \text { even } .
\end{aligned}
$$

It seems likely that, for $m=1$ and $\operatorname{dim} X=4$, our $\Phi_{\theta}(\rho, v)$ coincides with $\Phi_{C_{2}}$ introduced by N. Shimada [14, p. 141].
7.5. Let $n$ be an even integer and let

be part of a Moore-Postnikov tower for $B U(n) \subset B U$ between the classifying spaces for the unitary groups $U(n)$ and $U$, where $c_{n+1}$ denotes the universal $(n+1)$ th Chern class. It is readily shown that $H^{2 n+3}\left(E ; Z_{2}\right)=Z_{2}$ is generated by $\rho$ with $j^{*} \rho=S q^{2} \iota_{2 n+1}$, where $\iota_{2 n+1}$ is the generator of $H^{2 n+1}\left(Z, 2 n+1 ; Z_{2}\right)$.

Since, for the realification $\hat{\gamma}$ of the canonical bundle $\gamma$ over $B U$,

$$
S q^{2} c_{n+1}=S q^{2} w_{2 n+2}(\hat{\gamma})=w_{2}(\hat{\gamma}) \cup c_{n+1}
$$

where the cup product is with respect to the non-trivial pairing $Z_{2} \otimes Z \rightarrow Z_{2}$, Thomas' exact sequence reveals that

$$
\mu^{*} \rho=S q^{2} \iota_{2 n+1} \times 1+1 \times \rho+\iota_{2 n+1} \times p^{*} w_{2}(\hat{\gamma}) .
$$

Hence it follows from 4.4 that, for a complex $X$ such that $\operatorname{dim} X \leqq 2 n+2$ and $\Delta\left(c_{n+1}, u\right): \tilde{K}^{-1}(X) \rightarrow H^{2 n+1}(X ; Z)$ is injective for $u \in \tilde{K}(X)$ with $c_{n+1}(u)=0$, the number of $n$-dimensional complex vector bundles over $X$ which are stably
equivalent to $u$, is equal to the cardinal of the direct product

$$
\text { coker } \Delta\left(c_{n+1}, u\right) \times H^{2 n+2}\left(X ; Z_{2}\right) /\left(S q^{2}+w_{2}(\hat{u}) \cup\right) H^{2 n}(X ; Z)
$$

where $\hat{u}$ is the realification of $u$.
For example, let $X=P_{2 n+2}(R)$. Since $\tilde{K}^{-1}(X)=0$ by Theorem 3.3 of [2] and since $K(X)$ consists of elements $k \nu\left(k=0,1, \cdots, 2^{n-1}-1\right), \nu$ denoting the complexification of the canonical line bundle $\lambda$ (see [1]), the number of classes of $n$-dimensional complex plane bundles which are stably equivalent to $k \nu$, is equal to 2 or 4 according as $k$ is odd or even. This follows by observing that $S q^{2} x^{2 n}=0$ for the generator $x \in H^{1}\left(X ; Z_{2}\right)$ and $w_{2}(k \hat{\nu})=k w_{2}(2 \lambda)=k x^{2}$.

## 8. Appendix: the group of fibre homotopy equivalences

Given a fibration $f: Y \rightarrow Z$, we denote by $\mathcal{E}(Y ; f)$ the group of fibre homotopy classes of fibre homotopy equivalences of $Y$.

In the situation (3.1) we shall assume that $\pi_{k}(A) \neq 0$ only for $n \leqq k \leqq n^{\prime}-1$, $\pi_{k}(F) \neq 0$ only for $n \leqq k \leqq n^{\prime}-1$ and $\pi_{r}(\Omega C) \neq 0$ only for $n^{\prime} \leqq r \leqq n^{\prime}+n-1(n>1)$. It is easily shown that there is an exact sequence

$$
1 \rightarrow q^{*}[E, \Omega C] \rightarrow \mathcal{E}(T ; q) \rightarrow \mathcal{E}(\Omega C)
$$

We shall study $\mathcal{E}(T ; p \circ q)$. First we need
Lemma 8.1. The functions

$$
q^{*}:[E, E ; p] \rightarrow[T, E ; p \circ q], \quad i_{*}:[\Omega C, \Omega C] \rightarrow[\Omega C, T]
$$

are bijective.
Proof. Introduce the commutative diagram

$$
\begin{gathered}
{[E, F] \xrightarrow{q^{*}}[T, F]} \\
T_{1} \downarrow \\
{[E, E ; p] \xrightarrow{q^{*}}{ }^{\downarrow} T_{2}} \\
{[T, E ; p \circ q],}
\end{gathered}
$$

where the vertical bijections $T_{1}$ and $T_{2}$ are given by

$$
T_{1}(\tau)=\mu_{*}\left\{\tau, 1_{E}\right\}, \quad T_{2}(\omega)=\mu_{*}\{\omega, q\}
$$

$1_{X}$ being the identity map of $X$. Since the upper $q^{*}$ is bijective, so is the bottom $q^{*}$. The second assertion can be proved by a classical obstruction argument or by using a Moore-Postnikov tower for $i$.

In the light of Lemma 8.1 we can now define homomorphisms

$$
J: \mathcal{E}(T ; p \circ q) \rightarrow \mathcal{E}(E ; p), \quad J_{0}: \mathcal{E}(T ; p \circ q) \rightarrow \mathcal{E}(\Omega C)
$$

by requiring, for $g \in \mathcal{E}(T ; p \circ q)$,

$$
q_{*} g=q^{*} J(g) \quad \text { in } \quad\left[T, E ; p^{\circ} q\right], \quad i_{*} J_{0}(g)=i^{*} g
$$

Let

$$
\Delta: \operatorname{ker} i^{*} \rightarrow \mathcal{E}(T ; p \circ q)
$$

denote the homomorphism defined by $\Delta(\tau)=\tau \cdot 1_{T}$, where $i^{*}$ is the homomorphism in the exact sequence

$$
[\Omega C, \Omega C] \stackrel{i^{*}}{\longleftrightarrow}[T, \Omega C] \stackrel{q^{*}}{\longleftrightarrow}[E, \Omega C] .
$$

Theorem 8.2. The following sequence of groups and homomorphisms is exact:

$$
[T, \Omega F] \xrightarrow{\Delta_{p}(\rho, q)} q^{*}[E, \Omega C] \xrightarrow{\Delta} \mathcal{E}(T ; p \circ q) \xrightarrow{\left\{J, J_{0}\right\}} \mathcal{E}(E ; p) \times \mathcal{E}(\Omega C),
$$

in which the image of $\left\{J, J_{0}\right\}$ consists of $(g, \Omega h) \in \mathcal{E}(E ; p) \times \mathcal{E}(\Omega C)$ such that $\rho g \simeq h \rho$.

Proof. The exactness at the second term follows from the fact that the image of $\Delta_{p}(\rho, q)$ coincides with $\mathrm{I}_{p_{o} q}\left(1_{T}\right)$ by 3.2. We shall prove the exactness at the third term.

Let $g: T \rightarrow T$ be a homotopy equivalence such that $g i \simeq i, p q g=p q$ and $q g \simeq q$ by a $p q$-homotopy $H_{t}: T \rightarrow E, 0 \leqq t \leqq 1$, with $H_{0}=q g, H_{1}=q$. By the homotopy lifting property there exists a homotopy $\tilde{H}_{t}: T \rightarrow T$ with $\tilde{H}_{0}=g, q \tilde{H}_{t}=H_{t}$. Since $p q H_{t}=p H_{t}=p q, \tilde{H}_{t}$ is a $p q$-homotopy. Put $g^{\prime}=\tilde{H}_{1}$, then $q g^{\prime}=q$ and so $g^{\prime}$ is $q$-homotopic to $\tau \cdot 1_{T}$ for some $\tau: T \rightarrow \Omega C$. Since

$$
(\tau i) \cdot i \simeq g^{\prime} i \simeq g i \simeq i
$$

and $[\Omega C, \Omega E]=0$, it follows from 2.3 that $\mathrm{I}(i)=0$ and hence $i^{*} \tau=0$.
The assertion about the image of $\left\{J, J_{0}\right\}$ can be proved by an argument similar to Theorem 2.9 of [9], noting that, if $q g \simeq g q$ by a $p q$-homotopy, we can replace $g$ by $\hat{g}$ which is $p q$-homotopic to $g$ and which is such that $q \hat{g}=\bar{g} q$.

Consider the situation in which $A=K(\pi, n), B=K\left(\pi^{\prime}, n^{\prime}+1\right)$ and $C=$ $K\left(G, n+n^{\prime}\right), 1<n<n^{\prime}$ in (3.1). Theorem 8.2, together with 7.1, gives rise to an exact sequence

$$
1 \rightarrow R \rightarrow \mathcal{E}(T ; p \circ q) \rightarrow \mathcal{E}(E ; p) \times \text { Aut } G,
$$

where $R$ denotes the factor group

$$
H^{n_{+} n^{\prime-1}}(E ; G) / p^{*}\left(\Omega(\rho j)+\iota_{n} \cup\right) H^{n \prime-1}\left(\pi, n ; \pi^{\prime}\right)
$$

$\iota_{n}$ being the basic class in $H^{n}(\pi, n ; \pi)$ and the cup product being taken with respect to the Whitehead product pairing of $T$.

## Osaka University

## References

[1] J.F. Adams: Vector fields on spheres, Ann. of Math. 75 (1962), 603-632.
[2] M. Fujii: Ku-groups of Dold manifolds, Osaka J. Math. 3 (1966), 49-64.
[3] M. Fujii: $K_{0}$-groups of projective spaces, Osaka J. Math. 4 (1967), 141-149.
[4] I.M. James: A relation between Postnikov classes, Quart. J. Math. Oxford (2), 17 (1966), 269-280.
[5] I.M. James and E. Thomas: An approach to the enumeration problem for nonstable vector bundles, J. Math. Mech. 14 (1965), 485-506.
[6] I.M. James and E. Thomas: Note on the classification of cross-sections, Topology 4 (1966), 351-359.
[7] I.M. James and E. Thomas: On the enumeration of cross-sections, Topology 5 (1966), 95-114.
[8] M. Nakaoka: Exact sequences $\sum_{p}(K, L)$ and their application J. Inst. Polytech. Osaka City Univ. 3 (1952), 83-100.
[9] Y. Nomura: Homotopy equivalences in a principal fibre space, Math. Z. 92 (1966), 380-388.
[10] P. Olum: Cocycle formulas for homotopy classification; maps into projective and lens spaces, Trans. Amer. Math. Soc. 103 (1962), 30-44.
[11] F.P. Peterson: Whitehead products and the cohomology structure of principal fibre spaces, Amer. J. Math. 82 (1960), 649-652.
[12] F.P. Peterson and N. Stein: Secondary cohomology operations; two formulas, Amer. J. Math. 81 (1959), 281-305.
[13] J.W. Rutter: A homotopy classification of maps into an induced fibre space, Topology 6 (1967), 379-403.
[14] N. Shimada: Homotopy classification of mappings of a 4-dimensional complex into a 2-dimensional sphere, Nagoya Math. J. 5 (1953), 127-144.
[15] E.H. Spanier: Algebraic Topology, McGraw-Hill, New York, 1966.
[16] E. Thomas: Postnikov invariants and higher order cohomology operations, Ann. of Math. 85 (1967), 184-217.

