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1. Introduction

Let p: E— A be the principal fibration with classifying map 6: A—B and let
g: T—E be the principal fibration induced by a map p: E—C. We assume that
A, B and C are H-spaces. Given a map v: X—FE, I. M. James and E.
Thomas [5, 7] have defined the homomorphisms

A9, u): [X, QA] — [X, QB]
A,(p, v): [X, Q2B] - [X, QC],

where u is the composite pov, Q is the loop functor and [Y, Z] denotes the set
of based homotopy classes of based maps Y—Z.
The action QCX T—T of the principal fibration ¢ induces the function

[X, QCIx[X, T — [X, T],

the image of (7, w)E[X, QC]X[X, T] under which is denoted by 7-w. The
subgroup
I(w) = {re[X, QC]; T w=w}

of [X, QC] is called the isotropy group of w under the action of [X, QC] on
[X, T]. Our first main result is the following:

Theorem A. Suppose w: X—T is a lifting of v. If A0, u) is injective,
then I(w) coincides with the image of A (p, v).

This is obtained as a direct consequence of a property (Theorem 4.2) of
a non-stable secondary operation ®y(p, v) which is inspired by an operation due
to N. Shimada [14, p. 141].

The prime concern in this paper is to examine a few situations to which
Theorem A is applicable.

Consider first the real projective space P,(R), where the dimension 7 is
odd>1. Let X be a path-connected (n+1)-dimensional complex and let &*
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denote the Bockstein homomorphism associated with 0—-Z—Z—Z,—0. We
define

@: [X, P,(R)] — H(X; Z)

by @(g)=g*:, where g: X—P,(R) and ¢ denotes the generator of H'(P,(R); Z,).
The following extends a result due to P. Olum [10].

Theorem B. Let u be an element of H\(X; Z,) such that (8*u)+"/*=0.
Then @~'(u) is equivalent to:

H"(X; Z)yx H"(X; Z)/(S¢+4 U)H" (X; Z)  for n=1 (mod 4)
H"X; Z)yx H"(X; Z,)|S¢H" (X ; Z) for n=3 (mod 4)

Next, let » be the reduced stable class of the canonical line bundle over
the real projective space and let N,(¢; X) denote the number of classes of #-plane
bundles over X which are stably equivalent to a stable reduced bundle & over
X. The following is a partial extension of a result due to I. M. James and
E. Thomas [5].

k )be even. Then
n+1 :
(1) for n=1 (mod 4) and <§> odd, N, (kn; P,.,(R))=1 or 2 according as

Theorem C. Let k be an integer and let <

(ﬁ: %) is odd or even;
1

(2) Ny(k7; Ppu(R)=2if n=1 (mod 4), (’5) even and (ﬁ:1> odd;

(3) N, (kn; Pyio(R)=2 if n=3 (mod 4) and (f;:{) odd.

Finally, let §(X) denote the group of homotopy classes of homotopy
equivalences of X whose group structure is induced by map-composition.
Consider the tower

QC——T

o
oB——E—*, C
l?
K(z,n)— B,
where B and C are H-spaces such that z,(B)=0 only for n4-2=r=m (n>1)
and 7(C)+0 only for m+1=<s<m+4n—1. The following theorem can be

obtained by applying the results of [9] to the fibration ¢ and observing the fact
H"Y(T; =)=0.

Theorem D. The following sequence of groups and homomorphisms is exact:
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Ay(p,
[T, O*B] —"(Lq) q*[E, QC] — §(T) — 8(E)x 8(QC)
in which the image of the last homomorphism consists of (g, Qh)E8(E) X §(QC) such
that pg—hp.
The results stated in sections 2, 3 and 4 can be dualized in a cofibre space and
will be considered elsewhere.

2. Preliminaries

We shall here fix the notations and recall some definitions given in [5, 6, 7].
We work in the category of spaces with basepoints (usually denoted by #*) and
basepoint preserving maps. The spaces considered are assumed to have the
homotopy type of a CW complex. We blur the distinction between maps and
their homotopy classes. We use the additive notation for path-composition and
path-inversion. The suspension functor is denoted by S.

For a space X, let Q*X denote the space of free loops in X. One has a
fibration

: r
QX S5 X —5 X
with section sx: X—Q*X given by sx(x)=the constant loop at x€X. A map

f: X—Y induces the map Q*f: Q*X—-Q*Y in an obvious way.
Lemma 2.1. (ix)sE=(ix)«&’ for & E'€[V, QX] if and only if £ and §’

are conjugate to each other.

This can be proved directly or by replacing ix by a principal fibration.

Corollary 2.2. (Theorem 2.6 of [5]) The group [V, Q.X] is abelian if and
only if (ix)x: [V, QX]—=[V, Q*X] is injective.

Given a fibration p: E—A4 and a map u: X—A, we denote by [X, E; u] the
set of u-homotopy classes of u-maps X—E (see [6])

Let p: E—A be a fibration with fibre inclusion j: F—E and let g: T—E be
the principal fibration with classifying map p: E—~C. Given a map w: X—T,
let v=gow and u=pov. We define the u-isotropy group I,(w) of w by setting

I(w) = {re[X, QC]; 7.w=win [X, T;u]}.
g induces the function
q9«: [X, T; u] = [X, E; u]

and there is a bijection between g¢x'(v) and the totality of left cosets [X, QC]/
I(w). The following is obvious:

Proposition 2.3. (1) For the trivial map : X—T, 1(*) is the image of
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(Qp)()s: [X, QF]-[X, QC];

2) I(r-w)y=7+IL(w)—7 for T<[X, QCJ;

(3) *L@)CL.(g*w) for g: Y—X;

(4) Let i: QC—T denote the inclusion. Then 14(i)=1-4(Qp)x(Q27)+[QC,
QF]—1, where 1 is the identity map of QC.

Let QFE denote the subspace of Q*E consisting of free loops A such that
(Q*p)rEs,4(A4). Then one obtains a fibration 7: Q¥E—E with fibre QF.

Theorem 2.4. T€[X, QC] is p-correlated (see §3 of [7]) to vE[X, E; u],
if and only if there exists an n=[X, T'; u] such that T€1,(n) and qxn=v.

Proof. The “if” part is proved in Lemma (3.3) of [7]. We shall prove
the “only if” part. Assume that there exists a Yy&[X, QF E; u] such that
r«y=0v and plr=(ic)47 in the following commutative diagram

[X, O E; 1] —> [X, E; 1]
(i0) Pk 7o) lP*
7
[X, C] ~% [x, a*c] <% [, ],
where p’: QFE—Q*C denotes the restriction of Q*p to QXE.
Since 7 is a fibration, we may assume {r: X—QXE is a lift of v. Let
F,: X—-Q*C be a homotopy with F,=i.7, F,=p'Yr. Consider v: X—C’
defined by y(x)(t)=rcoF(x), x€ X, 0=t=<1. It is easy to see that T=y+p'yr
—nv in [X, QC]. Take n: X—T given by »(x)=(v, 7); then it follows that
(v+p'P—7)m=n in [X, T;u]. This proves the only if part.

Corollary 2.5. Suppose p: E—A is a principal fibration with fibre F in
the sense of [12). Then [X, QF]=0 implies 1,(w)=0.

Proof. Let u: FXE—E denote the action map and let p': QF X E->Q}E
be the induced map defined as in §4 of [7]. Then, by Theorem (4.1) of [7],

wh: [X, QF X [X, E; u] — [X, QXE; u]

is bijective. Note that u'{x, 15}: E—~QXE is p-homotopic to the canonical
section s: E->QXE of 7, so that both s and 7 induce the bijections between
[X, E; u] and [X, QFE; u] because of [X, QF]=0.

Now let r€[X, QC] be p-correlated to v, i.e., there is an element &
[X, Q¥E; u] such that 74 Jr=v, p4r=(ic)x7. Then, since gsw=0,

(7c)x™ = p4sxv = (sc)xpxv = 0,

which implies 7=0 by virtue of ker (i¢)s+=0.
Taking A=+ in the above situation, we obtain
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Corollary 2.6. T<[X, QC] is p-correlated to ve[X, E] (see §2 of [5)), if
and only if there is an element nE[X, T] such that r€1(n) and gxn=v. If Eis
an H-space with [ X, QE]=0, then 1(7)=0 for any lifting » of v: X—E.

3. The homomorphisms A(6, u) and A (p, v)

Consider the situation

Qc—T

e
3.1) F=aB-l-E P, ¢
I,
A —B,

in which p and ¢ are the principal fibrations with classifying maps 6 and p
respectively, and B and C are H-spaces with multiplications ¢: BX B—B and
n: CXC—C. Let u: FXE—E denote the action of F on E.

In case 4 is an H-space with multiplication m: AX A—A and there is
given a map v: X—E with u=pov, I. M. James and E. Thomas have defined
in [5, 7] the homomorphisms

A(G, u): [X, Q4] — [X, QB],
Ay(p, 9): [X, QF] — [X, QC]
as follows. Let
p's (QFXE, QF X F) — (QXE, Q*F)
m':QAXA—Q*A, t': QBx B — Q*B, n': QCx C — Q*C

denote the “right translations” determined by p, m, ¢ and n; then the equations

(Q*0)smif{ct, u} = t4{A(0, u)ct, Ogu} for ac[X, Q4]
prukiB, v} = ni{A ,(p, ) B, px0} for Be[X, QF]

determine A(6, u)ax and A,(p, v)B uniquely by virtue of Theorem 2.7 of [5].
The following is proven in [7, Theorem (4.2)]:

Theorem 3.2. T€[X, QC] is p-correlated to ve[X, E; u] if and only if,
first, pxv=0 and, secondly, T lies in the image of A, (p,v). Thus, I (w)=A,(p, v)
[X, QF] for any lift w of v.

The homomorphism A(6, «) has also been introduced by J. W. Rutter [13],
who has examined various properties of it. In the similar way we can obtain
analogous theorems for A ,(p, ), so that the proofs are mostly omitted.
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Triviality Theorem 3.3. A,(p, ¥)=(Qp)«(Qf)x. More generally, if job
=v for a map O: X—F, then A (p, v)=A(pj, D).

In order to state the next theorem we define the dual Hopf invariant v(p)E
[FXE, C] of p to be

v(p) = —(jop)*ptu*p—p. p

where p,: FX E—F and p,: FX E—-E are the projections. If »(p)=0, we say
that p is primitive with respect to p.

Primitivity Theorem 3.4. If p is primitive with respect to p, then A (p, v)
=(2p)+(2))+.

Theorem 3.5. If X is an H cogroup (see [15]), then A (p, v)=(2p)x(27)x.

Composition Theorem 3.6. Let a: C—D be a map to an H space. Then
Ay (ap, v)=A(at, pv)A,(p, ).

Cartesian Product Theorem 3.7. Let p,;: E—~C,, p,: E—~C, be maps to
H-spaces and let {p,, p,}=(p, X p,)od: E—C,x C, be the composite with diagonal
map d. Then

Ap({Pu pots 0)B = (Aplpss ©)Bs Ay(ps ©)B) -
Additivity Theorem 3.8. Let p,, p,: E—C be maps. Then
Ap(Pl+Pza 7))18 = Ap(Pv v)ﬁ‘i’(Pl‘v)DAp(Pz’ 'U)B )
Ap(_P» V)8 = _(_PW)DAp(P’ V)83,
where (p,v) and (—pv) are the endomorphisms as defined in [13, p. 383].

Cup Product Theorem 3.9. Given pc H*(E; ) and p'€H*(E; ='), let
pUp’ denote the cup product with respect to a pairing n Qn'—G. Then

Ay(pUps v)B = Ayp, v)BUV*p'+(—1)v*pUA(p, v)B.

The following theorem will be useful in computing A ,(p, v) in terms of
deviation of p from primitivity and corresponds to Corollary 1.4 of [5] or
Theorem 2.4.1 of [13].

Theorem 3.10. Suppose C is homotopy abelian or pxv=0. Then
A[:(P’ 7))18 = (ﬂp)*(ﬂj)*,@—{—Appz(V(p), {*’ W}){Bv *} .
Assume further that C is an Eilenberg-MacLane space and that
v(p) = DV u; X v;4 2 8H(uj X v)),

where 8* is the Bockstein. Then
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A (ps 0)B = (Q2p)x(2))+B+ X (Qu,)B U v*v; =37 84 Quj)B U v*v) .

Proof. We imitate the proof of Theorem 2.4.1 of Rutter [13]. Consider the
diagram

FxXE C

PP
{*, v} o

X u {x, 6}

Bx B

Note that the action @m: (FXF)X(FXE)—>FXE of the principal fibration
pop. is given by @(x, x”; x”, y)=(x+x", p(x’, y)). Thus, the right translation z":
Q(F X F)X (FX E)—=Q,(FX E) satisfies the following:

(P:“’):kﬁ:k({ie’ *}’ {*’ ‘I)}) = p:kl“{k{ﬁ’ 7)} ’
(PD)575({Bs *}, {*, V) = (sc)4P4v
Prank({B, *}, {x, 9}) = (ir)+B .

Using these and by 3.8 and 3.6 we have that

A (P, v)B = A, (Pu, {*, O}){B, *}
= A, (pJb1s 1%, 2}){B, *)+A,,,(v(p), {*, v}){B, *)
+A,,,(pps {*, DB, *}
= A(Pj» *)Appz(Pv {*, 'v}){l@’ *}+App2(V(P)’ {*’ 'U}){IB’ *}
= (Qp)x(Q2)xB+A,,,(v(p), {*, V1B, *} .

Now it follows from 3.9, 3.6 and 1.4.1 of [13] that

A”Z(u;X’U,-, {*’ 7)}){18’ *} = Appz(Pikui» {*) 7)}){'8’ *} U”:‘Pz{*» v}
‘l‘(‘—l)dimuiuipl{*v 7)} U Appz(PEk‘vi, {*, 7)}){6: *}
= A(u;, *) Appz(Pv {*’ 7)}){:8: *} Uo*y;
= (Qu;)BUv*v; .
Similarly,
A, ()X )), {*, 0}){B, *} = (Q8")x(Qu))xBU v*2] .

This completes the proof of 3.10.
In [7], James and Thomas have called z=pogq of (3.1) a stable decomposition
of 7 if there exists a map ¢: FX A—C such that the composite

i, c

FxA > C

A
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is null-homotopic and pu==c(1Xp)+pp,, where 7, denotes the injection.
Note that, if p is primitive with respect to p, then z=poq is stable with c=pjp,,
where p, denotes the projection FXA—F. As stated in p. 104 of [7], for
v: X—F liftable to T, 7-v is liftable to T if and only if cy{r, pxv}=0. The
following theorem can also be proved in a way similar to 3.10.

Theorem 3.11. (James and Thomas [7]) If (3.1) is a stable decomposition
of m=poq, then
A (p v)B = &{B, pxv},

where ¢': QF X A—QC is determined by the composite

injection ~ Q*c
QF XA ————> QFXA)XFX A4 — Q¥(FX A) —> Q*C

4. Secondary operation ®,(p, v) and proof of Theorem A

Consider the situation (3.1) in which 4, B and C are H-spaces with multi-
plications m, ¢ and n respectively. Given a map v: X—E, we set u=pov. We
shall now define a sort of secondary operation

Dy(p, v): ker A(6, u) — coker A (p, v)
as follows.
Take an element a €[X, QA] such that (Q*6)mi{c, u}=0; then it follows
from the next Sublemma (i) that there exists an element Y &[X, Q*E; u] such
that

4.1) (Q*p)sr = hml{a, u} and (rg)x¥ =veE[X, E; u],

where h: [X, Q*A4; m{x, u}] >[X, Q*4; u] is the canonical bijection. The
coset of yE[X, QC] determined by (Q*p)sr=n%{v, pxv} is, by definition,
Dy(p, v)a.

Observe that, if there exists another ' such that (Q*p)y'=(Q*p)sy in
[X, Q*4; u] and (rg)s«¥'=v in [X, E; u], then we may assume (rph)'=v=
(r&)yr as maps and, applying Sublemma (ii) to g=+r+(—+"), we conclude that
(Q*p) s —(Q2%p)sy” lies in the image of A,(p, v). This ensures that ®y(p, v)
is well defined.

Sublemma. (i) Given an element B<[X, Q*A; u] lying in the image of
(Q*p)«; [X, Q*E]—[X, Q*A4], there exists a <[ X, Q*E; u] such that (Q*p)sr
=g and (rg)sr=0.

(ii) If pE[X, Q*E; u] satisfies (QU*p)sxp=(54)xU, then @ is contained in the
image of the natural map [X, Q¥E; u]l—[X, Q*E; u].

Proof. (i) Let A: FX Q*E—Q*E be the map induced by the action p: F'X
E—E. Itis easily verified that
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Q%) A, v) = (Q*p)y, w(1Xrg) =rgh (xEF, yEQ*E) |

By assumption we can take Jr: X—=Q*E with (Q*p)yr=p0, so that there is a
u-map Jr,: X—Q*E with (Q*p)r,=20, since Q*p is a fibration. Choose w:
X—F such that u{w, 7z} is u-homotopic to v. Then r=2{w, Y} has the
desired property.

(ii) This is a simple application of homotopy lifting property.

Theorem A in the introduction follows immediately from 3.2 and the
following theorem which states a main property of ®@4(p, v).

Theorem 4.2. If w: X—T is a lifting of v, then the image of ®Py(p, v)
cotncides with the factor group I(w)/1 (w).

Proof. Let y<[X, QC] lie in the coset ®y(p, v)ax. Since pyv=0, we have
that

(Q*p)sdr = (ic)sy and (rg)sr=1o,

which shows that ¢ is p-correlated to . Hence it follows from Theorem 3.3
of [5] that v lies in I(w).

Conversely, suppose v<I(w). Then, by Theorem 3.2 of [5], there exists
Y’ e[X, Q*E] such that (Q*p)uyr'=(ic)xY and (rg)s¥'=v in [X, E]. By the
homotopy lifting property of 7z we see that \r=n' for a map r: X—Q*E with
rer=v. Then there is an a€[X, Q4] with A7(Q*p)s\r=mi{e, u} and, more-
over, (Q*@)ymi{a, u}=0. This means that v lies in in the coset ®y(p, v)a.

As a special case of Theorem 4 we obtain

Corollary 4.3. If [X, QA)=0, then I(w)=1,[(w) for any lifting w of v.

ReMARK. The conclusion of 4.3 remains valid without assuming that B is
an H-space, as shown in what follows. Since I (w)CI(w), it suffices to prove
I(w)cI(w). Let r€I(w), then, by Theorem 3.2 of [5], there is a Y E[X, Q*E]
such that (Q*p)yyr=_(>ic)«7 and (rg)x»=v. As above we may represent y» by a
v-map yr: X—>Q*E. The assumption implies that (74)«: [X, Q*4]—[X, 4] is
a bijection with inverse (s4)s and hence there is a homotopy deforming (Q*p)yr
into a map X—s,4(A4). Since Q*p is a fibration, it follows that there is a map

~ r
VYre: X—OXE homotopic to { in Q*E. Now the composite QF¥E——F —LA

is a fibration, so that we can find a map y,: X—>QXE such that pry,,—u and
Y=y, in QF¥E. Consequently, if we can show that 7y,: X—FE is u-homotopic
to v, then we infer from 2.4 that reI (w). Now, since pry,=pv, there is an
w: X—F such that w-v and 7y, are u-homotopic, whence 7r,—~7gJr=v implies
ow&€I(v). Thus, by 2.6, =0, which shows that 7, is u-homotopic to ».

Now let

p*: [X’ E] - [X) A] e [X’ T] g [Xr E]
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be the induced functions and let v: X—E be liftable to 7. We set u=pov. We
see that (pog)«~'(#) coincides with the union

U Q*—l(w'v) ’

where o runs over the cosets in [X, F]/A(, u)[X, QA] such that v(p)s{w, v}+
(pj)xw=0. We conclude from Theorem A that

A Classification Theorem 4.4. Let n=poq in (3.1) be a stable decomposi-
tion with c¢: F X A—C such that A(0, u) is injective. Then (poq)y~"(u) is equivalent
to the product

{0E€[X, F]; cxlo, u} = 0}/ AB, w)[X, Q4]
X [X, QC]/{c4{B, u}; BE[X, QF1}.

Finally we list some properties of ®y(p, v).

Triviality Theorem 4.5. Dy(p, v) is the usual (stable) secondary operation
@ determined by Qp: QE—QC and the image of CD,,(p, 0) 15 (Qp)«[X, QE]/
A (p, v)[X, QF] in each of the following cases:
(1) v is the constant map;
(ii) X is an H cogroup;
(iii) pxv=0, p is primitive with respect to p and C is homotopy abelian;
(iv) 0 is primitive and p is primitive with respect to H structure of E.

Proof. (i) follows from the fact that [X, Q*A4; %] can be identified with
[X, Q4].

In order to prove (ii), note that the following diagram is homotopy-
commutative:

d (Qp)o X py '
X—> XX QCcxC " Q*C
F4 a
Qp)oV pv icVsc
X — aCcvC Q*Cvarc

where g is H' structure map, d the diagonal map, d’ the folding map and
w: X—>QFE. Let Y be an element of [X, Q*E; u] which corresponds to
(1g)s0+(sg)sv E[X, Q*E; *+u] under the canonical isomorphism. Then,

(Q*p)str = (i) x(Qp)x0+(sc)xpx? = M4{(Qp)5w, pxv}

and we see that (Q*p)yr corresponds to (i4)x(Qp)xw+(sa)su, i.e., (A*p)sr=
hml{a, u} with a=(Qp)sw. These show that (Qp)«w represents @y(p, v)a.
We prove (iii). Given a€[X, Q4] with (Q6)ya=0 (which is equivalent
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to (Q*0)«mif{c, ¥}=0), take vy [X, QE] such that (Qp)xy=a. Since p4v=0,
there is a r€[X, F] with jur=v. Using the map A: FXQ*E—Q*E in the
proof of Sublemma, we set yr=/{r, (ig)x7} E[X, Q*E; %]; then, (rg)sPr=v.
Thus,

(Q*p)str = (Q*p)sla{r, ()57} = x{psisms (Qp)x7}
= ”;{(QP)*% P*‘U} »

where 7: Cx QC—Q*C is the “left translation”. This proves (iii). The proof
of (iv) is left to the reader.

Composition Theorem 4.6. Let o: C—D be a map of C to an H space D.
Let

A(a, pv): coker A,(p, v) — coker A (op, v)
denote the homomorphism induced by A(o, pv). Then
Dy(op, ) = Ao, pv) De(p, ¥) -
Cartesian Product Theorem 4.7. Suppose p, and p, are as in 3.7. Then
@o({ps, po}, V) = (Pelp1, V) Po(pzs V)QX) -
Cup Product Theorem 4.8. Let p, p' and pUp’ be as in 3.9. Then
Dy(pUp’, v)a = Dy(p, v)aUp'v+(—1)pv U Dy(p’, v)ex .

Naturality Theorem 4.9. Let o lie in ker A(0, u) and let f: Y —X be a
map. Then

Dy(p, f*v)(f*a) = f*®@(p, v)a mod AP(P’ )Y, QF].

5. Proof of Theorem B
Consider a Postnikov tower for P,(R), n odd>1. In (3.1) we take

A= K(Z2) 1)1 B= K(Z, n+1), C= K(Zz, n+2)’ 9= (3*&1)("“)/2 ,

where €H'(Z,, 1; Z,) is the fundamental class; then we have the first two
stages and H""*(E; Z,)=Z, whose generator is the second invariant p with
j*p=S¢,, ¢, being the non-zero element of H*(Z, n; Z,). We claim that

S¢t, X 141X p+¢, X p*e)’ for n=14)

* ==
wie) {Sq%,,x1+1><p for n=3(4)

and hence (3.1) in this case is a stable decomposition with ¢=S¢%, X 1+¢,X¢’
or S¢?¢, x 1.

Now it follows from Cartan’s formula that
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We shall use an exact sequence due to E. Thomas [16, ¢. 187]. We see from
the above equality that, for the morphism 7: H"*(FX E, E)—>H"*(4),
(S, X 1+, Xp*®) =0 or 7(S¢,x1)=0
according as n=1 or 3 (4), and hence there is a p H"*(E; Z,) such that
#w(P) = St X 141, X p*e> or S¢i,x1

for the operator @: H"**(E)—H™*FXE, E) (which is essentially equal to
w*—p,*). Since ker p*=ker I* in dimn+2 for a map /: P,(R)—A represent-
ing ¢, we infer that p=p, which proves our assertion. Theorem B now follows
from 4.4 and the fact [X, P, (R)]=~[X, T].

6. Proof of Theorem C

Consider the first two stages of a Moore-Postnikov tower for the inclusion
BO(n) Cc BO between the classifying spaces for #-plane bundles and stable ones:

T
e
K(Z,, n) —,—+ E — K(Z,, m)

P
l W1
BO—" K(Z,, nt-1),

where m=n-+2 or n+3 according as n=1 (4) or n=3 (4), n>2, and w; denotes
the universal Stiefel-Whitney class of dimension 7. As shown in [7, p. 110],
poq forms a stable decomposition with

_ {quz,'xl—l—z,,szz if n=1(4)
L S¢S, x 14+8¢' e, X (wi4w,)  if n=3(4),

where ¢, H"(Z,, n; Z,) is the fundamental class (This can also be shown using
Thomas’ exact sequence). Thus, we conclude from 4.4 that, for a stable

bundle £€ KO(X) with w,.,(£)=0 such that A(w,,, £): KO (X)~H"X; Z,)
is injective,

(a) if n=1(4) and dim X <n-1, then N,(¢; X) is equal to the cardinal
of the direct product:
| Coker A(w,+,, E) X H"(X; Z,) [ (S¢+w,(E) U)H" (X; Z,) .

(b) if n=3 (4) and dim X <n+-2, then N,(£; X) is equal to the cardinal
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of the direct product:
Coker A(W,+1, E)X H™(X; Z,) | (Sg+(w,(§)’+w,(E)) U)S¢H" (X Z,) .

Now take X=P,.,(R) or P,,,(R) according as n=1 or 3 (4). Then
KO (X)=Z, by [3] and it follows from a formula of [5, p. 489] that A(w,., k%)

is injective for <ﬁ___i) odd and w,,.,(k7)=0 for (n—?—l) even. Theorem C will
be obtained by observing that

w,(kn) = (’ze)xz, S¢x"'=0 for n=1(4), Sq¢'x""'=0 for odd =,

where x denotes the non-zero element of H'(X; Z,).

Note that, for =1 (4) and <§) odd, Aj(p, ©): H**(Ppsi(R); Zo)—H"™
(P,+(R); Z,) is surjective for any lift v of k% and hence g4: [P,+(R), T]—
[P,+(R), E] is bijective.

As another illustration, let =1 (4) and let X be P,.,,(C), the complex

projective space of complex dimension % Then I}‘(j“(X)—-—O by [3].

Since H*(X; Z,)=0 and S¢’(y~"/*)=0 for the non-zero element y of H*(X; Z,),
we see that N, (£; X)=1 or 2 according as w,(£)+0 or w,(£)=0.

7. Further examples

7.1. Suppose that, in (3.1), 4 is an (n—1)-connected space such that
ny(A)=0 for k=n+n'—2 (n">n=2), B=K(n', n'4+1) and C=K(G, n+n’).
Assume pe H™"(E; G) represents (p+rU),(0) for peH*"+(z’, n'+1; G),
JyeH"(A; n), where the cup product is taken with respect to the Whitehead
product pairing #@z'—G in T, z==,(T). Then it is proven by F. P.
Peterson [11] that

p¥(p) =j*p X 1+1X pta' X p*(¥),  «'€HY(z', n; '),

where j*p is the suspension of p and j*p(x")==j*p(."), ¢’ being the fundamental
class of H"(z', n'; z’). 'Thus, the tower poq in this case is a stable decomposi-
tion with c=j*pX 1+4+x"X~ (cf. Theorem 3.1 of [4]). Hence, A,(p, v)B=
Qpf)xB+(Qx")BUu*yr, BEH"(X; 7).

In case A=K(n, n), we can take the basic classes ¢’ and c€ H"(rx, n; n) for
x" and +r respectively.

7.2. Consider a Postnikov tower for the usual lens space L=S""'|Z,,
where p is an odd prime. We take

A=K(Z, 1), B=K(Z, 2n+2), C=K(Z, 2n+3),
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and let =(8%)""" where 8* is the Bockstein associated with 0—-Z—Z—Z,—0
and ¢ denotes the basic class of H'(Z,, 1; Z,), and let p denote the generator
of H"*(E; Z,)=2,.

Given a path-connected (2n+-2)-dimensional complex X, we have A(6, u)
=0 by virtue of H'(SX; Z,)=0 and j*p=S¢%, ¢ being the basic class of
H*™Y(Z, 2n+1; Z). Since H™(FxE, FVE; Z,)=0, p is primitive with
respect to the action g, so that A (p, v)=S¢": H**(X; Z)—>H**(X; Z;). Thus,
we see from 4.4 that [X, L] is equivalent to the product

{ucH'(X; Z,); (8*u)"" =0} x H*""(X; Z)x H"(X; Z,)|S¢H™(X; Z).
This extends a result of P. Olum [10].
7.3. Consider a Postnikov tower for the n-sphere S”, n=4. We take
A=K(Z, n), B=K(Z, n+2), C=K(Z, n+3)

and S¢’¢ and the unique non-zero element of H™(E; Z,)=Z, for 6 and p,
where ¢ is the basic class of H"(Z, n; Z). 'Then,

A6, u) = S¢*: H*(X; Z) — H**(X; Z,)
A(p, ©) = Sq*: H(X; Z,) > H"(X; Z,) .

Let X be a complex with dim X <n-+2; then v: X—FE is always liftable
to T. We conclude

(1) (Nakaoka [8, p. 94, Theorem 4]) Assume S¢*: H*(X; Z,)—~H"**(X; Z,)
is surjective; then I(w)=I/(w)=H"**(X; Z,) and hence it follows that [X, S”]
is equivalent to

(us H(X; Z); Sqgu=0}x H*\(X; Z,)|S¢H"(X; Z) .

(2) Assume S¢’: H"'(X; Z)—=H""(X; Z,) is injective; then it follows
from 4.4 that [X, S”] is equivalent to the product

{uc H(X; Z); S¢u= 0} x H"(X; Z))|S¢H""(X; Z)
x H"(X; Z,)|S¢H"(X; Z,) .

7.4. Consider a Postnikov tower for the complex projective space P,(C).
Let
A=K(Z, 2), B=K(Z, 2m+2), C=K(Z, 2m+3),

and let §=""", where ce H¥Z, 2; Z) is the basic class, and p be the unique non-
zero element v, e H*™(E; Z,) (cf. [12]). Then j*p=25¢,,,+,, Where ¢,,,, is
the generator of H***(Z, 2m+1; Z,). The dual Hopf invariant »(f) with
respect to H-structure of A4 is (¢X 141X ¢)”* and hence
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A, v)a = (m+-1)aUu™, acH(X;Z)  (cf. [15, p. 452])
We see from 7.1 and [11] that

pix1+1xp if mis odd
pIX 141X p41yp+1 X p*e if miseven,

p¥(p) = {

where the cross product is taken with respect to the nontrivial pairing ZQZ—Z,
and ¢,,., denotes the basic class of H*”*(Z, 2m+-1; Z).

Given a (2m-2)-dimensional complex X, we assume that (m+1)a Uu™=0
implies =0 for a€H'(X; Z) and a fixed uc HX; Z). Then it follows from
4.4 that, for the function ¢: [X, P, (C)]|=H*X; Z) assigning f*z to f: X—
P,,(C), z being a generator of H*(P,,(C); Z), ¢~'(u) is equivalent to

H™ (X, Z)[(m+1)w™ UH'(X; Z)x H*"™(X; Z,)|S¢H*™(X; Z) for m odd
H*™ (X Z)|(m+1)u™ UHY(X; Z)X H*™*(X; Z,)|(S¢’+uU )H*™(X; Z)
for meven.

It seems likely that, for m=1 and dim X=4, our ®,(p, v) coincides with
@, introduced by N. Shimada [14, p. 141].

7.5. Let n be an ¢ven integer and let

K(Z, 2n4+2)—— T
e
Kz, m+1) L E £ Kz, 2n43)
o
BU-5 K(Z, 2n+2)

be part of a Moore-Postnikov tower for BU(n)CBU between the classifying

spaces for the unitary groups U(n) and U, where c,., denotes the universal

(n+1) th Chern class. It is readily shown that H****(E; Z,)=Z, is generated

by p with j*p=2S¢¢,,+,, where ¢,,4, is the generator of H***(Z, 2n+-1; Z,).
Since, for the realification ¢ of the canonical bundle ¢ over BU,

quc'ﬁ—l = quwznrkz('?) = wz('?) U Cnt1
where the cup product is with respect to the non-trivial pairing Z,QZ—Z,,
Thomas’ exact sequence reveals that
/L*P = qulznﬂ X 14+1x Pttonis XP*'wz('f’) .
Hence it follows from 4.4 that, for a complex X such that dim X <2n+-2 and
A(Cpsy, #): KY(X)—>H™(X; Z) is injective for u€ K(X) with ¢,.,(#)=0, the
number of n-dimensional complex vector bundles over X which are stably



132 Y. Nomura

equivalent to #, is equal to the cardinal of the direct product
coker A(¢,11y u) X H™(X; Z,)[(S¢*+w (@) U)H™(X; Z),

where # is the realification of u.

For example, let X=P,,,,(R). Since K~ (X)=0 by Theorem 3.3 of [2]
and since K(X) consists of elements kv (k=0, 1, :++, 2""'—1), » denoting the
complexification of the canonical line bundle A (see [1]), the number of classes
of n-dimensional complex plane bundles which are stably equivalent to kv, is
equal to 2 or 4 according as % is odd or even. ~This follows by observing that
S¢’x*"=0 for the generator x& H'(X; Z,) and w,(kd)=Fkw,(2\)=Fkx".

8. Appendix: the group of fibre homotopy equivalences

Given a fibration f: Y —Z, we denote by £(Y’; f) the group of fibre homotopy
classes of fibre homotopy equivalences of Y.

In the situation (3.1) we shall assume that z,(4)=+0 only for n<k=n'—1,
7(F)=+0only for n<k=n'—1 and =,(QC)=*0 only for n'<r=n’+n—1(n>1).
It is easily shown that there is an exact sequence

1 — ¢*[E, QC] — &(T'; q) = E(QC) .
We shall study &(T'; poq). First we need
Lemma 8.1. The functions
g*: [E, E; p] — [T, E; poql, ix: [C, QC] — [QC, T
are bijective.

Proof. Introduce the commutative diagram

*

(E, F1-L [T, F]
d l q* l L.
[E, E; p] — [T, E; pog],
where the vertical bijections T, and T, are given by
T\(7) = pslr, 1eh  Tio) = psfo, ¢},

1x being the identity map of X. Since the upper ¢* is bijective, so is the bottom
g*. The second assertion can be proved by a classical obstruction argument or
by using a Moore-Postnikov tower for 7.

In the light of Lemma 8.1 we can now define homomorphisms

J: E(T; pog) — E(E; p),  Jo: E(T; pog) — E(QC)
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by requiring, for g €&(T; pog),

g+ = q*J(g) in [T, E;poql, isxJ(g) =i*g.
Let
A: ker i* — & (T'; pog)

denote the homomorphism defined by A(r)=7-1;, where 7* is the homo-
morphism in the exact sequence

[QC, QC]«— [T, QC] <— [E, QC].

Theorem 8.2. The following sequence of groups and homomorphisms is
exact:

Ay(p A » Jo
(7, oF1 2229 guiz, ac) 2 o1 pog) LI o pyxaiacy,
in which the image of {], J,} consists of (g, Qh)EE(E; p) X E(QC) such that
pg:hp.

Proof. The exactness at the second term follows from the fact that the
image of A,(p, q) coincides with I,(17) by 3.2. We shall prove the exactness
at the third term.

Let g: T—T be a homotopy equivalence such that gi~i, pgg=pq and qg=¢q
by a pg-homotopy H,: T—E, 0=t=1, with H,=qg, H,=q. By the homotopy
lifting property there exists a homotopy H,: T—T with H,=g, ¢gH,=H,. Since
pqH,=pH,=pq, H, is a pg-homotopy. Put g’=H,, then gg’=¢q and so g’ is
g-homotopic to 7+ 14 for some : T—QC. Since

() i=gi=gi~i

and [QC, QFE]=0, it follows from 2.3 that I({)=0 and hence *r=0.

The assertion about the image of {J, J,} can be proved by an argument
similar to Theorem 2.9 of [9], noting that, if gg=gq by a pg-homotopy, we can
replace g by ¢ which is pg-homotopic to g and which is such that ¢g§=gq.

Consider the situation in which A=K(x, n), B=K(n', n'+1) and C=
K(G, n+n'), 1<n<n’ in (3.1). Theorem 8.2, together with 7.1, gives rise to
an exact sequence

1— R—&(T; pog) — E(E; p)x Aut G,
where R denotes the factor group

H,.+,,/_1(E; G)/P*(Q(P])+L”U )Hn/_l(n—, n, 7;’) ’
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t, being the basic class in H*(z, n; #) and the cup product being taken with
respect to the Whitehead product pairing of 7.
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