RING STRUCTURES OF K_{U}-COHOMOLOGIES OF DOLD MANIFOLDS

Michikazu FUJII
Dedicated to Professor Atuo Komatu for his 60th birthday

(Received October 3, 1968)
(Revised October 17, 1968)

Introduction

In [4] we determined the K_{U}-cohomologies of the Dold manifold $D(m, n)$ additively. But we could not determine the ring structures of them, because we could not find a generator of the 2-torsion part in $\tilde{K}_{U}^{1}(D(m, 2 r+1))$. The purpose of this paper is to determine the ring structures of K_{U}-cohomologies of the Dold manifold $D(m, n)$. The stunted Dold manifold plays an important role in the present discussions.

Let $S^{k}, k \geqq 0$, denote the unit k-sphere in R^{k+1}, each point of which is represented by a sequence $\left(x_{0}, \cdots, x_{k}\right)$ of real numbers x_{i} with $\sum x_{i}^{2}=1$, and $S^{2 l+1}, l \geqq 0$, denote the unit (2l+1)-sphere in C^{l+1}, each point of which is represented by a sequence $\left(z_{0}, \cdots, z_{l}\right)$ of complex numbers z_{i} with $\sum\left|z_{i}\right|^{2}=1$. Then the Dold manifold $D(k, l)$ is defined as the quotient space of the product space $S^{k} \times S^{2 l+1}$ under the identification $(x, z)=(-x, \overline{\lambda z})$ for $x \in S^{k}, z \in S^{2 l+1} \subset C^{l+1}$ and all $\lambda \in C$ with $|\lambda|=1$. Let $\left[x_{0}, \cdots, x_{k}, z_{0}, \cdots, z_{l}\right] \in D(k, l)$ denote the class of $\left(x_{0}, \cdots, x_{k}, z_{0}, \cdots, z_{l}\right) \in S^{k} \times S^{2 l+1}$. The manifold $D\left(k^{\prime}, l^{\prime}\right), k^{\prime} \leqq k$ and $l^{\prime} \leqq l$, is naturally imbedded in $D(k, l)$ by identifying $\left[x_{0}, \cdots, x_{k^{\prime}}, z_{0}, \cdots, z_{l^{\prime}}\right]$ with $\left[x_{0}, \cdots\right.$, $\left.x_{k^{\prime}} 0, \cdots, 0, z_{0}, \cdots, z_{l^{\prime}}, 0, \cdots, 0\right]$.

Denote by ξ the canonical real line bundle over the real projective k-space $R P(k)$, and $\xi_{1}=p^{\prime} \xi$ the induced bundle of ξ by the projection $p: D(k, l) \rightarrow R P(k)$; and denote by η_{1} the canonical real 2-plane bundle over $D(k, l)$ (cf. [4], §2).

Theorem 1. The Thom space $T\left(m \xi_{1} \oplus n \eta_{1}\right)$ and the stunted Dold manifold $D(k+m, l+n) / D(m-1, l+n) \cup D(k+m, n-1)$ are homeomorphic, where $m \xi_{1}$ and $n \eta_{1}$ are the m-fold and n-fold sum of ξ_{1} and η_{1} respectively.

From this theorem we have the following
Proposition 2. We have the following homeomorphisms:
i) $h: D(k, n) / D(k, n-1) \approx S^{n} \wedge(R P(n+k) / R P(n-1))$,
ii) $D(m, l) / D(m-1, l) \approx S^{m} \wedge C P(l)^{+}$,
where $S^{n} \wedge(R P(n+k) / R P(n-1))$ is the n-fold suspension of the stunted real projective space, and $C P(l)^{+}$is the disjoint union of the complex projective l-space $C P(l)$ and a point.

Let g is the generator of $\widetilde{K}_{U}^{0}\left(S^{2}\right)$ given by the reduced Hopf bundle and $g^{[r]}$ is the generator of $\widetilde{K}_{U}^{0}\left(S^{2 r}\right)$ given by the external product $g \wedge \cdots \wedge g$. Also, let $\nu^{(r+1)}$ is the generator of $\tilde{K}_{U}^{0}(R P(2 r+s) / R P(2 r))$ (cf. [1], Theorem 7.3), then $g^{[r]} \nu^{(r+1)}$ is the generator of $\tilde{K}_{U}^{-2 r}(R P(2 r+s) / R P(2 r))$. Now, using Proposition 2 , i), we can define a generator ω of the 2-torsion part in $\widetilde{K}_{U}^{1}(D(m, 2 r+1))$ as follows: $\omega=\pi^{!} h^{!} g^{[r]} \nu^{(r+1)}$, where π is the projection $D(m, 2 r+1) \rightarrow D(m$, $2 r+1) / D(m, 2 r)$, and determine the multiplicative structures of $\tilde{K}_{U}^{*}(D(m, n))$, namely

Theorem 3. As for the ring structures of $\tilde{K}_{U}^{*}(D(m, n))$ we have the following relations:
a) $\gamma^{2}=g^{\prime 2}=\beta^{2}=g^{\prime} \beta=0, \quad g^{\prime} \alpha=2 \beta$,
b) $\quad \alpha^{r+1}=0, \quad \gamma \alpha^{r}=0($ for $n=2 r) \quad$ or $\quad \gamma \alpha^{r+1}=0($ for $n=2 r+1)$, $\beta \alpha^{r}=0($ for $n=2 r)$ or $\beta \alpha^{r}=2^{t} \omega($ for $n=2 r+1)$,
c) $\alpha \nu_{1}=\gamma \nu_{1}=g^{\prime} \nu_{1}=\beta \nu_{1}=0, \quad \alpha \omega=\gamma \omega=g^{\prime} \omega=\beta \omega=0$,
d) $\quad \nu_{1}^{2}=-2 \nu_{1}, \quad \omega \nu_{1}=-2 \omega, \quad \omega^{2}=0$,
where $\alpha, \gamma, g^{\prime}, \beta$ and ν_{1} are the generators given in [4], Theorem (3.14), and ω is the generator of the 2-torsion part in $\tilde{K}_{U}^{1}(D(m, 2 r+1))$ given by the above formula.

1. Proof of Theorem 1

The total space $E\left(m \xi_{1} \oplus n \eta_{1}\right)$ of $m \xi_{1} \oplus n \eta_{1}$ is the quotient space of the product space $S^{k} \times S^{2 l+1} \times R^{m} \times C^{n}$ under the identification $((x, z),(u, v))=((-x, \overline{\lambda z})$, $(-u, \overline{\lambda v}))$ for $x \in S^{k}, z \in S^{2 l+1} \subset C^{l+1}, u \in R^{m}, v \in C^{n}$ and all $\lambda \in C$ with $|\lambda|=1$. Moreover, the associated unit disk bundle $D\left(m \xi_{1} \oplus n \eta_{1}\right)$ is homeomorphic to the quotient space of the product apace $S^{k} \times S^{2 l+1} \times D^{m} \times D^{2 n}$ under the identification $((x, z),(u, v))=((-x, \overline{\lambda z}),(-u, \overline{\lambda v}))$, where $x \in S^{k}, z \in S^{2 l+1} \subset C^{l+1}$, $u \in D^{m}, v \in D^{2 n} \subset C^{n}$ and λ is as above. Let $[(x, z),(u, v)]$ denote the class of $((x, z),(u, v))$ in $D\left(m \xi_{1} \oplus n \eta_{1}\right)$. Then $[(x, z),(u, v)]$ is an element of the associated unit sphere bundle $S\left(m \xi_{1} \oplus n \eta_{1}\right)$ if and only if $\|u\|=1$ or $\|v\|=1$.

We define a map

$$
f: S^{k} \times S^{2 l+1} \times D^{m} \times D^{2 n} \rightarrow S^{k+m} \times S^{2 l+2 n+1}
$$

by

$$
f((x, z),(u, v))=\left(\left(u, \sqrt{1-\|u\|^{2}} x\right),\left(v, \sqrt{1-\|v\|^{2}} z\right)\right) .
$$

Since

$$
f((-x, \overline{\lambda z}),(-u, \overline{\lambda v}))=\left(-\left(u, \sqrt{1-\|u\|^{2}} x\right), \overline{\lambda\left(v, \sqrt{1-\|v\|^{2}} z\right)}\right),
$$

the map f defines a map

$$
g: D\left(m \xi_{1} \oplus n \eta_{1}\right) \rightarrow D(k+m, l+n)
$$

such that $g\left(S\left(m \xi_{1} \oplus n \eta_{1}\right)\right) \subset D(m-1, l+n) \cup D(k+m, n-1)$. The map

$$
\begin{aligned}
g: & D\left(m \xi_{1} \oplus n \eta_{1}\right)-S\left(m \xi_{1} \oplus n \eta_{1}\right) \rightarrow D(k+m, l+n)-D(m-1, l+n) \\
& \cup D(k+m, n-1)
\end{aligned}
$$

is a homeomorphism. Therefore, the map g defines a quotient map

$$
h: T\left(m \xi_{1} \oplus n \eta_{1}\right) \rightarrow D(k+m, l+n) / D(m-1, l+n) \cup D(k+m, n-1)
$$

which is a homeomorphism.

2. Proof of Proposition 2

i). By taking $m=l=0$ in Theorem 1, we have the homeomorphism

$$
T\left(n \eta_{1}\right) \approx D(k, n) / D(k, n-1)
$$

Since η_{1} over $D(k, 0)$ is the 2 -plane bundle $1 \oplus \xi_{1}$ (cf. [4], Theorem (2.2)), we have

$$
T\left(n \eta_{1}\right)=T\left(n \oplus n \xi_{1}\right) \approx S^{n} \wedge T\left(n \xi_{1}\right)
$$

If we identify $D(k, 0)$ with $R P(k)$, the line bundle ξ_{1} is the canonical line bundle ξ over $R P(k)$. Therefore we have the homeomorphism

$$
T\left(n \xi_{1}\right) \approx R P(n+k) / R P(n-1)
$$

Combining the above three homeomorphisms, we have the homeomorphism

$$
h: D(k, n) / D(k, n-1) \approx S^{n} \wedge(R P(n+k) / R P(n-1))
$$

ii). By taking $n=k=0$ in Theorem 1, we have the homeomorphism

$$
T\left(m \xi_{1}\right) \approx D(m, l) / D(m-1, l)
$$

Since ξ_{1} over $D(0, l)$ is the trivial line bundle, if we identify $D(0, l)$ with $C P(l)$, we have

$$
T\left(m \xi_{1}\right)=T(m) \approx S^{m} \wedge C P(l)^{+}
$$

Therefore we have the homeomorphism

$$
D(m, l) / D(m-1, l) \approx S^{m} \wedge C P(l)^{+}
$$

3. Proof of Theorem 3

Firstly we show that ω is a generator of the 2-torsion part in $\tilde{K}_{U}^{1}(D(m, 2 r+1))$. Consider the exact sequence of the pair $(D(2 t, 2 r+1)$, $D(2 t, 2 r))$

$$
\widetilde{K}_{U}^{1}(D(2 t, 2 r+1) / D(2 t, 2 r)) \rightarrow \widetilde{K}_{U}^{1}(D(2 t, 2 r+1)) \rightarrow \widetilde{K}_{U}^{1}(D(2 t, 2 r)) .
$$

According to [4], Theorem (3.14), we have $\widetilde{K}_{U}^{1}(D(2 t, 2 r))=0$ and $\widetilde{K}_{U}^{1}(D(2 t$, $2 r+1))=Z_{2^{t}} . \quad$ Also, in virtue of Proposition 2, i), and [1], Theorem 7.3, we have

$$
\widetilde{K}_{U}^{1}(D(2 t, 2 r+1) / D(2 t, 2 r)) \cong \tilde{K}_{U}^{-2 r}(R P(2 t+2 r+1) / R P(2 r)) \cong Z_{2^{t}}
$$

whose generator is $g^{[r]} \nu^{(r+1)}$. Therefore, ω is the generator of $\tilde{K}_{U}^{1}(D(2 t, 2 r+1))$.
Using the exact sequence of the pair $(D(2 t+1,2 r+1), D(2 t+1,2 r))$
$\tilde{K}_{U}^{1}(D(2 t+1,2 r+1) / D(2 t+1,2 r)) \rightarrow \tilde{K}_{U}^{1}(D(2 t+1,2 r+1)) \rightarrow \tilde{K}_{U}^{1}(D(2 t+1,2 r))$, it is easy to see that ω is the generator of the 2-torsion part $Z_{2^{t+1}}$ of $\tilde{K}_{U}^{1}(D(2 t+1,2 r+1))$ in the same way as the above case.

Next we show the relations. Since $\left(g^{[k]}\right)^{2}=0$ in $\tilde{K}_{U}^{0}\left(S^{2 k}\right)$, the relations $\gamma^{2}=g^{\prime 2}=\beta^{2}=g^{\prime} \beta=0$ and $\omega^{2}=0$ follow from $g^{\prime}=(s f)^{!} g^{[t+1]}, \beta=(s f)^{!} g{ }^{[t+1]} \mu$, $\gamma=f^{!} g^{[t]} \mu$ and $\omega=\pi^{!} h^{!} g^{[r]} \nu^{(r+1)}$. The relation $\nu_{1}{ }^{2}=-2 \nu_{1}$ follows from the relation $\nu^{2}=-2 \nu$ in $\widetilde{K}_{U}^{0}(R P(m))$.

Since $\tilde{K}_{U}^{1}(D(2 t+1,2 r))$ has no torsion, Chern character ch: $\widetilde{K}_{U}^{1}(D(2 t+1$, $2 r)) \rightarrow H^{*}(D(2 t+1,2 r) ; Q)$ is monomorphic. Therefore the relations $g^{\prime} \alpha=2 \beta$ and $\beta \alpha^{r}=0$ follow from

$$
\operatorname{ch} g^{\prime} \alpha=2 b\left(a / 2!+\cdots+a^{r} /(2 r)!\right)=2 \operatorname{ch} \beta \quad \text { and } \quad \operatorname{ch} \beta \alpha^{r}=0
$$

respectively. The relation $g^{\prime} \nu_{1}=\beta \nu_{1}=0$ is trivial for $n=2 r$.
In case of $n=2 r-1$, since the elements $\alpha, \nu_{1}, g^{\prime}$ and β of $\tilde{K}_{U}^{*}(D(2 t+1$, $2 r-1)$) are induced from the elements $\alpha, \nu_{1}, g^{\prime}$ and β of $\tilde{K}_{U}^{*}(D(2 t+1,2 r))$ by the inclusion map $i: D(2 t+1,2 r-1) \subset D(2 t+1,2 r)$, multiplicativity of the homomorphism i^{i} shows the relations $g^{\prime} \nu_{1}=\beta \nu_{1}=0$ and $g^{\prime} \alpha=2 \beta$ for $n=2 r-1$. Also, the element $\beta \alpha^{r-1} \in \widetilde{K}_{U}^{1}(D(2 t+1,2 r-1))$ is the image of $\beta \alpha^{r-1}$ $\in \widetilde{K}_{U}^{1}(D(2 t+1,2 r))$ by i^{i}. On the other hand, consider the exact sequence
$\tilde{K}_{U}^{1}(D(2 t+1,2 r)) \xrightarrow{i^{!}} \tilde{K}_{U}^{1}(D(2 t+1,2 r-1)) \rightarrow \tilde{K}_{U}^{2}(D(2 t+1,2 r) / D(2 t+1,2 r-1))$.
In virtue of Proposition 2, i), and [1], Theorem 7.3, we have
$\widetilde{K}_{U}^{2}(D(2 t+1,2 r) / D(2 t+1,2 r-1)) \cong \widetilde{K}_{U}^{-2 r+2}(R P(2 t+2 r+1) / R P(2 r-1)) \cong Z+Z_{2^{t}}$,
so that we have $i^{!} \beta \alpha^{\gamma-1}=2^{t} \omega$ for $\beta \alpha^{r-1} \in \tilde{K}_{U}^{1}(D(2 t+1,2 r)$. Therefore we have the relation $\beta \alpha^{r-1}=2^{t} \omega$ in $\tilde{K}_{U}^{1}(D(2 t+1,2 r-1))$.

Since $\operatorname{ch} \alpha^{r+1}=0$ and $\operatorname{ch} \gamma \alpha^{r}=0($ for $n=2 r)\left(\operatorname{ch} \gamma \alpha^{r+1}=0(\right.$ for $n=2 r+1)$), the elements α^{r+1} and $\gamma \alpha^{r}$ (for $\left.n=2 r\right)\left(\gamma \alpha^{r+1}\right.$ (for $\left.n=2 r+1\right)$) lie in $p^{!} \tilde{K}_{U}^{0}(R P(m))$. Therefore the relation $r^{\prime} \alpha=0$ implies $\alpha^{r+1}=p^{\prime} r^{\prime} \alpha^{r+1}=0$ and $\gamma \alpha^{r}=p^{\prime} r^{\prime}\left(\gamma \alpha^{r}\right)$ $=p^{\prime}\left(\left(r^{\prime} \gamma\right)\left(r^{\prime} \alpha^{r}\right)\right)=0($ for $n=2 r)\left(\gamma \alpha^{r+1}=p^{\prime} r^{\prime}\left(\gamma \alpha^{r+1}\right)=0\right.$ (for $\left.n=2 r+1\right)$), where r is the cross section defined in [4], Lemma (3.4).

Since $\gamma \nu_{1} \in p^{\prime} \tilde{K}_{U}^{0}(R P(2 t))$ and $r^{\prime} \gamma=0$, we have $\gamma \nu_{1}=p^{\prime} r^{\prime}\left(\gamma \nu_{1}\right)=p^{\prime}\left(\left(r^{\prime} \gamma\right)\right.$ $\left.\left(r^{\prime} \nu_{1}\right)\right)=0$. The relation $\alpha \nu_{1}=0$ was showed in [4].

The elements $g^{\prime} \omega$ and $\beta \omega$ lie in $p^{!} \tilde{K}_{U}^{0}(R P(2 t+1))$. Since the diagram

$$
\begin{array}{cc}
\widetilde{K}_{U}^{1}(D(2 t+1, & 2 r+1) / D(2 t+1,2 r)) \xrightarrow{\pi^{!}} \widetilde{K}_{U}^{1}(D(2 t+1,2 r+1)) \\
r^{\prime} \backslash \uparrow p^{!} & r^{!} \downarrow \mid p^{!} \\
\widetilde{K}_{U}^{1}(*) \longrightarrow & \pi^{!}
\end{array} \widetilde{K}_{U}^{1}(R P(2 t+1))
$$

is commutative, we have $r^{\prime} \omega=\pi^{\prime} r^{\prime}\left(h^{\prime} g^{[r]} \nu^{(r+1)}\right)=0$. Therefore we have $g^{\prime} \omega$ $=p^{\prime} r^{\prime}\left(g^{\prime} \omega\right)=p^{\prime}\left(\left(r^{\prime} g^{\prime}\right)\left(r^{\prime} \omega\right)\right)=0$ and $\beta \omega=p^{\prime} r^{\prime}(\beta \omega)=p^{\prime}\left(\left(r^{\prime} \beta\right)\left(r^{\prime} \omega\right)\right)=0$.

Finally we show the relations $\omega \alpha=0, \omega \gamma=0$ and $\omega \nu_{1}=-2 \omega$ in $\widetilde{K}_{U}^{1}(D(m, 2 r+1))$. For simplicity we put $Y_{1}=R P(m+2 r+1), Y_{2}=R P(2 r)$, $X_{1}=D(m, 2 r+1), X_{2}=D(m, 2 r)$ and $Z=D(m+2 r+1,2 r+1)$.

Lemma 1. We have the homotopy-commutative diagram

where i is the inclusion map $X_{1} \subset Z, h$ is the homeomorphism of Proposition 2, i), d_{1} is the diagonal map, \bar{d}_{1} and d_{2} are the maps induced by the diagonal maps, r is the cross section of [4], Lemma (3.4), and q is the map given by

$$
q\left([a] \wedge\left[b, \sqrt{1-\|b\|^{2}} x\right]\right)=[a] \wedge\left[b, \sqrt{1-\|b\|^{2}} x\right] \wedge[x]
$$

Proof. It is sufficient to show the followings:
i) the maps $u=(1 \wedge 1 \wedge i) \circ(h \wedge 1) \circ \bar{d}_{1} \circ h^{-1}$ and $v=(1 \wedge 1 \wedge r) \circ\left(1 \wedge d_{2}\right)$ are homotopic,
ii) the map q is well defined and the maps $\bar{u}=(h \wedge 1) \circ \bar{d}_{1} \circ h^{-1}$ and $w=(1 \wedge 1 \wedge r) \circ q$ are homotopic.

For this purpose we investigate the details of the homeomorphism h. If we identify $D(m, 0)$ with $R P(m)$, the canonical real 2-plane bundle η_{1} over $D(m, 0)$ is the 2 -plane bundle $1 \oplus \xi$ over $R P(m)$. The homeomorphism

$$
h_{1}: T((2 r+1) \oplus(2 r+1) \xi) \rightarrow S^{2 r+1} \wedge\left(Y_{1} / Y_{2}\right)
$$

is induced from the map

$$
\begin{aligned}
f_{1}:\left(S^{m} \times\right. & \left.D^{2 r+1} \times D^{2 r+1}, S^{m} \times\left(S^{2 r} \times D^{2 r+1} \cup D^{2 r+1} \times S^{2 r}\right)\right) \\
& \rightarrow\left(D^{2 r+1} \times S^{m+2 r+1}, S^{2 r} \times S^{m+2 r+1} \cup D^{2 r+1} \times S^{2 r}\right)
\end{aligned}
$$

given by

$$
f_{1}(x, a, b)=\left(a,\left(b, \sqrt{1-\|b\|^{2}} x\right)\right),
$$

and the homeomorphism

$$
h_{2}: T\left((2 r+1) \eta_{1}\right) \rightarrow X_{1} / X_{2}
$$

is induced from the map

$$
\begin{aligned}
f_{2}:\left(S^{m} \times\right. & \left.S^{1} \times D^{2(2 r+1)}, S^{m} \times S^{1} \times S^{2(2 r)+1}\right) \\
& \rightarrow\left(S^{m} \times S^{2(2 r+1)+1}, S^{m} \times S^{2(2 r)+1}\right)
\end{aligned}
$$

given by

$$
f_{2}(x, z, v)=\left(x,\left(v, \sqrt{1-\|v\|^{2}} z\right)\right)
$$

where $D^{2 r+1}$ and $D^{2(2 r+1)}$ are unit disks of $R^{2 r+1}$ and $C^{2 r+1}$ respectively.
We define a map

$$
\begin{aligned}
\phi:\left(S^{m} \times\right. & \left.D^{2 r+1} \times D^{2 r+1}, S^{m} \times\left(S^{2 r} \times D^{2 r+1} \cup D^{2 r+1} \times S^{2 r}\right)\right) \\
& \rightarrow\left(S^{m} \times S^{1} \times D^{2(2 r+1)}, S^{m} \times S^{1} \times S^{2(2 r)+1}\right)
\end{aligned}
$$

by

$$
\phi(x, a, b)=(x, 1, \theta(a, b))
$$

where θ is the standard homeomorphism $D^{2 r+1} \times D^{2 r+1} \rightarrow D^{2(2 r+1)}$ given by

$$
\theta(a, b)=\max (\|a\|,\|b\|)\left(\|a\|^{2}+\|b\|^{2}\right)^{-1 / 2}(a+b i)
$$

Since

$$
\phi(-x, a,-b)=(-x, 1, \overline{\theta(a, b)})
$$

the map ϕ defines a quotient map

$$
\psi: T((2 r+1) \oplus(2 r+1) \xi) \rightarrow T\left((2 r+1) \eta_{1}\right)
$$

which is a homeomorphism. The homeomorphism h is the composition $h_{1} \circ \psi^{-1} \circ h_{2}^{-1}$ of the three homeomorphisms,

Now, the homeomorphism h is given by

$$
h^{-1}\left([a] \wedge\left[b, \sqrt{1-\|b\|^{2}} x\right]\right)=\left[x,\left(\theta(a, b), \sqrt{1-\|\theta(a, b)\|^{2}}\right)\right]
$$

Therefore we have

$$
\begin{gathered}
u\left([a] \wedge\left[b, \sqrt{1-\|b\|^{2}} x\right]\right)=[a] \wedge\left[b, \sqrt{1-\|b\|^{2}} x\right] \wedge[(x, 0),(\theta(a, b), \\
\left.\left.\sqrt{1-\|\theta(a, b)\|^{2}}\right)\right]
\end{gathered}
$$

and

$$
v\left([a] \wedge\left[b, \sqrt{1-\|b\|^{2}} x\right]\right)=[a] \wedge\left[b, \sqrt{1-\|b\|^{2}} x\right] \wedge\left[\left(b, \sqrt{1-\|b\|^{2}} x\right),(1,0)\right]
$$

We define two maps F_{t}^{1} and F_{t}^{2}, for $0 \leq t \leq 1$,

$$
\begin{aligned}
\left(S^{m} \times D^{2 r+1} \times D^{2 r+1}, S^{m} \times\left(S^{2 r} \times D^{2 r+1} \cup D^{2 r+1} \times S^{2 r}\right)\right) \\
\rightarrow\left(D^{2 r+1} \times S^{m+2 r+1} \times\left(S^{m+2 r+1} \times S^{2(2 r+1)+1}\right),\left(S^{2 r} \times S^{m+2 r+1} \cup D^{2 r+1} \times S^{2 r}\right)\right. \\
\left.\times\left(S^{m+2 r+1} \times S^{2(2 r+1)+1}\right)\right)
\end{aligned}
$$

by

$$
F_{t}^{1}(x, a, b)=\left(a,\left(b, \sqrt{1-\|b\|^{2}} x\right)\right) \times\left((x, 0),\left(t \theta(a, b), \sqrt{1-\|t \theta(a, b)\|^{2}}\right)\right)
$$

and

$$
F_{t}^{2}(x, a, b)=\left(a,\left(b, \sqrt{1-\|b\|^{2}} x\right) \times\left(\left(t b, \sqrt{1-\|t b\|^{2}} x\right),(1,0)\right)\right.
$$

Then the maps F_{t}^{1} and F_{t}^{2} are compatible with the identification, so that they define maps G_{t}^{1} and G_{t}^{2} respectively

$$
\begin{aligned}
& (D((2 r+1) \oplus(2 r+1) \xi), S((2 r+1) \oplus(2 r+1) \xi)) \\
& \quad \rightarrow\left(D^{2 r+1} \times R P(m+2 r+1) \times D(m+2 r+1,2 r+1),\left(S^{2 r} \times R P(m+2 r+1)\right.\right. \\
& \left.\left.\cup D^{2 r+1} \times R P(2 r)\right) \times D(m+2 r+1,2 r+1)\right)
\end{aligned}
$$

Therefore, they define quotient maps H_{t}^{1} and H_{t}^{2} respectively

$$
T((2 r+1) \oplus(2 r+1) \xi) \rightarrow S^{2 r+1} \wedge\left(Y_{1} / Y_{2}\right) \wedge Z
$$

and we have

$$
u=H_{1}^{1} \circ h_{1}^{-1} \quad \text { and } \quad v=H_{1}^{2} \circ h_{1}^{-1}
$$

Since the maps F_{0}^{1} and F_{0}^{2} are homotopic, the maps H_{0}^{1} and H_{0}^{2} are homotopic. Therefore the maps H_{1}^{1} and H_{1}^{2} are homotopic, so that the maps u and v are homotopic. This shows i).

The map q is defined as follows: We define a map

$$
\begin{aligned}
f: & \left(S^{m} \times D^{2 r+1} \times D^{2 r+1}, S^{m} \times\left(S^{2 r} \times D^{2 r+1} \cup D^{2 r+1} \times S^{2 r}\right)\right) \\
& \rightarrow\left(D^{2 r+1} \times S^{m+2 r+1} \times S^{m},\left(S^{2 r} \times S^{m+2 r+1} \cup D^{2 r+1} \times S^{2 r}\right) \times S^{m}\right)
\end{aligned}
$$

by

$$
f(x, a, b)=\left(a,\left(b, \sqrt{1-\|b\|^{2}} x\right), x\right)
$$

Since

$$
f(-x, a,-b)=\left(a,\left(-b,-\sqrt{1-\|b\|^{2}} x\right),-x\right)
$$

the map f defines a quotient map

$$
g: T((2 r+1) \oplus(2 r+1) \xi) \rightarrow S^{2 r+1} \wedge\left(Y_{1} / Y_{2}\right) \wedge R P(m),
$$

and we have $q=g \circ h_{1}^{-1}$.
Now, we can define a map, for $0 \leq t \leq 1$,

$$
H_{t}: T((2 r+1) \oplus(2 r+1) \xi) \rightarrow S^{2 r+1} \wedge\left(Y_{1} / Y_{2}\right) \wedge X_{1}
$$

by

$$
H_{t}([x, a, b])=[a] \wedge\left[b, \sqrt{1-\|b\|^{2}} x\right] \wedge\left[x,\left(t \theta(a, b), \sqrt{1-\|t \theta(a, b)\|^{2}}\right]\right.
$$

and we have $\bar{u}=H_{1} \circ h_{1}{ }^{-1}$. Since the maps w and $H_{0} \circ h_{1}{ }^{-1}$ are homotopic, the maps \bar{u} and w are homotopic. This shows ii).

This completes the proof of Lemma 1.

Lemma 2. We have the commutative diagram

Proof. It follows from Lemma 1 by naturality.

Proposition. We have the relations $\omega \alpha=0, \omega \gamma=0$ and $\omega \nu_{1}=-2 \omega$ in $\tilde{K}_{U}^{1}(D(m, 2 r+1))$.

Proof. Since $r^{\prime} \alpha=r^{\prime} \gamma=0$ in $\tilde{K}_{U}^{0}(R P(m))$, we have $q^{\prime}(1 \wedge r)^{!}\left(g^{[r]} \nu^{(r+1)} \wedge \alpha\right)$ $=q^{\prime}\left(g^{[r]} \nu^{(r+1)} \wedge r^{\prime} \alpha\right)=0 \quad$ and $\quad q^{\prime}(1 \wedge r)^{!}\left(g^{[r]} \nu^{(r+1)} \wedge \gamma\right)=q^{\prime}\left(g^{[r]} \nu^{(r+1)} \wedge r^{\prime} \gamma\right)=0 \quad$ in $\tilde{K}_{U}^{1}\left(S^{2 r+1} \wedge\left(Y_{1} / Y_{2}\right)\right)$. In virtue of definition of ω and Lemma 2, these show $\omega \alpha=0$ and $\omega \gamma=0$ in $\tilde{K}_{U}^{1}\left(X_{1}\right)$.

Since the element ν_{1} of $\widetilde{K}_{U}^{0}\left(X_{1}\right)$ is induced from the element ν_{1} of $\widetilde{K}_{U}^{0}(Z)$ by the inclusion map $X_{1} \subset Z$, in order to show the relation $\omega \nu_{1}=-2 \omega$ in $\widetilde{K}_{U}^{1}\left(X_{1}\right)$, in virtue of definition of ω and Lemma 2, it is sufficient to show that we have the relation $\nu^{(r+1)} \cdot r^{\prime} \nu_{1}=-2 \nu^{(r+1)}$ in $\widetilde{K}_{U}^{0}\left(Y_{1} / Y_{2}\right)$ for ν_{1} of $\widetilde{K}_{U}^{0}(Z)$.

Since $r^{\prime} \nu_{1}=\nu$ in $\widetilde{K}_{U}^{0}\left(Y_{1}\right)$, we have the relation $\nu^{r+1} \cdot r^{\prime} \nu_{1}=-2 \nu^{r+1}$ in $\widetilde{K}_{U}^{0}\left(Y_{1}\right)$. The homomorphism, induced by the projection $j: Y_{1} \rightarrow Y_{1} / Y_{2}$,

$$
j^{\prime}: \widetilde{K}_{U}^{0}\left(Y_{1} / Y_{2}\right) \rightarrow \tilde{K}_{U}^{0}\left(Y_{1}\right)
$$

is monomorphism, so that we have $\nu^{(r+1)} \cdot r^{\prime} \nu_{1}=-2 \nu^{(r+1)}$ in $\tilde{K}_{U}^{0}\left(Y_{1} / Y_{2}\right)$. The proof is complete.

This completes the proof of Theorem 3.
Osaka City University

References

[1] J.F. Adams: Vector fields on spheres, Ann. of Math. 75 (1962), 603-622.
[2] M.F. Atiyah: Thom complexes, Proc. London Math. Soc. 11 (1961), 291-310.
[3] A. Dold: Erzeugende der Thomschen Algebra \mathfrak{N}, Math. Z. 65 (1956), 25-35.

[5] D. Husemoller: Fibre Bundles, McGraw-Hill, 1966.

