Mukai, J.
Osaka J. Math.
6 (1969), 63-91

ON THE STABLE HOMOTOPY OF A Z_{2}-MOORE SPACE

Dedicated to Professor A. Komatu for his 60th birthday

Juno MUKAI
(Received August 8, 1968)
(Revised January 23, 1969)

Introduction

This paper is a continuation of [5].
Denote by M a Z_{2}-Moore space. We take $M=S^{1} U_{2} e^{2}$, which is obtained from a 1 -sphere S^{1} by attaching a 2 -cell e^{2}, using a map $S^{1} \rightarrow S^{1}$ of degree 2. Let π_{k} be the k-th group of the stable homotopy of M, i.e., $\pi_{k}=\operatorname{Dir} \operatorname{Lim}\left[S^{n+k} M, S^{n} M\right]$, where the direct limit is taken with respect to suspensions. Put $\pi_{*}=\sum \pi_{k}$, then it admits a ring structure with respect to the composition. In fact, it forms an algebra over Z_{4}.

In [5] we determined the additive structure of π_{*} in $\operatorname{dim} \leqq 21$. In this paper we shall investigate compositions of elements in π_{*} and the ring structure of π_{*} in $\operatorname{dim} \leqq 21$. Our main theorems are Theo. 4.1 and 4.2. Our methods deeply depend on the results and the methods of Toda [6].

In §1 we shall state the general formulas obtained from composing elements of $\pi_{j}(2)=\operatorname{Dir}_{n \rightarrow \infty} \operatorname{Lim}\left[S^{n_{+j-2}} M, S^{n}\right], \pi_{k}^{*}(2)=\operatorname{Dir} \operatorname{Lim}_{n \rightarrow \infty}\left[S^{n_{+k+1}}, S^{n} M\right]$ and π_{l}.

In §2 we fix the generators of the above groups by use of the formulas of §1 and we examine compositions of the generators.

In §3 we prove the theorem in which the relations in the secondary or tertiary compositions are mentioned. They hold the key to the discussions in §2.

Our main theorems are stated in $\$ 4$.
$\S 5$ is devoted to the improvement in Theo. 5.1 of [5].
The author wishes to express his sincere gratitude to Professor N. Yamamoto and Professor H. Toda for many advices and kind criticisms given during the preparation of this paper.

Notations and conventions

The notations of [5] are carried over the present work with making a few changes and adding new one.

In [5] we did not distinguish between a representative of a set of the
(co-) extensions and the set itself. In this paper this distinction is essential.
Suppose given $\alpha=\{f\} \in[Y, Z], \beta=\{g\} \in[X, Y]$ and $\gamma=\{h\} \in[W, X]$ such that $\alpha \beta=0$ in $[X, Z]$ and $\beta \gamma=0$ in $[W, Y]$. Then we have two maps $F: Y \cup_{\beta} C X \rightarrow Z$ and $H: S W \rightarrow Y \cup_{\beta} C X$ which are characterized by the following homotopy commutative diagram,

where i_{β} is an inclusion and p_{β} a map shrinking Y to the base point of $S X$. F and H are called the extension of f, the coextension of h respectively.

We shall fix the following notations.
i) $\quad \bar{\alpha}_{\beta}=\{F\}$: the extension of α with respect to β.
ii) $\tilde{\gamma}_{\beta}=\{H\}$: the coextension of γ with respect to β.
iii) $\operatorname{Ext}_{\beta} \alpha$: the set of $\bar{\alpha}_{\beta}$.
iv) $\operatorname{Coext}_{\beta} \gamma$: the set of $\tilde{\gamma}_{\beta}$.

We note that the Toda bracket $\{\alpha, \beta, \gamma\}=\left(\operatorname{Ext}_{\beta} \alpha\right)\left(\operatorname{Coext}_{\beta} \gamma\right)$ as a double coest of two subgroups $\alpha[S W, Y]$ and $[S X, Z](S \gamma)$ in $[S W, Z]$ (see Prop. 1.7 in p. 13 of [6]).

If $\beta=2 \in G_{0}$, then we put $i_{\beta}=i, p_{\beta}=p, \bar{\alpha}_{\beta}=\bar{\alpha}, \tilde{\gamma}_{\beta}=\tilde{\gamma}, \operatorname{Ext}_{\beta} \alpha=\operatorname{Ext} \alpha$ and $\operatorname{Coext}_{\beta} \gamma=$ Coext γ respectively.

Assume that $\alpha \in G_{k}$ is of order 2 and that $\eta \alpha \in G_{k+1}$ is divisible by 2, where η is the generator of G_{1}. Then we can define $\operatorname{Coext}(\bar{\alpha})$ and $\operatorname{Ext}(\tilde{\alpha})$ by use of Prop. 2.5 of [5]. We take
v) $\quad(\widetilde{\alpha}) \in \operatorname{Coext}(\bar{\alpha})$ and $(\overline{\widetilde{\alpha}}) \in \operatorname{Ext}(\widetilde{\alpha})$.

We put the following new notation.
vi) $K_{s}=\operatorname{ker} i^{*} \cap \operatorname{ker} p_{*}$, where $i^{*}: \pi_{s} \rightarrow \pi_{s}^{*}(2)$ and $p_{*}: \pi_{s} \rightarrow \pi_{s}(2)$ are natural homomorphisms induced by $i: S^{1} \rightarrow S^{1} \cup_{2} e^{2}$ and $p: S^{1} \cup_{2} e^{2} \rightarrow S^{2}$.

Our conventions are the following.
In discussions of this paper we often use those properties of Toda brackets which are stated in Prop. 1.2, Prop. 1.4 and i) of (3.9) of [6] and those results about $\left(G_{*} ; 2\right)$ which are stated in Theo. B of [5] and Theo. 14.1 of [6] without any reference.

1. Compositions of elements of $\pi_{j}(2), \pi_{k}^{*}(2)$ and π_{l}

In this section we shall state some general formulas obtained from composing elements of $\pi_{j}(2), \pi_{k}^{*}(2)$ and π_{l}.

Throughout this section we take α and β in $\left(G_{j} ; 2\right)$ and $\left(G_{k} ; 2\right)$ respectively.

Proposition 1.1. If α is neither of order 2 nor divisible by 2, then

$$
\widetilde{\alpha p} \equiv \overline{i \alpha} \bmod i \pi_{j+1}(2)+\pi_{j+1}^{*}(2) p
$$

and

$$
\operatorname{Coext}(\alpha p) i \equiv i \alpha \bmod i \pi_{j+1}(2) i
$$

Proof. By ii) and iii) of Prop. 1.2 of [6], $\widetilde{\alpha p} \in\{i, 2, \alpha p\} \cong\{i, 2 \alpha, p\} \supseteqq$ $\{i \alpha, 2, p\} \ni \overline{i \alpha}$. Since the bracket $\{i, 2 \alpha, p\}$ is a coset of $i \pi_{j+1}(2)+\pi_{j+1}(2) p$, we have the first assertion.

The second assertion is a direct consequence of the first one.
Proposition 1.2. Assume that α is of order 2 and that $\eta \alpha$ is divisible by 2. Then we have the following.

$$
(\widetilde{\widetilde{\alpha}}) \equiv \overline{(\widetilde{\alpha})} \bmod \sum_{1 \leqq s \leq m}\left\{\widetilde{\gamma_{s} p}\right\}+i \pi_{j+2}(2)+\pi_{j+2}^{*}(2) p,
$$

where $\gamma_{1}, \cdots, \gamma_{m}$ are the elements of $\left(\mathrm{G}_{j_{+1}} ; 2\right)$ which are neither of order 2 nor divisible by 2.
ii) Supose given $\bar{\alpha}$ and $\tilde{\alpha}$ such that $i \eta \bar{\alpha}=\tilde{\alpha} \eta p$. Then

$$
\operatorname{Coext}(\bar{\alpha}) i \equiv \widetilde{\alpha} \bmod \sum_{t}\left\{i \gamma_{t}\right\}+i \pi_{j+2}(2) i,
$$

where truns over the subset of $\{1,2, \cdots, m\}$ which consists of satisfying the equation $i \eta \gamma_{s} p=0$.

Proof. Obviously, $(\widetilde{\bar{\alpha}}) \equiv(\overline{\widetilde{\alpha}}) \bmod p_{*}^{-1} i^{*-1}(0)$. By use of Prop. 1.1, Prop. 1.2 and Prop. 1.3 of [5], it is easy to see that $p_{*}^{-1} i^{*-1}(0)=p_{*}^{-1}\left(G_{j+1} p\right)$ and that this equals the given subgroup of π_{j+1} in i). So, i) is proved.

By Theo. A of [5], $2(\widetilde{\alpha})=i \eta \bar{\alpha}, 2(\bar{\alpha})=\widetilde{\alpha} \eta p$ and $2 \widetilde{\gamma_{s} p}=i \eta \gamma_{s} p . \quad$ So, i) and the assumption of ii) lead us to the assertion of ii).

Proposition 1.3. Assume that α is of order 2 and that β is neither of order 2 nor divisible by 2. Then we have the following.
i) In case $\alpha \beta \neq 0$:
a) $\bar{\alpha} \operatorname{Coext}(\beta p) \equiv \beta \bar{\alpha} \bmod \alpha \pi_{k+1}(2)+G_{j+k+1} p$,
b) $\operatorname{Coext}(\beta p)(i \bar{\alpha}) \equiv i \beta \bar{\alpha} \bmod i \pi_{k+1}(2) i \bar{\alpha}$.
ii) In case $\alpha \beta=0$:
a) $\bar{\alpha} \operatorname{Coext}(\beta p) \equiv 0 \bmod \alpha \pi_{k+1}(2)+G_{j+k+1} p$,
b) $\quad \operatorname{Coext}(\beta p)(i \bar{\alpha}) \equiv i\{\beta, \alpha, 2\} p \bmod i \pi_{k+1}(2) i \bar{\alpha}+i \beta G_{j+1} p$.

Proof. Clearly, $\bar{\alpha} \operatorname{Coext}(\beta p) \cong\{\alpha, 2, \beta p\} \supseteqq\{\alpha, 2 \beta, p\}$. This bracket contains $\beta \bar{\alpha}$ or 0 according as $\alpha \beta \neq 0$ or $\alpha \beta=0$ and it is a coset of $\alpha \pi_{k+1}(2)+G_{j+k+1} p$. So, a) of i) and ii) are proved.

By Prop. 1.1, Coext $(\beta p)(i \bar{\alpha})$ contains $i \beta \bar{\alpha} \bmod i \pi_{k+1}(2) i \bar{\alpha} . \quad$ So, b) of i) is proved.

If $\alpha \beta=0, i \beta \bar{\alpha} \equiv i \beta\{\alpha, 2, p\}=i\{\beta, \alpha, 2\} p \bmod i \beta G_{j+1} p$. This leads us to b) of ii).

Proposition 1.4. Let α and β be same as the above proposition. Then we have the following.
i) In case $\alpha \beta \neq 0$:
a) $\quad \operatorname{Coext}(\beta p) \widetilde{\alpha} \equiv \widetilde{\alpha} \beta \bmod i G_{j+k+1}$,
b) $(\tilde{\alpha} p) \operatorname{Coext}(\beta p)=\tilde{\alpha} \beta p$.
ii) In case $\alpha \beta=0$:
a) $\quad \operatorname{Coext}(\beta p) \widetilde{\alpha} \equiv 0 \bmod i G_{j+k+1}$,
b) $(\tilde{\alpha} p) \operatorname{Coext}(\beta p) \cong i\{2, \alpha, \beta\} p \bmod i G_{j+1} \beta p$.

Proof. If $\alpha \beta \neq 0, \operatorname{Coext}(\beta p) \widetilde{\alpha}=\{i, 2, \beta p\} \widetilde{\alpha} \cong\{i, 2, \beta \alpha\} \supseteqq\{i, 2, \alpha\} \beta \ni \tilde{\alpha} \beta$. Since the bracket $\{i, 2, \beta \alpha\}$ is a coset of $i G_{j+k+1}$, we have a) of i).

The others are obvious.
Proposition 1.5. Assume that α and β are of order 2 respectively and that $\eta \alpha$ is divisible by 2. Let $\bar{\alpha}, \bar{\beta}$ and $\tilde{\alpha}$ be fixed. Then we have the following.
i) In case $\bar{\beta} \widetilde{\alpha} \neq 0$:
a) If i$\eta \bar{\alpha}=\tilde{\alpha} \eta p$,

$$
\bar{\beta} \operatorname{Coext}(\bar{\alpha}) \equiv(\overline{\bar{\beta}} \widetilde{\alpha}) \bmod \sum_{t}\left\{\gamma_{t} \bar{\beta}\right\}+\beta \pi_{j+2}(2)+G_{j+k+2} p,
$$

where t runs over the subset of $\{1,2, \cdots, m\}$ which consists of satisfying the equation $i \eta \gamma_{s} p=0$.
b) If $\alpha \beta=0$ and $\alpha \bar{\beta}=0$ and if there exists $\gamma \in\left(G_{j+k+1}\right.$; 2) which satisfies $\tilde{\alpha} \beta=i \gamma$,

$$
\widetilde{\alpha} \bar{\beta} \equiv i \bar{\gamma} \bmod K_{j+k+1}
$$

ii) In case $\bar{\beta} \tilde{\alpha}=0$:
a) $\bar{\beta} \operatorname{Ext}(\widetilde{\alpha})=\{\bar{\beta}, \widetilde{\alpha}, 2\} p$.
b) If $\alpha \beta=0$ and $\{\alpha, \beta, 2\}=0$,

$$
\widetilde{\alpha} \bar{\beta} \equiv i\{2, \alpha, \beta, 2\} p \bmod i G_{j+1} \operatorname{Ext} \beta+(\text { Coext } \alpha) G_{k+1} p
$$

Proof. a) of i) is a direct consequence of ii) of Prop. 1.2.
b) of i) and a) of ii) are obvious.

By use of ii) of (3.9) of $[6],\{\beta, 2, \alpha\}+\{2, \alpha, \beta\}+\{\alpha, \beta, 2\} \ni 0$. So, we can take $\gamma \equiv \bar{\beta} \widetilde{\alpha} \bmod \beta G_{j+1}+\alpha G_{k+1}+2 G_{j+k+1}$ in b) of i) and we have $\{2, \alpha, \beta\} \ni 0$ under the assumption of b) of ii).

Now we can construct the tertiary composition $\{2, \alpha, \beta, 2\}$ by use of the Mimura's methods (see [2]). Namely, from the fact $\{2, \alpha, \beta\} \ni 0$, we can choose $\overline{2}_{\alpha}$ and $\tilde{\beta}_{\alpha}$ such that $\overline{2}_{\alpha} \tilde{\beta}_{\alpha}=0$. It is clear that $\tilde{\beta}_{\alpha} 2 \in\left\{i_{\alpha}, \alpha, \beta\right\} 2=$ $i_{a}\{\alpha, \beta, 2\}=0$. So, we can define the Toda bracket $\left\{\overline{2}_{\alpha}, \tilde{\beta}_{\infty}, 2\right\}$. We put
$\{2, \alpha, \beta, 2\} \equiv\left\{\overline{2}_{a}, \tilde{\beta}_{\alpha}, 2\right\} \bmod \overline{2}_{\alpha}\left[S^{n+j+k+2}, S^{n} \cup_{a} e^{n+j+1}\right]+\left[S^{n+j+1} \cup_{\beta} e^{n+j+k+2}, S^{n}\right] \tilde{2}_{\beta}$, where n is sufficiently large.

It follows that $i \overline{2}_{\alpha} \in i\left\{2, \alpha, p_{\alpha}\right\}=\{i, 2, \alpha\} p_{\alpha}=($ Coext $\alpha) p_{\alpha} . \quad$ Similarly, we obtain $\tilde{2}_{\beta} p \in i_{\beta}$ Ext β. Therefore, we have $i\{2, \alpha, \beta, 2\} p \equiv i\left\{\overline{2}_{\alpha}, \widetilde{\beta}_{a}, 2\right\} p=$ $i \overline{2}_{\alpha}\left\{\tilde{\beta}_{a}, 2, p\right\} \subseteq($ Coext $\alpha)($ Ext $\beta) \bmod i G_{j+1} \operatorname{Ext} \beta+(\operatorname{Coext} \alpha) G_{k+1} p$. This leads us to the assertion of b) of ii).

Proposition 1.6. α and β are same as the above proposition. Let $\tilde{\beta}$ and $\bar{\alpha}$ be fixed. Then we have the following.
i) In case $\bar{\alpha} \tilde{\beta} \neq 0$:
a) $\operatorname{Coext}(\bar{\alpha}) \tilde{\beta} \equiv(\widetilde{\bar{\alpha} \tilde{\beta}}) \bmod i G_{j+k+2}$.
b) If $\alpha \beta=0$ and $\tilde{\beta} \alpha=0$ and if there exists $\gamma \in\left(G_{j+k+1} ; 2\right)$ which satisfies $\beta \bar{\alpha}=\gamma p$,

$$
\tilde{\beta} \bar{\alpha} \equiv \tilde{\gamma} p \bmod K_{j+k+1} .
$$

ii) In case $\bar{\alpha} \tilde{\beta}=0$:
a) $\operatorname{Coext}(\bar{\alpha}) \tilde{\beta}=i\{2, \bar{\alpha}, \tilde{\beta}\}$.
b) If $\alpha \beta=0$ and $\{2, \beta, \alpha\}=0$,

$$
\tilde{\beta} \bar{\alpha} \equiv i\{2, \beta, \alpha, 2\} p \bmod i G_{k+1} \operatorname{Ext} \alpha+(\operatorname{Coext} \beta) G_{j+1} p
$$

The proof is quite similar to the one of the above proposition and we omit it.

Proposition 1.7. Assume that α and β are neither of order 2 nor divisible by 2 respectively.
i) If $\alpha \beta$ is neither of order 2 nor divisible by 2, $\widetilde{\alpha p} \widetilde{\beta p} \in \operatorname{Coext}(\alpha \beta p)$.
ii) Suppose given $\widetilde{\alpha p}$ and $\widetilde{\beta p}$ such that $\widetilde{\alpha p i}=i \alpha$ and $\widetilde{\beta p i}=\beta i$, then we have the following.
a) If $\alpha \beta$ is divisible by 2 ,

$$
\widetilde{\alpha p} \widetilde{\beta p} \equiv 0 \bmod K_{j+k} .
$$

b) If $\alpha \beta$ is not divisible by 2 but of order 2 , $\widetilde{\alpha p} \widetilde{\beta p} \equiv i \widetilde{\alpha \beta}+\widetilde{\alpha \beta} p \bmod K_{j+k}$.
The proof is left to the reader.
Proposition 1.8. Assume that α is neither of order 2 nor divisible by 2 and that β is of order 2 and $\eta \beta$ is divisible by 2. Let $\bar{\beta}$ be fixed.
i) If $\alpha \beta \neq 0$,

$$
\widetilde{\alpha p}(\widetilde{\beta}) \in \operatorname{Coext}(\alpha \bar{\beta})
$$

ii) If $\alpha \beta=0$ and if there exists $\gamma \in\left(G_{j+k+1} ; 2\right)$ which satisfies $\alpha \bar{\beta}=\gamma p$, we have the following.
a) $\widetilde{\alpha p}(\widetilde{\beta}) \in \operatorname{Coext}(\gamma p)$.
b) If $\tilde{\beta}, \widetilde{\alpha p}$ and $(\widetilde{\widetilde{\beta}})$ are fixed such that $\widetilde{\alpha p i}=i \alpha$ and $(\widetilde{\beta}) i=\tilde{\beta}$ and if $\widetilde{\alpha p} \tilde{\beta}=\tilde{\beta} \alpha=i \gamma$ and $\widetilde{\beta \alpha p}=\gamma p$, we have

$$
(\widetilde{\widetilde{\beta}}) \widetilde{\alpha p} \equiv \widetilde{\alpha p} \widetilde{\widetilde{\beta}}) \bmod K_{j+k+1}
$$

The proof is left to the reader.
In ii) of the above proposition we can take $\gamma \in\{\alpha, \beta, 2\}$.
Proposition 1.9. Assume that α and β are of order 2 respectively and that $\eta \alpha$ and $\eta \beta$ are divisible by 2 respectively. Let $\bar{\alpha}, \bar{\beta}, \tilde{\beta}$ and $(\widetilde{\beta})$ be fixed such that $(\widetilde{\beta}) i=\widetilde{\beta} . \quad$ Then we have the following.
i) If $\bar{\alpha} \tilde{\beta} \neq 0$,

$$
(\widetilde{\alpha})(\widetilde{\bar{\beta}}) \in \operatorname{Coext}((\overline{\bar{\alpha} \tilde{\beta}}))
$$

ii) If $\bar{\alpha} \tilde{\beta}=0$ and if $\{\bar{\alpha}, \tilde{\beta}, 2\}$ and $\{2, \bar{\alpha}, \tilde{\beta}\}$ consist of the elements which are not divisible by 2 but of order 2 respectively, we have

$$
(\widetilde{\alpha})(\widetilde{\widetilde{\beta}}) \equiv i\{\overline{2, \bar{\alpha}, \widetilde{\beta}}\}+\{\widetilde{\alpha, \widetilde{\beta}, 2}\} p \bmod K_{j+k+2}
$$

Proof. i) is obvious.
ii) follows from a) of ii) of Prop. 1.5 and Prop. 1.6.

2. Generators and relations in $\pi_{j}(2), \pi_{k}^{*}(2)$ and π_{l}

In this section we shall use the general formulas of $\S 1$ and choose the generators of $\pi_{j}(2), \pi_{k}^{*}(2)$ and π_{l}. We shall compute compositions of elements of π_{*}.

The Toda brackets which appear in this section are the following.
Theorem 2.1. (Toda).
i) $\{\eta, 2, \eta\}= \pm 2 \nu,\{\nu, \eta, 2\}=0$,

$$
\left\{\eta, 2, \eta^{*}\right\} \equiv \pm 2 \nu^{*} \bmod \eta \bar{\mu},\left\{\nu^{*}, \eta, 2\right\} \equiv 0 \bmod 2 G_{20}
$$

ii) $\quad\left\{\eta, 2, \nu^{2}\right\}=\left\{\eta, \nu^{2}, 2\right\} \equiv \varepsilon \bmod \eta \sigma,\left\{\nu^{2}, \eta, 2\right\}=0$,
$\{\eta, 2,8 \sigma\}=\{\eta, 8 \sigma, 2\} \equiv \mu \bmod \left\{\eta^{2} \sigma, \eta \varepsilon\right\},\{8 \sigma, \eta, 2\}=0$,
$\left\{\eta, 2, \sigma^{2}\right\}=\left\{\eta, \sigma^{2}, 2\right\} \equiv \eta^{*} \bmod \eta \rho,\left\{\sigma^{2}, \eta, 2\right\}=0$,
$\{\eta, 2, \bar{\sigma}\}=\{\eta, \bar{\sigma}, 2\} \equiv 0 \bmod \eta \bar{\kappa},\{\bar{\sigma}, \eta, 2\}=0$,
$\{\mu, 2,8 \sigma\}=\{\mu, 8 \sigma, 2\} \equiv \bar{\mu} \bmod \eta^{2} \rho,\{8 \sigma, \mu, 2\}=0$.
iii) $\{\eta, 2, \varepsilon\} \equiv 0 \bmod \eta \mu,\{\eta, 2, \kappa\} \equiv 0 \bmod \eta \rho$,
$\{\mu, 2, \varepsilon\} \equiv 0 \bmod \eta \bar{\mu}$.
iv) $\quad\left\{\sigma, \nu^{2}, 2\right\}=\{\sigma, 2 \nu, \nu\} \equiv 0 \bmod \sigma^{2}$,

$$
\left\{\nu, \sigma^{2}, 2\right\} \equiv\{\nu, 2 \sigma, \sigma\}=\nu^{*} \bmod 2 \nu^{*},
$$

$$
\left\{\sigma^{2}, \eta, \nu\right\}=\{\sigma, \eta \sigma, \nu\}=\bar{\sigma},\{\sigma, \varepsilon, \nu\}=0 .
$$

v) $\{\eta \varepsilon, \eta, 2\}=\left\{\eta^{2} \sigma, \eta, 2\right\} \equiv \zeta \bmod 2 G_{11}$,
$\left\{\eta^{2} \rho, \eta, 2\right\} \equiv \overline{\bmod } 2 G_{19}$,
$\{\nu, 8 \sigma, 2\} \supset\{\nu, 2 \sigma, 8\} \ni \zeta \bmod 2 G_{11}$,
$\{\zeta, 8 \sigma, 2\} \supset\{\zeta, 2 \sigma, 8\} \ni \bar{\xi} \bmod 2 G_{19}$,
$\{\sigma, 8 \sigma, 2\} \supset\{\sigma, 2 \sigma, 8\} \ni \rho \bmod 2 G_{15}$,
$\{\varepsilon, 8 \sigma, 2\}=\{\eta \sigma, 8 \sigma, 2\}=\eta \rho,\{8 \sigma, 2,8 \sigma\}=16 \rho$.
vi) $\quad\{\eta \kappa, \eta, 2\}=\nu \kappa,\left\{\kappa, 2, \nu^{2}\right\}=\eta \bar{\kappa}$.
vii) $\quad\left\{2, \nu^{2}, \rho\right\}=0,\left\{\nu, \eta, \eta^{2} \sigma\right\}=0,\{\sigma, \nu, \zeta\}=0$.
viii) $\{\kappa, 8 \sigma, 2\} \equiv 0 \bmod \eta^{2} \bar{\kappa},\{\sigma, \kappa, 2\}=\nu \bar{\sigma}$, $\left\{\overline{\nu^{2}}, \widetilde{\nu^{2}}, 2\right\}=\left\{2, \overline{\nu^{2}}, \widetilde{\nu^{2}}\right\}=\kappa$, $\{\bar{\eta}, \tilde{\kappa} \nu, 2\}=\{2, \nu(\bar{\kappa}), \tilde{\eta}\} \equiv 0 \bmod 2 G_{20}$.
ix) $\{2,4 \nu, \eta, 2\}=0$,
$\{2, \bar{\sigma}, \eta, 2\}=\{2, \eta, \bar{\sigma}, 2\} \equiv 0 \bmod \eta^{2} \bar{\kappa}$.
This theorem will be proved in the next section.
Throughout this section we denote by Roman letters x, y, z, etc. integers 0 or 1 .
2.1. First we define $\delta \in \pi_{-1}$ by

$$
\begin{equation*}
\delta=i p \tag{2.1}
\end{equation*}
$$

We choose

$$
\begin{equation*}
\bar{\eta} \in \operatorname{Ext} \eta \quad \text { and } \quad \widetilde{\eta} \in \text { Coext } \eta \tag{2.2}
\end{equation*}
$$

arbitrarily. Then remark that Ext $\eta=\{\bar{\eta},-\bar{\eta}\}$ and Coext $\eta=\{\widetilde{\eta},-\widetilde{\eta}\}$.
We define η_{1} and η_{2} in π_{1} and $\eta_{3} \in \pi_{3}$ by

$$
\begin{equation*}
\eta_{1}=i \bar{\eta}, \quad \eta_{2}=\widetilde{\eta} p \quad \text { and } \quad \eta_{3}=\widetilde{\eta} \bar{\eta} . \tag{2.3}
\end{equation*}
$$

Take

$$
\begin{equation*}
\nu_{1} \in \operatorname{Coext}(\nu p) \subset \pi_{3} \tag{2.4}
\end{equation*}
$$

arbitrarily.

Proposition 2.1.

i) $\delta^{2}=0, \delta \eta_{1}=\eta_{2} \delta=0$ and $\eta_{1} \delta=\delta \eta_{2}=i \eta p=2.1$,
where 1 is a generator of π_{0} and of order 4 .
ii) $\delta \eta_{3}=\eta_{1}^{2}=i \eta \bar{\eta}, \eta_{3} \delta=\eta_{2}^{2}=\widetilde{\eta} \eta p$ and $\delta \eta_{3} \delta=0$.
iii) $\nu_{1} \delta=\delta \nu_{1}=i \nu p$.
iv) $\eta_{1} \eta_{2}=\eta_{2} \eta_{1}=0$ and $\eta_{1} \eta_{3}=\eta_{3} \eta_{2}=0$.
v) $\eta_{3} \eta_{1}=\eta_{2} \eta_{3}=\widetilde{\eta} \eta \bar{\eta}$.
vi) $\eta_{2}^{2} \eta_{3}=0$.
vii) $\eta_{1} \nu_{1}=\nu_{1} \eta_{1}=\eta_{2} \nu_{1}=\nu_{1} \eta_{2}=0$ and $\eta_{3} \nu_{1}=\nu_{1} \eta_{3}=\eta_{3}^{2}=0$.

Proof. i), ii) and v) are obvious (see Theo. A of [5]).
By Theo. 3.1 of [5], $\pi_{4}(2)=\left\{\eta^{2} \bar{\eta}\right\}$. Since $i \eta^{2} \bar{\eta} i=i \eta^{3}=i(4 \nu)=0$, we have $i \pi_{4}(2) i=0$. So, we have, by use of Prop. 1.1,

$$
\begin{equation*}
\operatorname{Coext}(\nu p) i=i \nu \tag{2.5}
\end{equation*}
$$

From this we have the assertion of iii).
iv) follows from the fact $\bar{\eta} \tilde{\eta}= \pm 2 \nu$ of i) of Theo. 2.1.

By Theo. 3.1 and Theo. 3.2 of [5], $\pi_{5}(2)=0$ and $\pi_{5}^{*}(2)=0$. So, we have

$$
\begin{equation*}
\bar{\eta} \nu_{1}=\nu \bar{\eta}=0 \quad \text { and } \quad \nu_{1} \tilde{\eta}=\widetilde{\eta} \nu=0 \tag{2.6}
\end{equation*}
$$

From (2.5) and (2.6) we have vii).
Finally, we shall prove vi). By use of b) of ii) of Prop. 1.5, $\eta_{2}^{2} \eta_{3}=\widetilde{\eta} \eta^{2} \bar{\eta}=$ $\widetilde{\eta^{3}} \bar{\eta}=\widetilde{4} \nu \bar{\eta} \equiv i\{2,4 \nu, \eta, 2\} p \bmod i G_{5}$ Ext $\eta+$ Coext $(4 \nu) G_{2} p=0$. By ix) of Theo. 2.1, $\{2,4 \nu, \eta, 2\}$ consists of 0 . This leads us to vi).
2.2. By ii) of Theo. 2.1, $\left\{\nu^{2}, 2, \eta\right\}=\left\{\eta, 2, \nu^{2}\right\} \equiv \varepsilon \bmod \eta \sigma$. So, we can choose $\overline{\nu^{2}} \in \operatorname{Ext} \nu^{2}$ and $\widetilde{\nu^{2}} \in \operatorname{Coext} \nu^{2}$ such that

$$
\begin{equation*}
\overline{\nu^{2}} \tilde{\eta}=\bar{\eta} \nu^{2}=\varepsilon . \tag{2.7}
\end{equation*}
$$

It follows from (2.7) that

$$
\begin{equation*}
\overline{\eta \nu^{2}}=\varepsilon p \quad \text { and } \quad \widetilde{\nu^{2}} \eta=i \varepsilon . \tag{2.8}
\end{equation*}
$$

We shall prove the first. Since $\left\{\eta, \nu^{2}, 2\right\} \equiv \varepsilon \bmod \eta \sigma$ by ii) of Theo. 2.1, we have $\eta \overline{\nu^{2}} \in \eta\left\{\nu^{2}, 2, p\right\}=\left\{\eta, \nu^{2}, 2\right\} p \equiv \varepsilon p \bmod \eta \sigma p$. So, we can put $\eta \overline{\nu^{2}}=$ $\varepsilon p+x \eta \sigma p$. Multiply this equality by $\tilde{\eta}$ on the right, then we have $x=0$ by (2.7) and by the result $\eta^{2} \sigma \neq 0$.

Since $\{8 \sigma, 2, \eta\}=\{\eta, 2,8 \sigma\} \equiv \mu \bmod \left\{\eta^{2} \sigma, \eta \varepsilon\right\}$ by ii) of Theo. 2.1, we can take $\overline{8 \sigma} \in \operatorname{Ext}(8 \sigma)$ and $\widetilde{8 \sigma} \in \operatorname{Coext}(8 \sigma)$ such that

$$
\begin{equation*}
\overline{8 \sigma} \widetilde{\eta}=\bar{\eta} \widetilde{8 \sigma}=\mu \tag{2.9}
\end{equation*}
$$

From the results that $\{\varepsilon, 2, \eta\}=\{\eta, 2, \varepsilon\} \equiv 0 \bmod \eta \mu$ of iii) of Theo. 2.1, we can choose $(\bar{\varepsilon}) \in$ Ext ε and $\tilde{\varepsilon} \in$ Coext ε such that

$$
\begin{equation*}
\overline{(\varepsilon)} \tilde{\eta}=\bar{\eta} \tilde{\varepsilon}=0 . \tag{2.10}
\end{equation*}
$$

If follows that

$$
\begin{equation*}
\eta(\bar{\varepsilon})=\varepsilon \bar{\eta} \quad \text { and } \quad \hat{\varepsilon} \eta=\tilde{\eta} \varepsilon . \tag{2.11}
\end{equation*}
$$

We shall prove the second. Clearly, $\tilde{\varepsilon} \eta-\tilde{\eta} \varepsilon \in i G_{10}=\{i \eta \mu\}$. Namely, we can put $\tilde{\varepsilon} \eta=\tilde{\eta} \varepsilon+x i \eta \mu$. Multiply this equality by $\bar{\eta}$ on the left, then we have $x=0$. For $\bar{\eta} \check{\varepsilon} \eta=0$ by (2.10), $\bar{\eta} \widetilde{\eta} \varepsilon=2 \nu \varepsilon=0$ and $\eta^{2} \mu \neq 0$.

By Theo. 3.1 of [5], $i \pi_{8}(2) i=i\{\overline{8 \sigma}, \eta \sigma p, \varepsilon p\} i=0$. So, we have, by use of Prop. 1.1,

$$
\begin{equation*}
\operatorname{Coext}(\sigma p) i=i \sigma \tag{2.12}
\end{equation*}
$$

Since $\eta \overline{8 \sigma} \in\{\eta, 8 \sigma, 2\} p \equiv \mu p \bmod \left\{\eta^{2} \sigma p, \eta \varepsilon p\right\}$ by ii) of Theo. 2.1, we have $\eta \pi_{8}(2)=G_{9} p$. Therefore, we can choose $\sigma_{1} \in \operatorname{Coext}(\sigma p) \subset \pi_{7}$, by use of a) of i) of Prop. 1.3, such that

$$
\begin{equation*}
\bar{\eta} \sigma_{1} \equiv \pm \sigma \bar{\eta} \bmod \eta \varepsilon p \tag{2.13}
\end{equation*}
$$

By use of a) of i) of Prop. 1.4, we can put $\sigma_{1} \tilde{\eta}= \pm \tilde{\eta} \sigma+x i \eta \varepsilon+y i \mu$. Multiply this equality by $\bar{\eta}$ on the left, then we have $y=0$. For $\bar{\eta} \sigma_{1} \tilde{\eta}=\sigma \bar{\eta} \tilde{\eta}=$ $\bar{\eta} \widetilde{\eta} \sigma=2 \nu \sigma=0, \eta^{2} \varepsilon=0$ and $\eta \mu \neq 0$. So, we have

$$
\begin{equation*}
\sigma_{1} \widetilde{\eta} \equiv \pm \widetilde{\eta} \sigma \bmod i \eta \varepsilon . \tag{2.14}
\end{equation*}
$$

Since $i \pi_{8}(2) i=0$, $i \eta \sigma p=2 \sigma_{1} \neq 0$ by Theo. 3.3 of [5] and $i \eta \overline{\nu^{2}}=\widetilde{\nu^{2}} \eta p=i \varepsilon p$ by (2.8), we have, by use of ii) of Prop. 1.2,

$$
\begin{equation*}
\operatorname{Coext}\left(\overline{\nu^{2}}\right) i=\widetilde{\nu^{2}} \tag{2.15}
\end{equation*}
$$

Since $\eta \pi_{8}(2)=G_{9} p$ we can choose $\nu_{2} \in \operatorname{Coext}\left(\overline{\nu^{2}}\right) \subset \pi_{7}$, by use of a) of i) of Prop. 1.5, such that

$$
\begin{equation*}
\bar{\eta} \nu_{2} \equiv \pm(\bar{\varepsilon}) \bmod \eta^{2} \sigma p \tag{2.16}
\end{equation*}
$$

By the similar arguments to (2.14), we have

$$
\begin{equation*}
\nu_{2} \tilde{\eta} \equiv \pm \tilde{\varepsilon} \bmod i \eta^{2} \sigma \tag{2.17}
\end{equation*}
$$

Proposition 2.2.

i) $\quad \sigma_{1} \delta=\delta \sigma_{1}=i \sigma p$
ii) $\delta \nu_{2}=i \overline{\nu^{2}}$ and $\nu_{2} \delta=\widetilde{\nu^{2}} p$.
iii) $\nu_{1}^{2}=\delta \nu_{2}+\nu_{2} \delta$.
iv) $\sigma_{1} \eta_{1}=\eta_{1} \sigma_{1}=i \sigma \bar{\eta}$ and $\sigma_{1} \eta_{2}=\eta_{2} \sigma_{1}=\tilde{\eta} \sigma p$.
v) $\quad \nu_{2} \eta_{1}=\eta_{1} \nu_{2}=i(\bar{\varepsilon})$ and $\nu_{2} \eta_{2}=\eta_{2} \nu_{2}=\tilde{\varepsilon} p$.
vi) $\eta_{3} \sigma_{1}= \pm \tilde{\eta} \sigma \bar{\eta}$ and $\sigma_{1} \eta_{3}= \pm \eta_{3} \sigma_{1}$.
vii) $\eta_{3} \nu_{2}= \pm \widetilde{\eta}(\bar{\varepsilon})$ and $\nu_{2} \eta_{3}= \pm \eta_{3} \nu_{2}$.

Proof. i) and ii) are direct consequences of (2.12) and (2.15) respectively.
By use of b) of ii) of Prop. 1.7, $\nu_{1}^{2} \equiv i \overline{\nu^{2}}+\widetilde{\nu^{2}} p \bmod K_{6}$. Since $K_{6}=\{i \sigma p\}$ by Theo. 3.3 of [5], we can put $\nu_{1}^{2}=i \overline{\nu^{2}}+\widetilde{\nu^{2}} p+x i \sigma p$. Multiply this equality by $\bar{\eta}$ on the left, then we have $x=0$. For $\bar{\eta} \nu_{1}^{2}=0$ by (2.6), $\overline{\nu^{2}}=\bar{\eta} \nu^{2} p=\varepsilon p$ by (2.7) and (2.8) and $\eta \sigma p \neq 0$ by Theo. 3.1 of [5]. This proves iii).

We shall prove the first assertion of iv). The equality $\sigma_{1} \eta_{1}=i \sigma \bar{\eta}$ is a direct consequence of (2.12). We have $\eta_{1} \sigma_{1}=i \sigma \bar{\eta}$ by (2.13) since $i \eta \varepsilon p=i(2(\bar{\varepsilon}))=0$.

We shall prove the second assertion of v). By (2.17) we have $\nu_{2} \eta_{2} \equiv$ $\tilde{\varepsilon} p \bmod i \eta^{2} \sigma p=0$.

By use of b) of i) of Prop. 1.6, we have $\eta_{2} \nu_{2}=\widetilde{\eta} \nu^{2} \equiv \tilde{\varepsilon} p \bmod K_{8}$ since $\widetilde{\eta} \nu^{2}=0$ by (2.6) and $\eta \overline{\nu^{2}}=\varepsilon p$ by (2.8). It follows from Theo. 3.3 of [5] that $K_{8}=\{i \mu p\}$. So, we can put $\widetilde{\eta} \nu^{2}=\tilde{\varepsilon} p+x i \mu p$. Multiply this equality by $\tilde{\eta}$ on the right, then we have $x=0$. For $\widetilde{\eta} \overline{\nu^{2}} \tilde{\eta}=\widetilde{\eta} \varepsilon$ by (2.7), $\tilde{\eta} \varepsilon=\tilde{\varepsilon} \eta$ by (2.11) and $i \eta \mu \neq 0$ by Theo. 3.2 of [5].

The first assertions of vi) and vii) are obtained from (2.13) and (2.16) respectively since $2 \eta_{3} \nu_{2}=\widetilde{\eta} \eta \varepsilon p=i\{2, \eta, \eta \varepsilon\} p=i \zeta p=i\left\{2, \eta, \eta^{2} \sigma\right\} p=\widetilde{\eta} \eta^{2} \sigma p=2 \eta_{3} \sigma_{1}$ by v) of Theo. 2.1.

Similarly, we have $i \eta \varepsilon \bar{\eta}=i \eta^{2} \sigma \bar{\eta}=i \zeta p$. By (2.11) and by Theo. 3.3 of [5], we have $\tilde{\varepsilon} \bar{\eta} \equiv \widetilde{\eta}(\bar{\varepsilon}) \bmod K_{11}=\{i \zeta p\}$. Therefore, we obtain the second assertions of vi) and vii) by (2.14) and (2.17) respectively.
2.3. By use of ii) of Prop. 1.2, Coext $(\overline{8 \sigma}) i \equiv \widetilde{8 \sigma} \bmod i \pi_{9}(2) i$. So, we can choose $A \in \operatorname{Coext}(\overline{8 \sigma}) \subset \pi_{8}$ such that

$$
\begin{equation*}
A i=\widetilde{8 \sigma} \tag{2.18}
\end{equation*}
$$

From this and (2.9), we can choose

$$
\begin{equation*}
\overline{(\mu)}=\bar{\eta} A \in \operatorname{Ext} \mu \quad \text { and } \quad \widetilde{\mu}=A \tilde{\eta} \in \operatorname{Coext} \mu \tag{2.19}
\end{equation*}
$$

Since $\{8 \sigma, 2,8 \sigma\}=16 \rho$ by v) of Theo. 2.1, we can take

$$
\begin{equation*}
\overline{16} \bar{\rho}=\overline{8 \sigma} A \in \operatorname{Ext}(16 \rho) \quad \text { and } \quad \widetilde{16 \rho}=A \widetilde{8 \sigma} \in \operatorname{Coext}(16 \rho) \tag{2.20}
\end{equation*}
$$

By use of i) of Prop. 1.9, we can take

$$
\begin{equation*}
A^{2} \in \operatorname{Coext}(\overline{16 \rho}) \pi_{16} . \tag{2.21}
\end{equation*}
$$

As $\bar{\eta} A^{2} i=\overline{(\mu)} \widetilde{8 \sigma} \equiv \bar{\mu} \bmod \eta^{2} \rho$ and $p\left(A^{2} \tilde{\eta}\right)=\overline{8 \sigma} \tilde{\mu} \equiv \bar{\mu} \bmod \eta^{2} \rho$ by ii) of Theo. 2.1, we can choose

$$
\begin{equation*}
(\overline{\bar{\mu}}) \equiv \bar{\eta} A^{2} \bmod \eta \rho \bar{\eta} \quad \text { and } \quad(\widetilde{\bar{\mu}}) \equiv A^{2} \tilde{\eta} \bmod \tilde{\eta} \eta \rho . \tag{2.22}
\end{equation*}
$$

Proposition 2.3.

i) $\delta A=i \overline{8 \sigma}$ and $A \delta=\widetilde{8 \sigma} p$.
ii) $\delta A=A \delta+\mathrm{xi} \sigma \rho+\mathrm{yi} \varepsilon p$ and $\delta A^{2}=A^{2} \delta$.
iii) $\eta_{1} A=i \overline{(\mu)}, A \eta_{1}=\eta_{1} A+\mathrm{x} i \eta \sigma \bar{\eta}+\mathrm{y} i \varepsilon \bar{\eta}$ and $\eta_{1}^{2} A=A \eta_{1}^{2}$.
iv) $A \eta_{2}=\widetilde{\mu} p, \eta_{2} A=A \eta_{2}+\mathrm{x} \tilde{\eta} \eta \sigma p+\mathrm{y} \widetilde{\eta} \varepsilon p$ and $\eta_{2}^{2} A=A \eta_{2}^{2}$.
v) $\quad \eta_{1} A^{2} \equiv i(\overline{\bar{\mu}}) \bmod i \eta \rho \bar{\eta}$ and $A^{2} \eta_{1}=\eta_{1} A^{2}$.
vi) $\quad A^{2} \eta_{2} \equiv(\widetilde{\bar{\mu}}) p \bmod \tilde{\eta} \eta \rho p$ and $\eta_{2} A^{2}=A^{2} \eta_{2}$.

Proof. i) is obvious.
Since $i \operatorname{Ext}(8 \sigma)=i\{8 \sigma, 2, p\}=i\{2,8 \sigma, p\}=\{i, 2,8 \sigma\} p=\operatorname{Coext}(8 \sigma) p$ and $i\{2,8 \sigma, p\}$ is a coset of $i G_{8} p=\{i \eta \sigma p, i \varepsilon p\}$, we can put $\delta A=A \delta+x i \eta \sigma p+y i \varepsilon p$. We have $A(i \eta \sigma p)=\widetilde{8 \sigma} \eta \sigma p=i\{2,8 \sigma, \eta \sigma\} p=i \eta \rho p=i\{2,8 \sigma, \varepsilon\} p=A(i \varepsilon p)$ by v) of Theo. 2.1. Similarly, we have $(i \eta \sigma p) A=(i \varepsilon p) A=i \eta \rho p$. So, we obtain $\delta A^{2}=$ $A \delta A+(x+y) i \eta \rho p=A^{2} \delta$.

By the above proof of ii) and (2.9), $\widetilde{8_{\sigma} \eta=i \mu+x i \eta^{2} \sigma+y i \eta \varepsilon . ~ A s ~} K_{9}=0$ by Theo. 3.3 of [5], we have, by use of b) of i) of Prop. 1.5, $A \eta_{1}=\widetilde{8 \sigma} \bar{\eta}$ $=i \overline{(\mu)}+x i \eta \sigma \bar{\eta}+y i \varepsilon \bar{\eta}$. Therefore, the first assertions of iv) and v) of Prop. 2.2, (2.11) and (2.19) imply iii).

The first of (2.22) implies the first of v).
By the similar arguments to the above proof of ii), $A(i \eta \sigma \bar{\eta})=A(i \varepsilon \bar{\eta})=i \eta \rho \bar{\eta}$. On the other hand, $(i \eta \sigma \bar{\eta}) A=i \eta \sigma(\bar{\mu})=i \sigma \mu \bar{\eta}=i \eta \rho \bar{\eta}$ since $\sigma \zeta=0$ and $\eta \overline{(\mu)} \equiv$ $\mu \bar{\eta} \bmod \zeta p$. We have $(i \varepsilon \bar{\eta}) A=i \varepsilon \overline{(\mu)}=i \eta \rho \bar{\eta}+z i \nu^{*} p$ since $\varepsilon \mu=\eta^{2} \rho$ and $i \eta \bar{\mu} p=0$. Multiply this equality by ν_{1} on the left, then we obtain $z=0$. For $\nu_{1}(i \varepsilon)=$ $i \nu \varepsilon=0, \nu_{1}(i \eta)=i \nu \eta=0$ and $\nu_{1}\left(i \nu^{*} p\right)=i \nu \nu^{*} p=i \sigma^{3} p \neq 0$ by Theo. 3.3 of [5] (see (7.16) and Prop. 7.2 of [3]). Consequently, the second of v) is proved.

The proofs of iv) and vi) are quite similar to the ones of iii) and v) respectively and we omit them.
2.4. From the results that $\{\nu, 8 \sigma, 2\} \equiv \zeta \bmod 2 G_{11},\{\sigma, 8 \sigma, 2\} \equiv \rho \bmod 2 G_{15}$ and $\{\zeta, 8 \sigma, 2\} \equiv \bar{\xi} \bmod 2 G_{19}$ of v) of Theo. 2.1, we can take, by use of a) of ii) of Prop. 1.8,

$$
\begin{align*}
& \nu_{1} A \in \operatorname{Coext}(\zeta p) \subset \pi_{11}, \tag{2.23}\\
& \sigma_{1} A \in \operatorname{Coext}(\rho p) \subset \pi_{15} \tag{2.24}
\end{align*}
$$

and

$$
\begin{equation*}
\nu_{1} A^{2} \in \operatorname{Coext}(\bar{\xi} p) \subset \pi_{19} . \tag{2.25}
\end{equation*}
$$

Proposition 2.4.

i) $\quad A \sigma_{1}= \pm \sigma_{1} A$.
ii) $A \nu_{1}=\nu_{1} A$.
iii) $\eta_{3} A=\widetilde{\eta} \overline{(\mu)}$ and $A \eta_{3} \equiv \pm \eta_{3} A \bmod \nu_{1} A$.
iv) $\eta_{3} A^{2} \equiv \pm \widetilde{\eta}(\overline{\bar{\mu}}) \bmod \nu_{1} A^{2}$ and $A^{2} \eta_{3}=\eta_{3} A^{2}$.

Proof. Sinc $\rho \mathrm{e} \in\{\sigma, 2 \sigma, 8\} \subset\{\sigma, 8 \sigma, 2\} \bmod 2 G_{15}$ by v) of Theo. 2.1, $p\left(A \sigma_{1}\right)=$ $\overline{8 \sigma} \sigma_{1} \in\{8 \sigma, 2, \sigma p\}=\{8,2 \sigma, \sigma p\}=\{8,2 \sigma, \sigma\} p=\rho p$ and similarly $\sigma_{1} A i=A \sigma_{1} i=i \rho$. Therefore, we have, by use of b) of ii) of Prop. 1.8, $A \sigma_{1} \equiv \sigma_{1} A \bmod K_{15}=$ $\left\{i \eta \rho p, i \eta^{*} p, i \overline{16 \rho}\right\}$. Namely, we can put $A \sigma_{1}= \pm \sigma_{1} A+x i \eta^{*} p+y i \overline{16 \rho}$. Multiply this equality by $\bar{\eta}$ on the left and by $\tilde{\eta}$ on the right at the same time, then we have $x=y=0$. For it is clear that $\bar{\eta} A \sigma_{1} \tilde{\eta}=\bar{\eta} \sigma_{1} A \tilde{\eta}=0$ and that $\eta^{2} \eta^{*}$ and $\eta \bar{\mu}$ are linearly independent in ($G_{18} ; 2$).

By the similar arguments to the above, we obtain $A \nu_{1}=\nu_{1} A+z i \eta \mu \bar{\eta}$. By i) $\nu_{1} A \sigma_{1}=\nu_{1} \sigma_{1} A$ and this equals $A \nu_{1} \sigma_{1}$ since $\nu_{1} \sigma_{1} \in K_{10}=\{i \zeta p\}$ and (i५p) $A=$ $A(i \zeta p)=i \bar{\zeta}_{p}$. On the other hand, $i \eta \mu \bar{\eta} \sigma_{1}=i \eta \mu \sigma \bar{\eta}=i \eta^{2} \rho \bar{\eta}=i \bar{\zeta} p$ since $\left\{\eta^{2} \rho, \eta, 2\right\} \equiv$ $\bar{\zeta} \bmod 2 G_{19}$ by v) of Theo. 2.1. This leads us to the assertion $z=0$.

It is clear that $2 \eta_{3} A=2 A \eta_{3}=i \eta \mu \bar{\eta}$. So, iii) follows from Theo. 3.3 of [5]. The proof of iv) is left to the reader.
2.5. From the results that $\{\kappa, 2, \eta\}=\{\eta, 2, \kappa\} \equiv 0 \bmod \eta \rho$ of iii) of Theo. 2.1, we can choose $\overline{(\kappa)} \in \operatorname{Ext} \kappa$ and $\tilde{\kappa} \in$ Coext κ such that

$$
\begin{equation*}
(\bar{\kappa}) \tilde{\eta}=\bar{\eta} \tilde{\kappa}=0 . \tag{2.26}
\end{equation*}
$$

By the similar arguments to (2.11), we obtain

$$
\begin{equation*}
\eta(\bar{\kappa})=\kappa \bar{\eta} \quad \text { and } \quad \tilde{\kappa} \eta=\widetilde{\eta} \kappa \tag{2.27}
\end{equation*}
$$

We define $\kappa_{1} \in \pi_{14}$ and $\kappa_{2} \in \pi_{16}$ by

$$
\begin{equation*}
\kappa_{1}=i(\bar{\kappa}) \quad \text { and } \quad \kappa_{2}=\widetilde{\eta}(\bar{\kappa}) \tag{2.28}
\end{equation*}
$$

Proposition 2.5.

i) $\quad \delta \kappa_{1}=0$ and $\kappa_{1} \delta=i \kappa p$.
ii) $\quad \kappa_{1} \eta_{2}=\eta_{2} \kappa_{1}=0$ and $\delta \kappa_{2}=\kappa_{1} \eta_{1}=\eta_{1} \kappa_{1}=i \eta(\bar{\kappa})$.
iii) $\quad \eta_{1} \kappa_{2}=\kappa_{2} \eta_{2}=\kappa_{1} \eta_{3}=0$ and $\eta_{3} \kappa_{2}=\kappa_{2} \eta_{3}=0$.
iv) $\nu_{2}^{2}+\kappa_{1}=\tilde{\kappa} p$.
v) $\quad \kappa_{2} \eta_{1}=\eta_{2} \kappa_{2}=\eta_{3} \kappa_{1}=\widetilde{\eta} \kappa \bar{\eta} \equiv i \nu(\bar{\kappa})+\tilde{\kappa} \nu p \bmod i \nu^{*} p$.
vi) $\quad \nu_{1} \kappa_{1}=i \nu\left(\overline{\kappa)}\right.$ and $\kappa_{1} \nu_{1} \equiv \nu_{1} \kappa_{1} \bmod i \nu^{*} p$.
vii) $\quad \kappa_{2} \nu_{1}=\nu_{1} \kappa_{2}=0$.
viii) $\left.\quad \nu_{2} \kappa_{1}=\widetilde{\nu^{2}} \bar{\kappa}\right)$ and $\kappa_{1} \nu_{2} \equiv i \overline{\bar{\kappa} \bar{\eta}} \bmod i \nu \bar{\sigma} p$.
ix) $\delta \nu_{2}^{2}=\nu_{2}^{2} \delta=\nu_{2} \delta \nu_{2}=\kappa_{1} \delta$ and $\kappa_{2} \delta=\eta_{2} \nu_{2}^{2}$.

Proof. i), ii) and iii) are obvious.
By viii) of Theo. 2.1, $\left\{\overline{\nu^{2}}, \widetilde{\nu^{2}}, 2\right\}=\left\{2, \overline{\nu^{2}}, \widetilde{\nu^{2}}\right\}=\kappa$. So, we obtain, by use of ii) of Prop. 1.9 and Theo. 3.3 of [5], $\nu_{2}^{2}=\kappa_{1}+\tilde{\kappa} p+x i \rho p$. Multiply this equality by $\bar{\eta}$ on the left and by η_{2} on the right at the same time, then we have $x=0$. For $\bar{\eta} \nu_{2}^{2} \eta_{2}=\bar{\eta} \eta_{2} \nu_{2}^{2}=0, \bar{\eta} \kappa_{1} \eta_{2}=0, \bar{\eta} \tilde{\kappa} p \eta_{2}=0$ and $\eta^{2} \rho p \neq 0$ in $\pi_{17}(2)$. Thus, iv) is proved.

By iv) of Theo. 2.1, $p(\widetilde{\eta} \kappa \bar{\eta})=\eta \kappa \bar{\eta}=\{\eta \kappa, \eta, 2\} p=\nu \kappa p$ and similarly ($\widetilde{\eta} \kappa \bar{\eta}) i$ $=i \nu \kappa$. So, we have $\widetilde{\eta} \kappa \bar{\eta} \equiv i \nu(\bar{\kappa})+\tilde{\kappa} \nu p \bmod K_{17}=\left\{i \nu^{*} p\right\}$. From this and (2.27), we obtain v).

The first of vi) is obvious.
By use of a) of i) of Prop. 1.3, ($(\bar{\kappa}) \nu_{1} \equiv \nu(\bar{\kappa}) \bmod \kappa \pi_{4}(2)+G_{18} p=\left\{\nu^{*} p, \eta \bar{\mu} p\right\}$. By the similar arguments to (2.14), we have

$$
\begin{equation*}
\overline{(\kappa)} \nu_{1} \equiv \nu(\overline{\kappa \kappa}) \bmod \nu^{*} p . \tag{2.29}
\end{equation*}
$$

From this we have the second of vi).
By (2.6), $\nu_{1} \kappa_{2}=\nu_{1} \widetilde{\eta}(\bar{\kappa})=0 . \quad$ By (2.29), (2.6) and i) of Theo. 2.1, $\kappa_{2} \nu_{1}=\widetilde{\eta}(\bar{\kappa}) \nu_{1}$ $\equiv \widetilde{\eta} \nu(\bar{\kappa})=0 \bmod \widetilde{\eta} \nu^{*} p=i\left\{2, \eta, \nu^{*}\right\} p=0$. So, vii) is proved.

The first of viii) is obvious.
By use of a) of i) of Prop. 1.5, $\kappa_{1} \nu_{2} \equiv i \bar{\kappa} \bar{\eta} \bmod i \kappa \pi_{8}(2)+i G_{22} p=\{i \nu \bar{\sigma} p\}$ since $\overline{(\kappa)} \widetilde{\nu^{2}}=\bar{\kappa} \eta$ and $i \kappa \overline{8 \sigma} \equiv 0 \bmod i_{\kappa} \varepsilon p=0$ by vi) and viii) of Theo. 2.1.
i), ii) and iv) imply ix) except for the relation $\nu_{2} \delta \nu_{2}=\delta \nu_{2}^{2}$. This will be proved in Prop. 2.9.
2.6. We have the relations

$$
\begin{equation*}
\overline{(\varepsilon)} \tilde{\mu}=(\bar{\mu}) \tilde{\varepsilon}=0 . \tag{2.30}
\end{equation*}
$$

We shall prove the first. By iii) of Theo. 2.1, $(\bar{\varepsilon}) \tilde{\mu}=x \eta \bar{\mu}$. Multiply this by η on the left, then we have $x=0$ since $\eta \overline{(\varepsilon)} \tilde{\mu}=\varepsilon \tilde{\eta} \tilde{\mu} \in \varepsilon G_{11}=0$ and $\eta^{2} \bar{\mu} \neq 0$.

Proposition 2.6.

i) $A \nu_{2} \equiv \nu_{2} A \equiv \pm \sigma_{1} A \bmod \{i \kappa \bar{\eta}, \widetilde{\eta} \kappa p\}$.
ii) $\delta A \nu_{2}=A \delta \nu_{2}=A \nu_{2} \delta=\delta \nu_{2} A=\nu_{2} \delta A=\nu_{2} A \delta=\delta \sigma_{1} A$.

Proof. By v) of Theo. 2.1, $2 A \nu_{2}=2 \nu_{2} A=i\{\varepsilon, 8 \sigma, 2\} p=i \eta \rho p=i\{\eta \sigma, 8 \sigma, 2\} p$ $=2 \sigma_{1} A$. So, we have, by Theo. 3.3 of [5], $A \nu_{2} \equiv \nu_{2} A \equiv \sigma_{1} A \bmod \left\{i \eta \rho p, i \eta^{*} p\right.$, $i \overline{16 \rho}, i \kappa \bar{\eta}, \tilde{\eta} \kappa p\}$. Multiply these by $\bar{\eta}$ on the left and by $\tilde{\eta}$ on the right at the same time, then we have i) by (2.30).

By use of iii) of Prop. 2.2, ii) of Prop. 2.3 and Prop. 2.4 and i), we obtain ii).

2.7. Lemma $2.7 \sigma \overline{\nu^{2}}=\overline{\nu^{2}} \sigma_{1}=0$ and $\widetilde{\nu^{2}} \sigma=\sigma_{1} \widetilde{\nu^{2}}=0$.

Proof. By iv) of Theo. 2.1, $\sigma \overline{\nu^{2}} \in\left\{\sigma, \nu^{2}, 2\right\} p \equiv 0 \bmod \sigma^{2} p$. Assume that $\sigma \overline{\nu^{2}}=\sigma^{2} p$, then we have, by the definition of $\bar{\sigma} \in\left(\mathrm{G}_{19} ; 2\right)$ (see iv) of Theo. 2.1) and by the relation $\widetilde{\eta} \nu=0$ of (2.6),

$$
\begin{aligned}
\bar{\sigma} & =\left\{\sigma^{2}, \eta, \nu\right\} & & \\
& \supseteqq\left\{\sigma^{2} p, \widetilde{\eta}, \nu\right\}=\left\{\sigma \overline{\nu^{2}}, \tilde{\eta}, \nu\right\} & & \\
& \cong\left\{\sigma, \overline{\nu^{2}} \tilde{\eta}, \nu\right\} & & \text { by (2.7) } \\
& =\{\sigma, \varepsilon, \nu\} & & \text { by iv) of Theo. 2.1. }
\end{aligned}
$$

This contradicts to the result that $\bar{\sigma} \neq 0$ in G_{19}. Thus the first relation is proved.

By Theo. 3.1 of [5], $\left.\nu \pi_{11}(2)=\nu\{\eta \bar{\mu}), \zeta p\right\}=0$. So, we have $\overline{\nu^{2}} \sigma_{1} \in\left\{\nu^{2}, 2, \sigma p\right\}$ $=\{\nu, 2 \nu, \sigma p\}=\{\nu, 2 \nu, \sigma\} p \equiv 0 \bmod \sigma^{2} p$ by iv) of Theo. 2.1. Namely, we can put $\bar{\nu}^{2} \sigma_{1}=x \sigma^{2} p$. Multiply this by σ on the left, then we have $x=0$ since $\sigma \overline{\nu^{2}} \sigma_{1}=0$ by the first relation and $\sigma^{3} p \neq 0$ by Theo. 3.1 of [5].

By the quite similar arguments to the above, we obtain the other relations.
As an immediate consequence of this lemma we have
Corollary. $\quad \sigma_{1} \nu_{2}=\nu_{2} \sigma_{1}=0$.

2.8. Proposition 2.8. $\kappa_{1} \sigma_{1}=\sigma_{1} \kappa_{1}=i \nu \bar{\sigma} p$.

Proof. By viii) of Theo. 2.1, $\sigma_{1} \kappa_{1}=i \sigma(\bar{\kappa})=i\{\sigma, \kappa, 2\} p=i \nu \bar{\sigma} p$.
On the other hand, we have $\kappa_{1} \sigma_{1} \in i\{\kappa, 2, \sigma p\}$. The bracket $\{\kappa, 2, \sigma p\}$ is a coset of $\kappa \pi_{8}(2)+G_{15} \sigma p=\left\{\eta^{2} \bar{\kappa} p\right\}$ since $\sigma \rho=\eta \sigma \kappa=0, \varepsilon \kappa=\eta^{2} \bar{\kappa}$ and $\kappa \overline{\beta \sigma} \equiv 0 \bmod \varepsilon \kappa p$. By use of Prop. 1.5 of [6], $\left\{\left\{2, \overline{\nu^{2}}, \widetilde{\nu^{2}}\right\}, 2, \sigma p\right\}+\left\{2,\left\{\overline{\nu^{2}}, \widetilde{\nu^{2}}, 2\right\}, \sigma p\right\}+$ $\left\{2, \overline{\nu^{2}},\left\{\widetilde{\nu^{2}}, 2, \sigma p\right\}\right\} \ni 0$. By (2.15) and Corollary of 2.7 , we have $\left\{\widetilde{\nu^{2}}, 2, \sigma p\right\} \equiv$ $\nu_{2} \sigma_{1}=0 \bmod \widetilde{\nu^{2}} \pi_{8}(2)+\pi_{8}^{*}(2) \sigma p=\{i \rho p\} . \quad$ By vii) of Theo. 2.1, $\left\{2, \overline{\nu^{2}}, i \rho p\right\} \subseteq$ $\left\{2, \nu^{2}, \rho p\right\} \supseteqq\left\{2, \nu^{2}, \rho\right\} p=0 \bmod 2 \pi_{22}(2)=\left\{\eta^{2} \bar{\kappa} p\right\}$. Therefore, we have, by viii) of Theo. 2.1, $\{\kappa, 2, \sigma p\}=\{2, \kappa, \sigma p\} \supseteqq\{2, \kappa, \sigma\} p=\nu \bar{\sigma} p \bmod \eta^{2} \bar{\kappa} p$. This leads us to the first relation.
2.9. By ii) of (1.4) of [6], we have $(1 \# \nu)(1 \# \sigma)=1 \# \nu \sigma=0$ and $(1 \# \sigma)(1 \# \nu)=1 \# \sigma \nu=0$, where 1 is the generator of π_{0} and $\alpha \# \beta$ is the reduced join (see p. 6 of [6]). Clearly, we have $1 \# \nu \in \operatorname{Coext}(\nu p)$ and $1 \# \sigma \in \operatorname{Coext}(\sigma p)$. Since Coext (νp) is a coset of $i \pi_{4}(2)=\left\{2 \eta_{3}\right\}$ and Coext (σp) is a coset of $i \pi_{8}(2)=\left\{\delta A, 2 \sigma_{1}, 2 \nu_{2}\right\}$, we have $1 \# \nu=\nu_{1}+2 x \eta_{3}$ and $1 \# \sigma=$ $\pm \sigma_{1}+2 y \nu_{2}+z \delta A$. So, by the above two relations and the ones that $\nu_{1} \delta A=$
$\delta A \nu_{1}=2 \eta_{3} \sigma_{1}$, we have $\nu_{1} \sigma_{1}=\sigma_{1} \nu_{1}=2(x+y) \eta_{3} \sigma_{1}$.
Now we change the definition of ν_{1}. We replace ν_{1} by $\nu_{1}+2(x+y) \eta_{3}$. Then we have

$$
\begin{equation*}
\nu_{1} \sigma_{1}=\sigma_{1} \nu_{1}=0 \tag{2.31}
\end{equation*}
$$

We note that $\nu_{1}+2(x+y) \eta_{3}$ is contained in Coext (νp) since this is a coset of $\left\{2 \eta_{3}\right\}$.

Proposition 2.9.

i) $\quad \nu_{1} \nu_{2}=\nu_{2} \nu_{1}=\eta_{3}\left(\nu_{2} \pm \sigma_{1}\right)$
ii) $\eta_{2} \eta_{3} \nu_{2}=\eta_{2} \eta_{3} \sigma_{1}=\nu_{1} A$.
iii) $\nu_{1} \nu_{2}^{2}=\eta_{3} \nu_{2}^{2}=\eta_{3} \kappa_{1}$.
iv) $\nu_{2} \delta \nu_{2}=\delta \nu_{2}^{2}$.

Proof. Since $p \nu_{1} \nu_{2} i=p \nu_{2} \nu_{1} i=\nu^{3}=\eta(\varepsilon+\sigma \eta)=p \eta_{3}\left(\nu_{2}+\sigma_{1}\right) i$, we have, by use of Theo. 3.3 of [5], $\nu_{1} \nu_{2} \equiv \nu_{2} \nu_{1} \equiv \eta_{3}\left(\nu_{2}+\sigma_{1}\right) \bmod \left\{2 \eta_{3} \sigma_{1}, \eta_{1}^{2} A, \eta_{2}^{2} A\right\}$. Multiply these by η_{1} on the left and by η_{2} on the right respectively, then we have $\nu_{1} \nu_{2} \equiv \nu_{2} \nu_{1} \equiv$ $\eta_{3}\left(\nu_{2}+\sigma_{1}\right) \bmod 2 \eta_{3} \sigma_{1}$. Furthermore, multiply the equality $\nu_{1} \nu_{2}=\nu_{2} \nu_{1}+2 x \eta_{3} \sigma_{1}$ by A, then we have $x=0$ by i) of Prop, 2.6. This leads us to i).

By vii) of Prop. 2.1 and iii) of Prop. 2.2 and by i), $0=\nu_{1}^{2} \nu_{2}=\delta \nu_{2}^{2}+\nu_{2} \delta \nu_{2}$. Namely, iv) is proved.

The proofs of ii) and iii) are left to the reader.
2.10. From the results that $\left\{\sigma^{2}, 2, \eta\right\}=\left\{\eta, 2, \sigma^{2}\right\} \equiv \eta^{*} \bmod \eta \rho$ of ii) of Theo. 2.1, we can choose $\overline{\sigma^{2}} \in$ Ext σ^{2} and $\widetilde{\sigma^{2}} \in$ Coext σ^{2} such that

$$
\begin{equation*}
\overline{\sigma^{2}} \tilde{\eta}=\bar{\eta} \widetilde{\sigma^{2}}=\eta^{*} . \tag{2.32}
\end{equation*}
$$

By the similar arguments to (2.8), we have

$$
\begin{equation*}
\overline{\eta \sigma^{2}}=\eta^{*} p \quad \text { and } \quad \widetilde{\sigma^{2}} \eta=i \eta^{*} \tag{2.33}
\end{equation*}
$$

From the results that $\left\{\eta^{*}, 2, \eta\right\}=-\left\{\eta, 2, \eta^{*}\right\} \equiv \pm 2 \nu^{*} \bmod \eta \bar{\mu}$ of i) of Theo. 2.1, we can choose $\overline{\eta^{*}} \in \operatorname{Ext} \eta^{*}$ and $\widetilde{\eta^{*}} \in \operatorname{Coext} \eta^{*}$ such that

$$
\begin{equation*}
\overline{\eta^{*}} \tilde{\eta}= \pm 2 \nu^{*} \quad \text { and } \quad \bar{\eta} \tilde{\eta}^{*}= \pm 2 \nu^{*} \tag{2.34}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
\overline{\eta \eta^{*}}=\eta^{*} \bar{\eta} \quad \text { and } \quad \widetilde{\eta^{*}} \eta=\widetilde{\eta} \eta^{*} \tag{2.35}
\end{equation*}
$$

By Theo. 3.1 of [5], it is clear that $i \pi_{16}(2) i=\{i \eta \kappa\}$ and $\eta \pi_{16}(2)=G_{17} p . \quad$ By use of ii) of Prop. 1.2 and a) of i) of Prop. 1.5, we can choose $\sigma_{2} \in \operatorname{Coext}\left(\overline{\sigma^{2}}\right) \subset \pi_{15}$ such that

$$
\begin{equation*}
\sigma_{2} i=\widetilde{\sigma^{2}} \tag{2.36}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\eta} \sigma_{2} \equiv \pm \overline{\eta^{*}} \bmod \left\{\nu \kappa p, \eta^{2} \rho p\right\} . \tag{2.37}
\end{equation*}
$$

Obviously, we have

$$
\begin{equation*}
\sigma_{2} \tilde{\eta} \equiv \pm \widetilde{\eta^{*}} \bmod \left\{i \nu \kappa, i \eta^{2} \rho\right\} \tag{2.38}
\end{equation*}
$$

Since $\left\{\nu, \sigma^{2}, 2\right\} \equiv \nu^{*} \bmod 2 \nu^{*}$ by iv) of Theo. 2.1, we can choose, by a) of ii) of Prop. 1.8,

$$
\begin{equation*}
\nu_{1} \sigma_{2} \in \operatorname{Coext}\left(\nu^{*} p\right) \subset \pi_{18} \tag{2.39}
\end{equation*}
$$

Proposition 2.10.
i) $\delta \sigma_{2}=i \overline{\sigma^{2}}$ and $\sigma_{2} \delta=\widetilde{\sigma^{2}} p$.
ii) $\sigma_{1}^{2}=\delta \sigma_{2}+\sigma_{2} \delta$.
iii) $\eta_{1} \sigma_{2} \equiv \overline{\eta^{*}} \bmod i \nu \kappa p$ and $\sigma_{2} \eta_{1} \equiv \eta_{1} \sigma_{2} \bmod i \nu \kappa p$.
iv) $\sigma_{2} \eta_{2} \equiv \widetilde{\eta^{*}} p \bmod i \nu \kappa p$ and $\eta_{2} \sigma_{2} \equiv \sigma_{2} \eta_{2} \bmod i \nu \kappa p$.
v) $\eta_{3} \sigma_{2} \equiv \pm \widetilde{\eta} \bar{\eta}^{*} \bmod i \xi_{p}$ and $\sigma_{2} \eta_{3} \equiv \pm \eta_{3} \sigma_{2} \bmod i \bar{\zeta} p$.
vi) $\sigma_{2} \nu_{1} \equiv \nu_{1} \sigma_{2} \bmod \left\{2 \eta_{3} \sigma_{2}, i \bar{\zeta} p, i \bar{\sigma} p\right\}$.

The proof is similar to the one of Prop. 2.2 and we omit it.
We note that the following relations hold.

$$
\begin{equation*}
\overline{\nu^{2}} \widetilde{\sigma^{2}}=\overline{\sigma^{2}} \widetilde{\nu^{2}}=\sigma^{3} . \tag{2.40}
\end{equation*}
$$

We shall prove the second relation. By Lemma 2.7 and ii) of Prop. 2.10, $0=\sigma_{1}^{2} \widetilde{\nu^{2}}=\delta \sigma_{2} \widetilde{\nu^{2}}+\sigma_{2} \delta \widetilde{\nu^{2}}$. So, we have $i \overline{\sigma^{2}} \widetilde{\nu^{2}}=\widetilde{\sigma^{2}} \nu^{2}=i\left\{2, \sigma^{2}, \nu\right\} \nu=i \nu^{*} \nu=i \sigma^{3}$. Therefore we obtain $\overline{\sigma^{2}} \widetilde{\nu^{2}}-\sigma^{3} \in 2 G_{21}=0$ (see [3]).
2.11 By use of ii) of Prop. 1.2, we can choose $\kappa_{3} \in \operatorname{Coext}(\nu(\bar{\kappa})) \subset \pi_{18}$ such that

$$
\begin{equation*}
\kappa_{3} i=\tilde{\kappa} \nu+\mathrm{x} i \nu^{*} . \tag{2.41}
\end{equation*}
$$

Since $\nu_{1} \sigma_{2} i=i \nu^{*}$, we have

$$
\begin{equation*}
\kappa_{3}+x \nu_{1} \sigma_{2} \in \operatorname{Ext}(\widetilde{\kappa} \nu) . \tag{2.42}
\end{equation*}
$$

Since $\{\bar{\eta}, \tilde{\kappa} \nu, 2\}=\{2, \nu(\bar{\kappa}), \tilde{\eta}\} \equiv 0 \bmod 2 G_{20}$ by viii) of Theo. 2.1, we have, by sue of a) of ii) of Prop. 1.5 and 1.6 and by (2.6),

$$
\begin{equation*}
\bar{\eta} \kappa_{3}=0 \quad \text { and } \quad \kappa_{3} \tilde{\eta}=0 . \tag{2.43}
\end{equation*}
$$

Proposition 2.11.
i) $\quad \delta \kappa_{3}=i \nu(\bar{\kappa})$ and $\kappa_{3} \delta \equiv \tilde{\kappa} \nu p \bmod i \nu^{*} p$.
ii) $\eta_{1} \kappa_{3}=\kappa_{3} \eta_{1}=\eta_{2} \kappa_{3}=\kappa_{3} \eta_{2}=0$ and $\eta_{3} \kappa_{3}=\kappa_{3} \eta_{3}=0$.
iii) $\quad \nu_{1} \kappa_{3} \equiv \nu_{2} \kappa_{1}+\kappa_{1} \nu_{2} \bmod \left\{i \sigma \overline{\sigma^{2}}, i \nu \bar{\sigma} p\right\}$ and $\kappa_{3} \nu_{1} \equiv \nu_{1} \kappa_{3} \bmod \left\{i \sigma \overline{\sigma^{2}}, \widetilde{\sigma^{2}} \sigma p, i \nu \bar{\sigma} p\right\}$.

The proof is easy and left to the reader.
2.12. From the results that $\{\bar{\sigma}, 2, \eta\}=\{\eta, 2, \bar{\sigma}\} \equiv 0 \bmod \eta \bar{\kappa}$ of ii) of Theo. 2.1, we can choose $\overline{(\bar{\sigma})} \in \operatorname{Ext}(\bar{\sigma})$ and $\widetilde{(\bar{\sigma})} \in \operatorname{Coext}(\bar{\sigma})$ such that

$$
\begin{equation*}
\overline{(\bar{\sigma})} \tilde{\eta}=\bar{\eta}(\widetilde{\bar{\sigma}})=0 . \tag{2.44}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
\eta \overline{(\bar{\sigma})}=0 \quad \text { and } \quad \widetilde{(\bar{\sigma}}) \eta=0 . \tag{2.45}
\end{equation*}
$$

Since $i \pi_{21}(2) i=0$ by Theo. 3.1 of [5], we have, by ii) of Prop. 1.2,

$$
\begin{equation*}
\operatorname{Coext}(\overline{(\bar{\sigma})})_{i}=\widetilde{(\widetilde{\sigma})} \tag{2.46}
\end{equation*}
$$

Choose $\bar{\sigma}_{1} \in \operatorname{Coext}(\overline{(\bar{\sigma})}) \subset \pi_{20}$ arbitrarily, then we have

$$
\begin{equation*}
\bar{\eta} \bar{\sigma}_{1} \equiv 0 \bmod \left\{\nu \bar{\sigma} p, \eta^{2} \bar{\kappa} p\right\} \quad \text { and } \quad \bar{\sigma}_{1} \tilde{\eta} \equiv 0 \bmod \left\{i \nu \bar{\sigma}, i \eta^{2} \bar{\kappa}\right\} . \tag{2.47}
\end{equation*}
$$

Proposition 2.12. $\eta_{1} \bar{\sigma}_{1} \equiv \bar{\sigma}_{1} \eta_{2} \equiv \eta_{2} \bar{\sigma}_{1}=\bar{\sigma}_{1} \eta_{1}=0 \bmod i \nu \bar{\sigma} p$.
Proof. The first two relations are obivous.
For the proofs that $\eta_{2} \bar{\sigma}_{1}=\bar{\sigma}_{1} \eta_{1}=0$, we use the facts that $\{2, \eta, \bar{\sigma}, 2\}=$ $\{2, \bar{\sigma}, \eta, 2\} \equiv 0 \bmod \eta^{2} \bar{\kappa}$ of ix) of Theo. 2.1. The details are left to the reader.
2.13. Since $i \pi_{21}(2) i=0$ by Theo. 3.1 of [5], we have, by use of Prop. 1.1,

$$
\begin{equation*}
\operatorname{Coext}(\bar{\kappa} p) i=i \bar{\kappa} \tag{2.48}
\end{equation*}
$$

Let $\bar{\kappa}_{1}$ be a representative of $\operatorname{Coext}(\bar{\kappa} p) \subset \pi_{20}$, then we have, by use of a) of i) of Prop. 1.3 and 1.4,

$$
\begin{equation*}
\bar{\eta} \bar{\kappa}_{1} \equiv \pm \bar{\kappa} \bar{\eta} \bmod \nu \bar{\sigma} p \quad \text { and } \quad \bar{\kappa}_{1} \tilde{\eta} \equiv \pm \tilde{\eta} \bar{\kappa} \bmod i \nu \bar{\sigma} . \tag{2.49}
\end{equation*}
$$

Proposition 2.13.

i) $\bar{\kappa}_{1} \delta=\delta \bar{\kappa}_{1}=i \bar{\kappa} p$.
ii) $\quad \bar{\kappa}_{1} \eta_{1}=i \bar{\kappa} \bar{\eta}=$ and $\eta_{1} \bar{\kappa}_{1} \equiv \bar{\kappa}_{1} \eta_{1} \bmod i \nu \bar{\sigma} p$.
iii) $\eta_{2} \bar{\kappa}_{1}=\widetilde{\eta} \bar{\kappa} p$ and $\bar{\kappa}_{1} \eta_{2} \equiv \eta_{2} \bar{\kappa}_{1} \bmod i \nu \bar{\sigma} p$.
iv) $\nu_{2}^{3} \equiv \nu_{2} \kappa_{1}+\eta_{2} \bar{\kappa}_{1} \bmod i \nu \bar{\sigma} p$.

The proof is obvious.

3. Proof of Theorem 2.1

In this section we shall prove Theorem 2.1 which holds the key to our computations in the previous section.

We can find almost all of the results of Theo. 2.1 in [3], [4] and [6]. The ones which we can not find there will be proved by use of the methods and the results of [6].

3.1. Proof of i)

$\{\eta, 2, \eta\}= \pm 2 \nu$ by (5,4) in p. 41 of [6].
$\{\nu, \eta, 2\}=0$ since $G_{5}=0$.
$\left\{\eta, 2, \eta^{*}\right\} \equiv \pm 2 \nu^{*} \bmod \eta \bar{\mu}$ since $2\left\{\eta, 2, \eta^{*}\right\}=\{2, \eta, 2\} \eta^{*}=\eta^{2} \eta^{*}=4 \nu^{*}$ by Cor. 3.7 in p. 31 of [6].
$\left\{\nu^{*}, \eta, 2\right\} \equiv 0 \bmod 2 G_{20}$ since $\eta \bar{\kappa} \neq 0$ and $\left\{\nu^{*}, \eta, 2\right\} \eta=\nu^{*}\{\eta, 2, \eta\}=2 \nu \nu^{*}=0$.

3.2. Proof of $\mathbf{i i}$)

$\left\{\eta, 2, \nu^{2}\right\}=\left\{\eta, \nu^{2}, 2\right\} \equiv \varepsilon \bmod \eta \sigma$ by (6.1) in p. 51 of [6].
$\left\{\nu^{2}, \eta, 2\right\}=\nu\{\nu, \eta, 2\}=0$ by i).
$\{\eta, 2,8 \sigma\}=\{\eta, 8 \sigma, 2\} \equiv \mu \bmod \left\{\eta^{2} \sigma, \eta \varepsilon\right\}$. See p. 189 of [6].
$\{8 \sigma, \eta, 2\}=0$ since $\{8 \sigma, \eta, 2\} \subseteq\{2,0,2\}=2 G_{9}=0$.
$\left\{\eta, 2, \sigma^{2}\right\}=\left\{\eta, \sigma^{2}, 2\right\} \equiv \eta^{*} \bmod \eta \rho$ and $\left\{\sigma^{2}, \eta, 2\right\}=0$. See the proof of (2) of Lemma 4.2 in p. 279 of [5].
$\{\eta, 2, \bar{\sigma}\}=\{\eta, \bar{\sigma}, 2\} \equiv 0 \bmod \eta \bar{\kappa}$ and $\{\bar{\sigma}, \eta, 2\}=0$. See the proof of (4) of Lemma 4.2 in p. 280 of [5].
$\{\mu, 2,8 \sigma\}=\{\mu, 8 \sigma, 2\} \equiv \bar{\mu} \bmod \eta^{2} \rho . \quad$ See p. 189 of [6].
$\{8 \sigma, \mu, 2\} \cong\{2,0,2\}=2 G_{17}=0$

3.3. Proof of iii)

$\{\eta, 2, \varepsilon\} \equiv 0 \bmod \eta \mu . \quad$ We know that $\{\eta, 2, \bar{\nu}\} \equiv 0 \bmod \eta \mu$ by (10.1) in p .95 of [6]. Since $\bar{\nu}=\eta \sigma+\varepsilon$ and $\{\eta, 2, \eta \sigma\}=\{\eta, 2, \eta\} \sigma=2 \nu \sigma=0$, we have the assertion.
$\{\eta, 2, \kappa\} \equiv 0 \bmod \eta \rho$ by Lemma 15.2 in p. 39 of [4].
$\{\mu, 2, \varepsilon\} \equiv 0 \bmod \eta \bar{\mu}$ since $\left(G_{18} ; 2\right)=\left\{\nu^{*}, \eta \bar{\mu}\right\}, \nu\{\mu, 2, \varepsilon\}=\{\nu, \mu, 2\} \varepsilon \in G_{13} \varepsilon=0$ and $\nu \nu^{*}=\sigma^{3} \neq 0$.

3.4. Proof of iv)

$\left\{\sigma, \nu^{2}, 2\right\}=\{\sigma, \nu, 2 \nu\} \equiv 0 \bmod \sigma^{2}$ by the fact $\{\nu, \sigma, \nu\}=\sigma^{2}$ (see Exsmple 4 in p. 85 of [6]) and by (3.10) in p. 33 of [6].
$\left\{\nu, \sigma^{2}, 2\right\} \supset\{\nu, \sigma, 2 \sigma\}=\{\nu, 2 \sigma, \sigma\}=\nu^{*} \bmod 2 \nu^{*}$. See p. 153 of [6].
$\left\{\sigma^{2}, \eta, \nu\right\}=\{\sigma, \eta \sigma, \nu\}=\bar{\sigma}$ by the definition of $\bar{\sigma}$.(see p. 189 of [6]).
$\{\sigma, \varepsilon, \nu\}=0$. It is sufficient to prove $\{\sigma, \bar{\nu}, \nu\}=\bar{\sigma}$. By use of (3.7) in p. 33 of [6], $\{\{\nu, \sigma, \nu\}, \eta, \nu\}-\{\nu,\{\sigma, \nu, \eta\}, \nu\}+\{\nu, \sigma,\{\nu, \eta, \nu\}\} \ni 0$. Since $\{\nu, \sigma, \nu\}=\sigma^{2}$, $\{\sigma, \nu, \eta\} \subseteq\left(G_{12} ; 2\right)=0$ and $\{\nu, \eta, \nu\}=\bar{\nu}$ (see p. 53 of [6]), we have $\{\nu, \sigma, \bar{\nu}\}=$ $\left\{\sigma^{2}, \eta, \nu\right\}=\bar{\sigma} . \quad$ By use of ii) of (3.9) in p. 33 of [6], $\{\nu, \sigma, \bar{\nu}\}-\{\sigma, \bar{\nu}, \nu\}+$ $\{\bar{\nu}, \nu, \sigma\} \ni 0$. Since $\left\{\nu^{2}, 2, \eta\right\} \equiv \bar{\nu} \bmod \eta \sigma$ and $\{\eta \sigma, \nu, \sigma\}=\sigma\{\eta, \nu, \sigma\}=0$, we can put $\{\bar{\nu}, \nu, \sigma\}=\left\{\left\{\nu^{2}, 2, \eta\right\}, \nu, \sigma\right\}$. By use of (3.7) of [6], $\left\{\left\{\nu^{2}, 2, \eta\right\}, \nu, \sigma\right\}+$ $\left\{\nu^{2},\{2, \eta, \nu\}, \sigma\right\}+\left\{\nu^{2}, 2,\{\eta, \nu, \sigma\}\right\} \ni 0$. So, we have $\{\bar{\nu}, \nu, \sigma\}=0$. From this
and the above, we have $\{\sigma, \bar{\nu}, \nu\}=\{\nu, \sigma, \bar{\nu}\}=\bar{\sigma}$.

3.5. Proof of \mathbf{v})

$\{\eta \varepsilon, \eta, 2\}=\left\{\eta^{2} \sigma, \eta, 2\right\} \equiv \zeta \bmod 2 G_{11}$ by Lemma 9.1 in p. 91 of [6].
$\left\{\eta^{2} \rho, \eta, 2\right\} \equiv \bar{\xi} \bmod 2 G_{19} . \quad$ See (3) of Lemma 4.2 in p. 278 of [5].
$\{\nu, 8 \sigma, 2\} \supset\{\nu, 8,2 \sigma\}=\zeta \bmod 2 G_{11}$. See p. 189 of [6].
$\{\zeta, 8 \sigma, 2\} \supset\{\zeta, 2,8 \sigma\}=\widetilde{\zeta} \bmod 2 G_{19} . \quad$ See p .189 of [6].
$\{\sigma, 8 \sigma, 2\} \supset\{\sigma, 2 \sigma, 8\} \ni \rho \bmod 2 G_{15}$ by Lemma 10.9 in p. 110 of [6].
$\{\varepsilon, 8 \sigma, 2\}=\{\eta \sigma, 8 \sigma, 2\}=\eta \rho$. We have $\{\bar{\nu}, 8 \sigma, 2\} \eta=\bar{\nu}\{8 \sigma, 2, \eta\} \equiv \bar{\nu} \mu=0$ $\bmod \left\{\bar{\nu} \eta^{2} \sigma, \overline{\bar{\nu}} \eta \varepsilon\right\}=0$. Since $G_{16}=\left\{\eta \rho, \eta^{*}\right\}=Z_{2}+Z_{2}$ and $\eta^{2} \rho$ and $\eta \eta^{*}$ are linearly independent in G_{17}, we obtain $\{\bar{\nu}, 8 \sigma, 2\} \equiv 0 \bmod \{\bar{\nu} \eta \sigma, \bar{\nu} \varepsilon\}+2 G_{17}=0$. On the other hand, $\{\bar{\nu}, 8 \sigma, 2\}=\{\varepsilon, 8 \sigma, 2\}+\{\eta \sigma, 8 \sigma, 2\}$ and $\{\eta \sigma, 8 \sigma, 2\}=\eta\{\sigma, 8 \sigma, 2\}=\eta \rho$. This leads us to the assertion.
$\{8 \sigma, 2,8 \sigma\}=16 \rho$. See p. 103 of [6].

3.6. Proof of $\mathbf{v i}$)

$\{\eta \kappa, \eta, 2\}=\nu \kappa . \quad$ By Lemma 15.1 in p. 39 of [4], $\{\eta \kappa, \eta, 2\} \subset\{\eta, \eta \kappa, 2\} \equiv \nu \kappa$ $\bmod \left\{\eta \eta^{*}, \eta^{2} \rho\right\}$. Since $\{\eta \kappa, \eta, 2\}$ is a coset of 0 , we can put $\{\eta \kappa, \eta, 2\}=$ $\nu \kappa+x \eta \eta^{*}+y \eta^{2} \rho$, where x and y are 0 or 1 respectively. Multiply this equality by η, then we have $x=0$ since $\{\eta \kappa, \eta, 2\} \eta=\eta \kappa\{\eta, 2, \eta\}=2 \nu \eta \kappa=0, \eta \nu \kappa=\eta^{3} \rho=0$ and $\eta^{2} \eta^{*} \neq 0$ in G_{18}. Multiply it by $\bar{\eta}$ on the right, then we have $y=0$. For $\kappa \nu \bar{\eta}=\kappa\{\nu, \eta, 2\} p=0$ by i), $\eta^{2} \rho \bar{\eta}=\left\{\eta^{2} \rho, \eta, 2\right\} p=\bar{\zeta} p \neq 0$ by v) and Theo. 3.1 of [5] and $\{\eta \kappa, \eta, 2\} \bar{\eta} \cong\left\{\eta \kappa, \eta, \eta^{2} p\right\} \cong\{\kappa, 4 \nu, \eta p\} \supseteqq\{\kappa, 4,0\} \equiv 0 \bmod \kappa \pi_{5}(2)+G_{18} \eta p=0$.
$\left\{\kappa, 2, \nu^{2}\right\}=\eta \bar{\kappa} . \quad$ By the definition of $\bar{\kappa}$ (see p. 44 of [4]) and by the fact $\nu^{2}=\{\eta, \nu, \eta\}$ (see Example 4 in p. 85 of [6]), we have $\eta \bar{\kappa}=\eta\{\nu, \bar{\eta}, \tilde{\kappa}\}=\{\eta, \nu, \bar{\eta}\} \tilde{\kappa}$ $=\left\{\nu^{2}, 2, \kappa\right\}$.

3.7. Proof of vii)

$\left\{2, \nu^{2}, \rho\right\}=0$. By use of (3.7) in p. 33 of [6], $\left\{2, \nu^{2},\{\sigma, 2 \sigma, 8\}\right\}+$ $\left\{2,\left\{\nu^{2}, \sigma, 2 \sigma\right\}, 8\right\}+\left\{\left\{2, \nu^{2}, \sigma\right\}, 2 \sigma, 8\right\} \ni 0$. Since $\left\{\nu^{2}, \sigma, 2 \sigma\right\}=\nu\{\nu, \sigma, 2 \sigma\}=\nu \nu^{*}$ $=\sigma^{3},\left\{2, \nu^{2}, \sigma\right\} \equiv 0 \bmod \sigma^{2}$ and $\left\{\sigma^{2}, 2 \sigma, 8\right\}=\sigma\{\sigma, 2 \sigma, 8\}=\sigma \rho=0$, we have $\left\{2,\left\{\nu^{2}, \sigma, 2 \sigma\right\}, 8\right\}=\left\{2, \sigma^{3}, 8\right\}=4\left\{2, \sigma^{3}, 2\right\}=0$ and $\left\{\left\{2, \nu^{2}, \sigma\right\}, 2 \sigma, 8\right\}=0$. This leads us to the assertion.
$\left\{\nu, \eta, \eta^{2} \sigma\right\}=\{\nu, 4 \nu, \sigma\}=2\{\nu, 2 \nu, \sigma\}=0$.
$\{\sigma, \nu, \zeta\}=0 . \quad$ By use of (3.7) in p. 33 of [6], $\left\{\sigma, \nu,\left\{\eta, \eta^{2} \sigma, 2\right\}\right\}-$ $\left\{\sigma,\left\{\nu, \eta, \eta^{2} \sigma\right\}, 2\right\}+\left\{\{\sigma, \nu, \eta\}, \eta^{2} \sigma, 2\right\} \ni 0$. We have $\left\{\sigma,\left\{\nu, \eta, \eta^{2} \sigma\right\}, 2\right\}=\{\sigma, 0,2\}$ $=\sigma G_{15}+2 G_{22}=0$ and $\left\{\{\sigma, \nu, \eta\}, \eta^{2} \sigma, 2\right\}=\left\{0, \eta^{2} \sigma, 2\right\}=2 G_{22}=0$. This leads us to the assertion.

3.8. Proof. of viii)

$\{\bar{\eta}, \tilde{\kappa} \nu, 2\} \equiv 0 \bmod 2 G_{20} . \quad$ By the proof of Lemma 15.3 in p. 43 and Lemma 15.4 in p. 44 of [4], $\{\eta \kappa, \eta, \nu\}= \pm 2 \bar{\kappa}$. On the other hand $\{\eta \kappa, \eta, \nu\}=\{\bar{\eta}, i \eta \kappa, \nu\}$ $=\{\bar{\eta}, 2 \tilde{\kappa}, \nu\} \supseteqq\{\bar{\eta}, \tilde{\kappa}, 2 \nu\} \cong\{\bar{\eta}, \tilde{\kappa} \nu, 2\}$. Therefore we have the assertion.
$\{2, \nu(\bar{\kappa}), \tilde{\eta}\} \equiv 0 \bmod 2 G_{20}$. The proof is quite similar to the above and we omit it.
$\left\{\overline{\nu^{2}}, \widetilde{\nu^{2}}, 2\right\}=\left\{2, \overline{\nu^{2}}, \widetilde{\nu^{2}}\right\}=\kappa$. The proof that $\left\{\overline{\nu^{2}}, \widetilde{\nu^{2}}, 2\right\} \equiv\left\{2, \overline{\nu^{2}}, \widetilde{\nu^{2}}\right\} \equiv \kappa \bmod \sigma^{2}$ is quite similar to the dicussions in p. 40 of [4] and we omit it. By Lemma of $\S 2, \sigma\left\{\overline{\nu^{2}}, \widetilde{\nu^{2}}, 2\right\}=2\left\{\sigma, \overline{\nu^{2}}, \widetilde{\nu^{2}}\right\}=2 G_{21}=0$ and $\left\{2, \overline{\nu^{2}}, \widetilde{\nu^{2}}\right\} \sigma=2\left\{\overline{\nu^{2}}, \widetilde{\nu^{2}}, \sigma\right\}=0$. So, the fact $\sigma^{3} \neq 0$ leads us to the assertion.
$\{\kappa, 8 \sigma, 2\}=\{\kappa, 2,8 \sigma\} \equiv 0 \bmod \eta^{2} \bar{\kappa}$. By use of Prop. 1.5 in p. 12 of [6], $\left\{\left\{2, \overline{\nu^{2}}, \widetilde{\nu^{2}}\right\}, 2,8 \sigma\right\}+\left\{2,\left\{\overline{\nu^{2}}, \widetilde{\nu^{2}}, 2\right\}, 8 \sigma\right\}+\left\{2, \overline{\nu^{2}},\left\{\widetilde{\nu^{2}}, 2,8 \sigma\right\}\right\} \ni 0$. We have $\left\{\overline{\nu^{2}}, 2,8 \sigma\right\} \subseteq i G_{15}=\{i \rho, i \eta \kappa\}$ since $\left\{\nu^{2}, 2,8 \sigma\right\}=\{\nu, 2 \nu, 8 \sigma\}=8\{\nu, 2 \nu, \sigma\}=0$. It follows that $\left\{2, \overline{\nu^{2}}, i \rho\right\} \subseteq\left\{2, \nu^{2}, \rho\right\}=0$ and $\left\{2, \overline{\nu^{2}}, i \eta \kappa\right\} \subseteq\left\{2, \nu^{2}, \eta \kappa\right\}=\left\{2, \nu^{2}, \eta\right\} \kappa=\varepsilon \kappa$ $=\eta^{2} \bar{\kappa}$. Therefore, we have $\{\kappa, 2,8 \sigma\} \equiv\{2, \kappa, 8 \sigma\}=8\{2, \kappa, \sigma\}=8 G_{22}=0 \bmod \eta^{2} \bar{\kappa}$.
$\{\sigma, \kappa, 2\}=\nu \bar{\sigma} . \quad$ Since $\left\{\nu, \eta, \eta^{2} \sigma\right\}=0$ and $\left\{\nu, \eta, \nu^{3}\right\}=\{\nu, \eta, \nu\} \nu^{2}=\bar{\nu} \nu^{2}=0$, the tertial composition $\{\nu, \eta, 2, \bar{\nu}\}$ is a coset of 0 . Obviously, $\sigma\{\nu, \eta, 2, \bar{\nu}\}=$ $\sigma\left\{(\bar{\nu})_{n}, \tilde{2}_{n}, \bar{\nu}\right\}=\left\{\sigma,(\bar{\nu})_{n}, \tilde{2}_{\eta}\right\} \bar{\nu}=G_{13} \bar{\nu}=0$. So, by the definition of κ, we can take $\kappa=\left\{(\bar{\nu})_{\eta}, \tilde{2}_{\eta}, \bar{\nu}\right\}$ (see p. 96 of [6]).

By use of Prop. 1.5 in p. 12 of [6], $\left.\left\{\sigma,\left\{(\bar{\nu})_{n}, \tilde{2}_{n}, \bar{\nu}\right\}, 2\right\}+\{\sigma, \overline{(\nu})_{n},\left\{\tilde{2}_{n}, \bar{\nu}, 2\right\}\right\}+$ $\left.\left\{\{\sigma, \overline{(\nu})_{\eta}, \tilde{2}_{\eta}\right\}, \bar{\nu}, 2\right\} \ni 0$. Since $\left\{\sigma,(\bar{\nu})_{n}, \tilde{2}_{\eta}\right\} \subseteq G_{13} \approx Z_{3}$, we have $\{\sigma, \kappa, 2\}=$ $\left\{\sigma,(\bar{\nu})_{n},\left\{\tilde{2}_{n}, \bar{\nu}, 2\right\}\right\}$. Since $\{2, \bar{\nu}, 2\}=\eta \bar{\nu}=\nu^{3}$ by Cor. 3.7 in p. 31 of [6], we can take $\left(\widetilde{\nu}_{\eta}\right) \nu^{2} \equiv\left\{\tilde{2}_{\eta}, \bar{\nu}, 2\right\} \bmod i_{\eta} \zeta$. Since $\left\{\sigma,\left(\bar{\nu}_{\eta}, i_{\eta} \zeta\right\} \subseteq\{\sigma, \nu, \zeta\}=0\right.$, we have $\{\sigma, \kappa, 2\}=\left\{\sigma,(\bar{\nu})_{\eta}, \widetilde{\nu}_{\eta} \nu^{2}\right\}=\left\{\sigma,(\bar{\nu})_{\eta} \tilde{\nu}_{\eta}, \nu^{2}\right\}=\left\{\sigma, \bar{\nu}, \nu^{2}\right\}=\{\sigma, \bar{\nu}, \nu\} \nu=\nu \bar{\sigma}$.

3.9. Proof of ix)

$\{2,4 \nu, \eta, 2\}=0$. By the definition of $\bar{\kappa}$, we have $0=8 \bar{\kappa}=8\left\{(\bar{\nu})_{\eta}, \tilde{2}_{\eta}, \kappa\right\} \subseteq$ $2\left\{4(\nu)_{\eta}, \tilde{2}_{\eta}, \kappa\right\}=\left\{2,4(\bar{\nu})_{\eta}, \tilde{2}_{\eta}\right\} \kappa=\{2,4 \nu, \eta, 2\} \kappa$. It is clear that $\{2,4 \nu, \eta, 2\}$ is a coset of 0 . So, we have $\{2,4 \nu, \eta, 2\} \kappa=0$. Since $G_{6}=\left\{\nu^{2}\right\}$ and $\nu^{2} \kappa=4 \bar{\kappa} \neq 0$ (see Lemma 15.4 in p. 44 of [4]), we have the assertion.
$\{2, \bar{\sigma}, \eta, 2\} \equiv 0 \bmod \eta^{2} \bar{\kappa} . \quad$ The proof that $\{2, \bar{\sigma}, \eta, 2\}$ is a coset of $\eta^{2} \bar{\kappa}$ is left to the reader.

Since $\bar{\sigma}=\{\eta \sigma, \sigma, \nu\}$ and $\{\sigma, \nu, \eta\}=0$, we can choose $\left.\overline{(\bar{\sigma}})_{\eta} \in\{\eta \sigma, \sigma, \overline{(\nu})_{\eta}\right\}$. So, we can put $\{2, \bar{\sigma}, \eta, 2\} \equiv\left\{2, \overline{(\bar{\sigma}}_{\eta}, \tilde{2}_{\eta}\right\}=\left\{2,\left\{\eta \sigma, \sigma,(\bar{\nu})_{\eta}\right\}, \tilde{2}_{\eta}\right\} \bmod \eta^{2} \bar{\kappa}$. By use of Prop. 1.5 of [6], $\left\{2,\left\{\eta \sigma, \sigma,(\bar{\nu})_{n}\right\}, \tilde{2}_{\eta}\right\}+\left\{2, \eta \sigma,\left\{\sigma,\left(\bar{\nu}_{\eta}, \tilde{2}_{\eta}\right\}\right\}+\right.$ $\left\{\{2, \eta \sigma, \sigma\},(\bar{\nu})_{\eta}, \tilde{2}_{\eta}\right\} \ni 0$. Since $\left\{\sigma,(\bar{\nu})_{\eta}, \tilde{2}_{\eta}\right\} \cong G_{13} \approx Z_{3},\{2, \eta \sigma, \sigma\} \equiv\left\{2, \eta, \sigma^{2}\right\}=0$ $\bmod \mu \sigma$ and $\left\{\mu \sigma,(\bar{\nu})_{\eta}, \tilde{2}_{\eta}\right\}=\mu\left\{\sigma,(\bar{\nu})_{\eta}, \tilde{2}_{\eta}\right\}=0$, we have the assertion.
$\{2, \eta, \bar{\sigma}, 2\} \equiv 0 \bmod \eta^{2} \bar{\kappa}$. The proof is quite similar to the above and we omit it.

4. The ring structure of $\boldsymbol{\pi}_{*}$

In this section we shall state our main theorems.

By use of the discussions in $\S 2$ and Theo. 3.3 of [5], we obtain the following
Theorem 4.1. A set of additive generators for π_{*} is as follows in $\operatorname{dim} \leqq 21$:
$\delta, 1, \eta_{1}, \eta_{2}, \eta_{1}^{2}, \eta_{2}^{2}, \delta \nu_{1}, \eta_{3}, \nu_{1}, \eta_{2} \eta_{3}, \delta \nu_{2} \delta, \delta \nu_{2}, \nu_{2} \delta, \delta \sigma_{1}, \nu_{2}, \sigma_{1}, \delta A, A, \eta_{1} \nu_{2}, \eta_{2} \nu_{2}$, $\eta_{1} \sigma_{1}, \eta_{2} \sigma_{1}, \eta_{1}^{2} \nu_{2}, \eta_{2}^{2} \nu_{2}, \eta_{1}^{2} \sigma_{1}, \eta_{2}^{2} \sigma_{1}, \eta_{1} A, \eta_{2} A, \eta_{1}^{2} A, \eta_{2}^{2} A, \eta_{3} \sigma_{1}, \eta_{3}\left(\nu_{2}+\sigma_{1}\right), \eta_{3} A, \nu_{1} A$, $\eta_{2} \eta_{3} A, \delta \sigma_{2} \delta, \kappa_{1} \delta, \delta \sigma_{2}, \sigma_{2} \delta, \kappa_{1}, \nu_{2}^{2}, \delta \sigma_{1} A, \sigma_{2}, \sigma_{1} A, \eta_{1} \kappa_{1}, \eta_{2} \nu_{2}^{2}, \delta A^{2}, A^{2}, \kappa_{2}, \eta_{1} \sigma_{2}, \eta_{2} \sigma_{2}$, $\eta_{1} \sigma_{1} A, \eta_{2} \sigma_{1} A, \eta_{1} A^{2}, \eta_{2} A^{2}, \delta \kappa_{3}, \kappa_{3} \delta, \eta_{1}^{2} \sigma_{2}, \eta_{2}^{2} \sigma_{2}, \eta_{1}^{2} \sigma_{1} A, \eta_{2}^{2} \sigma_{1} A, \delta \nu_{1} \sigma_{2}, \kappa_{3}, \nu_{1} \sigma_{2}, \eta_{1}^{2} A^{2}$, $\eta_{2}^{2} A^{2}, \eta_{3} \sigma_{2}, \eta_{3} \sigma_{1} A, \delta \bar{\sigma}_{1} \delta, \eta_{2} \eta_{3} \sigma_{2}, \eta_{3} A^{2}, \nu_{1} A^{2}, \delta \bar{\sigma}_{1}, \bar{\sigma}_{1} \delta, \delta \bar{\kappa}_{1}, \bar{\sigma}_{1}, \bar{\kappa}_{1}, \eta_{2} \eta_{3} A^{2}, \delta \nu_{2} \kappa_{1}, \delta \sigma_{1} \sigma_{2} \delta$, $\nu_{2} \kappa_{1}, \eta_{1} \bar{\kappa}_{1}, \eta_{2} \bar{\kappa}_{1}, \delta \sigma_{1} \sigma_{2}, \sigma_{1} \sigma_{2} \delta, \delta \nu_{1} \bar{\sigma}_{1} \delta$.

The ring structure of π_{*}, in $\operatorname{dim} \leqq 21$, is given by the following
Theorem 4.2. The ring π_{*}, in $\operatorname{dim} \leqq 21$, is generated by $\delta, \eta_{1}, \eta_{2}, \eta_{3}, \nu_{1}, \nu_{2}$, $\sigma_{1}, A, \kappa_{1}, \sigma_{2}, \kappa_{2}, \kappa_{3}, \bar{\sigma}_{1}, \bar{\kappa}_{1}$, with the following relations:

```
\(\delta^{2}=0\),
\(\delta \eta_{1}=\eta_{2} \delta=0, \delta \eta_{2}=\eta_{1} \delta=2.1\),
\(\eta_{1} \eta_{2}=\eta_{2} \eta_{1}=0, \delta \eta_{3}=\eta_{1}^{2}, \eta_{3} \delta=\eta_{2}^{2}, \nu_{1} \delta=\delta \nu_{1}\),
\(\eta_{1} \eta_{3}=\eta_{3} \eta_{2}=\eta_{1} \nu_{1}=\nu_{1} \eta_{1}=\eta_{2} \nu_{1}=\nu_{1} \eta_{2}=0, \eta_{3} \eta_{1}=\eta_{2} \eta_{3}\),
\(\eta_{2}^{2} \eta_{3}=0\),
\(\eta_{3}^{2}=\eta_{3} \nu_{1}=\nu_{1} \eta_{3}=0, \nu_{1}^{2}=\delta \nu_{2}+\nu_{2} \delta, \sigma_{1} \delta=\delta \sigma_{1}\),
\(A \delta=\delta A+2 x \sigma_{1}+2 y \nu_{2}\),
\(\nu_{2} \eta_{1}=\eta_{1} \nu_{2}, \nu_{2} \eta_{2}=\eta_{2} \nu_{2}, \sigma_{1} \eta_{1}=\eta_{1} \sigma_{1}, \sigma_{1} \eta_{2}=\eta_{2} \sigma_{1}\),
\(A \eta_{1}=\eta_{1} A+x \eta_{1}^{2} \sigma_{1}+y \eta_{1}^{2} \nu_{2}, A \eta_{2}=\eta_{2} A+x \eta_{2}^{2} \sigma_{1}+y \eta_{2}^{2} \nu_{2}\),
\(\nu_{2} \eta_{3}= \pm \eta_{3} \nu_{2}, \sigma_{1} \eta_{3}= \pm \eta_{3} \sigma_{1}, \nu_{2} \nu_{1}=\nu_{1} \nu_{2}=\eta_{3}\left(\nu_{2} \pm \sigma_{1}\right), \nu_{1} \sigma_{1}=\sigma_{1} \nu_{1}=0\).
\(\eta_{2} \eta_{3} \sigma_{1}=A \nu_{1}=\nu_{1} A, A \eta_{3}= \pm \eta_{3} A+(x+y) \nu_{1} A\),
\(\delta \kappa_{1}=0, \delta \nu_{2}^{2}=\kappa_{1} \delta\),
\(\sigma_{1} \nu_{2}=\nu_{2} \sigma_{1}=0, \sigma_{1}^{2}=\delta \sigma_{2}+\sigma_{2} \delta\),
\(\eta_{2} \kappa_{1}=\kappa_{1} \eta_{2}=0, \eta_{1} \nu_{2}^{2}=\delta \kappa_{2}=\kappa_{1} \eta_{1}=\eta_{1} \kappa_{1}, \kappa_{2} \delta=\eta_{2} \nu_{2}^{2}, A \sigma_{1}= \pm \sigma_{1} A, A \nu_{2} \equiv \nu_{2} A \equiv\)
\(\sigma_{1} A \bmod \left\{2 \sigma_{1} A, \eta_{1} \kappa_{1}, \eta_{2} \nu_{2}^{2}\right\}\),
    \(\sigma_{2} \eta_{1} \equiv \eta_{1} \sigma_{2} \bmod 2 \kappa_{2}, \sigma_{2} \eta_{2} \equiv \eta_{2} \sigma_{2} \bmod 2 \kappa_{2}\),
    \(\eta_{1} \kappa_{2}=\kappa_{2} \eta_{2}=\kappa_{1} \eta_{3}=0, \kappa_{1} \nu_{1} \equiv \nu_{1} \kappa_{1}=\delta \kappa_{3} \bmod \delta \nu_{1} \sigma_{2}, \eta_{3} \nu_{2}^{2}=\eta_{3} \kappa_{1}=\eta_{2} \kappa_{2}=\kappa_{2} \eta_{1} \equiv \delta \kappa_{3}+\)
```

$\kappa_{3} \delta \bmod \delta \nu_{1} \sigma_{2}$,
$\sigma_{2} \eta_{3} \equiv \pm \eta_{3} \sigma_{2} \bmod 2 \eta_{3} \sigma_{1} A, \sigma_{2} \nu_{1} \equiv \nu_{1} \sigma_{2} \bmod \left\{2 \eta_{3} \sigma_{2}, 2 \eta_{3} \sigma_{1} A, \delta \bar{\sigma}_{1} \delta\right\}$,
$\eta_{1} \kappa_{3}=\kappa_{3} \eta_{1}=\eta_{2} \kappa_{3}=\kappa_{3} \eta_{2}=\eta_{3} \kappa_{2}=\kappa_{2} \eta_{3}=\nu_{1} \kappa_{2}=\kappa_{2} \nu_{1}=0, \bar{\kappa}_{1} \delta=\delta \bar{\kappa}_{1}$,
$\eta_{3} \kappa_{3}=\kappa_{3} \eta_{3}=\eta_{2} \bar{\sigma}_{1}=\bar{\sigma}_{1} \eta_{1}=0, \quad \eta_{1} \bar{\sigma}_{1} \equiv \bar{\sigma}_{1} \eta_{2} \equiv 0 \bmod \delta \nu_{1} \bar{\sigma}_{1} \delta, \sigma_{1} \kappa_{1}=\kappa_{1} \sigma_{1}=\delta \nu_{1} \bar{\sigma}_{1} \delta$,
$\kappa_{1} \nu_{2} \equiv \bar{\kappa}_{1} \eta_{1} \equiv \eta_{1} \bar{\kappa}_{1} \bmod \delta \nu_{1} \bar{\sigma}_{1} \delta, \quad \bar{\kappa}_{1} \eta_{2} \equiv \eta_{2} \bar{\kappa}_{1} \bmod \delta \nu_{1} \bar{\sigma}_{1} \delta, \quad \nu_{2}^{3} \equiv \nu_{2} \kappa_{1}+\eta_{2} \bar{\kappa}_{1} \bmod \delta \nu_{1} \bar{\sigma}_{1} \delta$,
$\nu_{1} \kappa_{3} \equiv \nu_{2} \kappa_{1}+\eta_{1} \bar{\kappa}_{1} \bmod \left\{\delta \sigma_{1} \sigma_{2}, \delta \nu_{1} \bar{\sigma}_{1} \delta\right\}, \kappa_{3} \nu_{1} \equiv \nu_{1} \kappa_{3} \bmod \left\{\delta \sigma_{1} \sigma_{2}, \sigma_{1} \sigma_{2} \delta, \delta \nu_{1} \bar{\sigma}_{1} \delta\right\}$, where
x and y are fixed integers 0 or 1 respectively.

Proof. The relations hold by use of our propositions in §2.
To complete the proof of this theorem, we must construct the table obtained

Table of relations, I.

	δ	η_{1}	η_{2}	η_{3}	ν_{1}	ν_{2}	σ_{1}	A	κ_{1}	σ_{2}	κ_{2}	κ_{3}	$\bar{\sigma}_{1}$	$\bar{\kappa}_{1}$
δ	0	0	2	η_{1}^{2}	$\delta \nu_{1}$	$\delta \nu_{2}$	$\delta \sigma_{1}$	δA	0	$\delta \sigma_{2}$	$\eta_{1} \kappa_{1}$	$\delta \kappa_{3}$	$\delta \bar{\sigma}_{1}$	$\delta \bar{\kappa}_{1}$
η_{1}	2	η_{1}^{2}	0	0	0	$\eta_{1} \nu_{2}$	$\eta_{1} \sigma_{1}$	$\eta_{1} A$	$\eta_{1} \kappa_{1}$	$\eta_{1} \sigma_{2}$	0	0	$-\overline{0} \begin{gathered} \bmod \\ \delta \nu_{1} \bar{\sigma}_{1} \delta \end{gathered}$	$\eta_{1} \bar{\kappa}_{1}$
η_{2}	0	0	η_{2}^{2}	$\eta_{2} \eta_{3}$	0	$\eta_{2} \nu_{2}$	$\eta_{2} \sigma_{1}$	$\eta_{2} A$	0	$\eta_{2} \sigma_{2}$	$\begin{gathered} \delta \kappa_{3}+\kappa_{\kappa^{\prime}} \delta \\ \bmod \\ \delta \nu_{1} \sigma_{2} \\ \hline \end{gathered}$	0	0	$\eta_{2} \bar{\kappa}_{1}$
η_{1}^{2}	0	$2 \eta_{3}$	0	0	0	$\eta_{1}^{2} \nu_{2}$	$\eta_{1}^{2} \sigma_{1}$	$\eta_{1}^{2} A$	$2 \kappa_{2}$	$\eta_{1}^{2} \sigma_{2}$	0	0	0	$\eta_{1}^{2} \bar{\kappa}_{1}$
η_{2}^{2}	0	0	$2 n_{3}$	0	0	$\eta_{2}^{2} \nu_{2}$	$\eta_{2}^{2} \sigma_{1}$	$\eta_{2}^{2} A$	0	$\eta_{2}^{2} \sigma_{2}$	0	0	0	$\eta_{2}^{2} \bar{\kappa}_{1}$
$\delta \nu_{1}$	0	0	0	0	$\delta \nu_{2} \delta$	$\eta_{1}^{2}\left(\nu_{2}+\sigma_{1}\right)$	0	$2 \eta_{3} \sigma_{1}$	0	$\delta \nu_{1} \sigma_{2}$	0	$\delta \nu_{2} \kappa_{1}$	$\delta \nu_{1} \bar{\sigma}_{1}$	
η_{3}	η_{2}^{2}	$\eta_{2} \eta_{3}$	0	0	0	$\eta_{3} \nu_{2}$	$\eta_{3} \sigma_{1}$	$\eta_{3} A$	$\eta_{2} \kappa_{2}$	$\eta_{3} \sigma_{2}$	0	0		$\eta_{3} \bar{\kappa}_{1}$
ν_{1}	$\delta \nu_{1}$	0	0	0	$\delta \nu_{2}+\nu_{2} \delta$	$\eta_{3}\left(\nu_{2} \pm \sigma_{1}\right)$	0	$\nu_{1} A$	$\delta \kappa_{3}$	$\nu_{1} \sigma_{2}$	0	$\begin{gathered} \overline{\nu_{2} \kappa_{1}+\eta_{1} \bar{\kappa}_{1}} \\ \bmod \\ \left\{\delta \sigma_{1} \sigma_{2}, \delta\right\} \\ \left.\delta \nu_{1} \bar{\sigma}_{1} \delta\right\} \end{gathered}$	$\nu_{1} \bar{\sigma}_{1}$	
$\eta_{2} \eta_{3}$	$2 \eta_{3}$	0	0	0	0	$\nu_{1} A$	$\nu_{1} A$	$\eta_{2} \eta_{3} A$	0	$\eta_{2} \eta_{3} \sigma_{2}$	0	0	0	
$\delta \nu_{z} \delta$	0	0	0	0	0	0	0	0	0	$\delta \sigma_{1} \sigma_{2} \delta$	0			
$\delta \nu_{2}$	$\delta \nu_{2} \delta$	0	$2 \nu_{2}$	$\eta_{1}^{2} \nu_{2}$	$\eta_{1}^{2}\left(\nu_{2}+\sigma_{1}\right)$	$\kappa_{1} \delta$	0	$\delta \sigma_{1} A$	$\delta \nu_{2} \kappa_{1}$	$\begin{gathered} \overline{\delta \sigma_{1} \sigma_{2}} \\ \bmod \\ \delta \nu_{1} \bar{\sigma}_{1} \delta \end{gathered}$	$\eta_{1}^{2} \bar{\kappa}_{1}$			
$\nu_{2} \delta$	0	0	$2 \nu_{2}$	$\eta_{1}^{2} \nu_{2}$	$\eta_{2}^{2}\left(\nu_{2}+\sigma_{1}\right)$	$\kappa_{1} \delta$	0	$\delta \sigma_{1} A$	0	$\begin{gathered} \sigma_{1} \sigma_{2} \delta \\ \text { mod } \\ \cos _{1} \sigma_{1} \delta \\ \hline \end{gathered}$	$\eta_{1}^{2} \bar{\kappa}_{1}$			
$\delta \sigma_{1}$	0	0	$2 \sigma_{1}$	$\eta_{1}^{2} \sigma_{1}$	0	0	$\delta \sigma_{2} \delta$	$\delta \sigma_{1} A$	0	$\delta \sigma_{1} \sigma_{2}$	0			
ν_{2}	$\nu_{2} \delta$	$\eta_{1} \nu_{2} \eta^{\prime}$	$\eta_{2} \nu_{2}$	$\pm \eta_{3} \nu_{2}$	$\nu_{1} \nu_{2}$	ν_{2}^{2}	0	$\sigma_{1} A$	$\nu_{2} \kappa_{1}$					

Table of rleatiotions, II.

	δ	η_{1}	η_{2}	η_{3}	ν_{1}	ν_{2}	σ_{1}	A	κ_{1}	σ_{2}	κ_{2}	κ_{3}	$\bar{\sigma}_{1}$	$\bar{\kappa}_{1}$
σ_{1}	$\delta \sigma_{1}$	$\eta_{1} \sigma_{1}$	$\eta_{2} \sigma_{1}$	$\pm \dot{\eta}_{3} \sigma_{1}$	0	0	$\begin{gathered} \hline \delta \sigma_{2} \\ +\sigma_{2} \delta \end{gathered}$	$\sigma_{1} A$	$\delta \nu_{1} \bar{\sigma}_{1} \delta$	$\sigma_{1} \sigma_{2}$				
δA	0	0	$2 A$	$\begin{aligned} & \eta_{1}^{2} A+2 \\ & (x+y) \eta_{3} \sigma_{1} \end{aligned}$	$2 \eta_{3} \sigma_{1}$	$\delta \sigma_{1} A$	$\delta \sigma_{1} A$	δA^{2}	0					
A	$\begin{gathered} \delta A+2 x \sigma_{1} \\ +2 y \nu_{2} \end{gathered}$	$\left[\begin{array}{r} \eta_{1} A+x \eta_{1}^{2} \sigma_{1} \\ +y \eta_{1}^{2} \nu_{2} \end{array}\right]$	$\begin{array}{r} \eta_{2} A+x \eta_{2}^{2} \sigma_{1} \\ +y \eta_{2}^{2} \nu_{2} \end{array}$	$\begin{aligned} & \pm \eta_{3} A+ \\ & (x+y) \nu_{1} A \end{aligned}$	$\nu_{1} A$	$\begin{gathered} \pm \sigma_{1} A \\ \bmod \\ \left\{\eta_{1} \kappa_{1}, \eta_{2} \nu_{2}^{2}\right\} \end{gathered}$	$\pm \sigma_{1} A$	A^{2}						
$\eta_{1} \nu_{2}$	$2 \nu_{2}$	$\eta_{1}^{2} \nu_{2}$	0	0	0	$\eta_{1} \kappa_{1}$	0	$\begin{array}{\|c} \hline \eta_{1} \sigma_{1} A \\ \bmod \\ 2 \kappa_{2} \\ \hline \end{array}$	$\eta_{1}^{2} \bar{\kappa}_{1}$					
$\eta_{2} \nu_{2}$	0	0	$\eta_{2}^{2} \nu_{2}$	$\nu_{1} A$	0	$\eta_{2} \nu_{2}^{2}$	0	$\begin{gathered} \hline \eta_{2} \sigma_{1} A \\ \bmod \\ 2 \kappa_{2} \\ \hline \end{gathered}$	0					
$\eta_{1} \sigma_{1}$	$2 \sigma_{1}$	$\eta_{1}^{2} \sigma_{1}$	0	0	0	0	0	$\eta_{1} \sigma_{1} A$	0					
$\eta_{2} \sigma_{1}$	0	0	$\eta_{2}^{2} \sigma_{1}$	$\nu_{1} A$	0	0	0	$\eta_{2} \sigma_{1} A$	0					
$\eta_{1}^{2} \nu_{2}$	0	$2 \eta_{3} \sigma_{1}$	0	0	0	$2 \kappa_{2}$	0	$\eta_{1}^{2} \sigma_{1} A$						
$\eta_{2}^{2} \nu_{2}$	0	0	$2 \eta_{3} \sigma_{1}$	0	0	$2 \kappa_{2}$	0	$\eta_{2}^{2} \sigma_{1} A$	0					
$\eta_{1}^{2} \sigma_{1}$	0	$2 \eta_{3} \sigma_{1}$	0	0	0	0	0	$\eta_{1}^{2} \sigma_{1} A$	0					
$\eta_{2}^{2} \sigma_{1}$	0	0	$2 \eta_{3} \sigma_{1}$	0	0	0	0	$\eta_{2}^{2} \sigma_{1} A$	0					
$\eta_{1} A$	$2 A$	$\begin{aligned} & \eta_{1}^{2} A+2 \eta_{3} \\ & \left(x \sigma_{1}+y \nu_{2}\right) \end{aligned}$	0	0	0	$\begin{gathered} \eta_{1} \sigma_{1} A \\ \bmod 2 \kappa_{2} \end{gathered}$	$\eta_{1} \sigma_{1} A$	$\eta_{1} A^{2}$						
$\eta_{2} A$	0	0	$\begin{aligned} & \eta_{2}^{2} A+2 \eta_{3} \\ & \left(x \sigma_{1}+y \nu_{2}\right) \end{aligned}$	$\eta_{2} \eta_{3} A$	0	$\begin{gathered} \eta_{2} \sigma_{1} A \\ \bmod 2 \kappa_{2} \end{gathered}$	$\eta_{2} \sigma_{1} A$	$\eta_{2} A^{2}$						
$\eta_{1}^{2} A$	0	$2 \eta_{3} A$	0	0	0	$\eta_{1}^{2} \sigma_{1} A$	$\eta_{1}^{2} \sigma_{1} A$	$\eta_{1}^{2} A^{2}$						

Table of relations, III.

	δ	η_{1}	η_{2}	η_{3}	ν_{1}	ν_{2}	σ_{1}	A	κ_{1}	σ_{2}	κ_{2}	κ_{3}	$\bar{\sigma}_{1}$	$\bar{\kappa}_{1}$
$\eta_{2}^{2} A$	0	0	$2 \eta_{3} A$	0	0	$\eta_{2}^{2} \sigma_{1} A$	$\eta_{2}^{2} \sigma_{1} A$	$\eta_{2}^{2} A$						
$\eta_{3} \sigma_{1}$	$\eta_{2}^{2} \sigma_{1}$	$\nu_{1} A$	0	0	0	0	0	$\eta_{3} \sigma_{1} A$	0					
$\eta_{3}\left(\nu_{2}+\sigma_{1}\right)$	$\eta_{2}^{2}\left(\nu_{2}+\sigma_{1}\right)$	0	0	0	0	$\eta_{2} \kappa_{2}$	0	$\begin{aligned} & 0 \mathrm{mod} \\ & 2 \eta_{3} \sigma_{1} A \\ & \hline \end{aligned}$						
$\eta_{3} A$	$\begin{aligned} & \eta_{2}^{2} A+2 \eta_{3} \\ & \left(x \sigma_{1}+y \nu_{2}\right) \end{aligned}$	$\eta_{2} \eta_{3} A$	0	0	0	$\pm \eta_{3} \sigma_{1} A$	$\pm \eta_{3} \sigma_{1} A$	$\eta_{3} A^{2}$						
$\nu_{1} A$	$2 \eta_{3} \sigma_{1}$	0	0	0	0	0	0	$\nu_{1} A^{2}$						
$\eta_{2} \eta_{3} A$	$2 \eta_{3} A$	0	0	0	0	$\nu_{1} A^{2}$	$\nu_{1} A^{2}$	$\eta_{2} \eta_{3} A^{2}$						
$\delta \sigma_{2} \delta$	0	0	0	0	0	0	$\delta \sigma_{1} \sigma_{2} \delta$							
$\kappa_{1} \delta$	0	0	0	$2 \kappa_{2}$	$2 \kappa_{2}$	$\delta \nu_{2} \kappa_{1}+2 \bar{\kappa}_{1}$	0							
$\delta \sigma_{2}$	$\delta \sigma_{2} \delta$	0	$2 \sigma_{2}$	$\eta_{1}^{2} \sigma_{2}$	$\delta \nu_{1} \sigma_{2}$	$\begin{gathered} \delta \sigma_{1} \sigma_{2} \\ \bmod \delta \nu_{1} \bar{\sigma}_{1} \delta \end{gathered}$	$\begin{gathered} \delta \sigma_{1} \sigma_{2} \\ \bmod \delta \nu_{1} \sigma_{1} \delta \end{gathered}$							
$\sigma_{2} \delta$	0	0	$2 \sigma_{2}$	$\eta_{1}^{2} \sigma_{2}$	$\delta \nu_{1} \sigma_{2}$	$\begin{gathered} \delta \sigma_{1} \sigma_{2} \\ \bmod \delta \nu_{1} \sigma_{1} \delta \end{gathered}$	$\begin{gathered} \sigma_{1} \sigma_{2} \delta \\ \bmod \delta \nu_{1} \sigma_{1} \delta \end{gathered}$							
κ_{1}	$\kappa_{1} \delta$	$\eta_{1} \kappa_{1}$	0	0	$\begin{gathered} \delta \kappa_{3} \\ \bmod \delta \nu_{1} \sigma_{2} \\ \hline \end{gathered}$	$\begin{gathered} \eta_{1} \bar{\kappa}_{1} \\ \bmod \delta \nu_{1} \sigma_{1} \delta \end{gathered}$	$\delta \nu_{1} \bar{\sigma}_{1} \delta$							
ν_{2}^{2}	$\kappa_{1} \delta$	$\eta_{1} \kappa_{1}$	$\eta_{2} \nu_{2}^{2}$	$\eta_{2} \kappa_{2}$	$\eta_{2} \kappa_{2}$	$\begin{aligned} & \nu_{2} \kappa_{1}+\eta_{2} \bar{\kappa}_{1} \\ & \bmod \delta \nu_{1} \bar{\sigma}_{1} \delta \end{aligned}$	0							
$\delta \sigma_{1} A$	0	0	$2 \sigma_{1} A$	$\eta_{1}^{2} \sigma_{1} A$	0	0								
σ_{2}	$\sigma_{2} \delta$	$\begin{gathered} \overline{\eta_{1} \sigma_{2}} \\ \text { mod } \\ 2 \kappa_{2} \end{gathered}$	$\begin{gathered} \overline{\eta_{2} \sigma_{2}} \\ \bmod \\ 2 \kappa_{2} \end{gathered}$	$\begin{gathered} \eta_{3} \kappa_{2} \\ \bmod _{2} \\ 2 \eta_{3} \sigma_{1} A \end{gathered}$	$\begin{gathered} \nu_{1} \sigma_{2} \bmod \\ \left\{2 \eta_{3} \sigma_{2}, \delta \bar{\sigma}_{1}\right\} \\ 2 \eta_{3} \sigma_{1} A, j \end{gathered}$									

Table of relations, IV.

	δ	η_{1}	η_{2}	η_{3}	ν_{1}	ν_{2}	σ_{1}	A	κ_{1}	σ_{2}	κ_{2}	κ_{3}	$\bar{\sigma}_{1}$	$\bar{\kappa}_{1}$
$\sigma_{1} A$	$\delta \sigma_{1} A$	$\eta_{1} \sigma_{1} A$	$\eta_{2} \sigma_{1} A$	$\pm \eta_{3} \sigma_{1} A$	0	0								
$\eta_{1} \kappa_{1}$	0	$2 \kappa_{2}$	0	0	0	$\eta_{1}^{2} \bar{K}_{1}$	0							
$\eta_{2} \nu_{2}^{2}$	0	0	$2 \kappa_{2}$	0	0	$\eta_{2}^{2} \bar{\kappa}_{1}$	0							
δA^{2}	0	0	$2 A^{2}$	$\eta_{1}^{2} A^{2}$	$2 \eta_{3} \sigma_{1} A$									
A^{2}	δA^{2}	$\eta_{1} A^{2}$	$\eta_{2} A^{2}$	$\eta_{3} A^{2}$	$\nu_{1} A^{2}$									
κ_{2}	$\eta_{2} \nu_{2}^{2}$	$\eta_{2} \kappa_{2}$	0	0	0									
$\eta_{1} \sigma_{2}$	$2 \sigma_{2}$	$\eta_{1}^{2} \sigma_{2}$	0	0	0									
$\eta_{2} \sigma_{2}$	0	0	$\eta_{2}^{2} \sigma_{2}$	$\eta_{2} \eta_{3} \sigma_{2}$	0									
$\eta_{1} \sigma_{1} A$	$2 \sigma_{1} A$	$\eta_{1}^{2} \sigma_{1} A$	0	0	0	0								
$\eta_{2} \sigma_{1} A$	0	0	$\eta_{2}^{2} \sigma_{1} A$	$\nu_{1} A^{2}$	0	0								
$\eta_{1} A^{2}$	$2 A^{2}$	$\eta_{1}^{2} A^{2}$	0	0	0									
$\eta_{2} A^{2}$	0	0	$\eta_{2}^{2} A^{2}$	$\eta_{2} \eta_{3} A^{2}$	0									
$\delta \kappa_{3}$	$2 \kappa_{2}$	0	0	0	$\begin{gathered} \delta \nu_{2} \kappa_{1} \\ \bmod \delta \sigma_{1} \sigma_{2} \delta \end{gathered}$									-
$\kappa_{3} \delta$	0	0	0	0	$\left\|\begin{array}{c} \delta \nu_{2} \kappa_{1} \\ \bmod \delta \sigma_{1} \sigma_{2} \delta \end{array}\right\|$									-

Table of relations, V.

	δ	η_{1}	η_{2}	η_{3}	ν_{1}	ν_{2}	σ_{1}	A	κ_{1}	σ_{2}	κ_{2}	κ_{3}	$\bar{\sigma}_{1}$	$\vec{\kappa}_{1}$
$\eta_{1}^{2} \sigma_{2}$	0	$2 \eta_{3} \sigma_{2}$	0	0	0									
$\eta_{2}^{2} \sigma_{2}$	0	0	$2 \eta_{3} \sigma_{2}$	0	0									
$\eta_{1}^{2} \sigma_{1} A$	0	$2 \eta_{3} \sigma_{1} A$	0	0	0									
$\eta_{2}^{2} \sigma_{1} A$	0	0	$2 \eta_{3} \sigma_{1} A$	0	0									
$\delta \nu_{1} \sigma_{2}$	0	0	0	0	$\delta \sigma_{1} \sigma_{2} \delta$									
κ_{3}	$\kappa_{3} \delta$	0	0	0	$\left.\begin{array}{c} \nu_{2} \kappa_{1}+\eta_{1} \bar{\kappa}_{1} \\ \bmod \\ \left\{\delta \sigma_{1} \sigma_{2,}\right. \\ \left.\sigma_{1} \sigma_{2} \delta, \delta \nu_{1} \bar{\sigma}_{1} \delta\right\} \end{array}\right\}$									
$\nu_{1} \sigma_{2}$	$\delta \nu_{1} \sigma_{2}$	0	0	0	$\bmod { }^{0} \delta \nu_{1} \bar{\sigma} \delta$									
$\eta_{1}^{2} A^{2}$	0	$2 \eta_{3} A^{2}$	0	0	0									
$\eta_{2}^{2} A^{2}$	0	0	$2 \eta_{3} A^{2}$	0	0									
$\eta_{3} \sigma_{2}$	$\eta_{2}^{2} \sigma_{2}$	$\eta_{2} \eta_{3} \sigma_{2}$	0	0	0									
$\eta_{3} \sigma_{1} A$	$\eta_{2}^{2} \sigma_{1} A$	$\nu_{1} A^{2}$	0	0	0									
$\delta \bar{\sigma}_{1} \delta$	0	0	0	0	$\delta \nu_{1} \bar{\sigma}_{1} \delta$									
$\eta_{2} \eta_{3} \sigma_{2}$	$2 \eta_{3} \sigma_{2}$	0	0	0	0									
$\eta_{3} A^{2}$	$\eta_{2}^{2} A^{2}$	$\eta_{2} \eta_{3} A^{2}$	0	0	0									

Table of relations, VI.

	δ	η_{1}	η_{2}	η_{3}	ν_{1}	ν_{2}	σ_{1}	A	κ_{1}	σ_{2}	κ_{2}	κ_{3}	$\bar{\sigma}_{1}$	$\bar{\kappa}_{1}$.
$\nu_{1} A^{2}$	$2 \eta_{3} \sigma_{1} A$	0	0	0	0	0	0							
$\delta \bar{\sigma}_{1}$	$\delta \bar{\sigma}_{1}$	0	0	0										
$\bar{\sigma}_{1} \delta$	0	0	0	0										
$\delta \bar{\kappa}_{1}$	0	0	$2 \bar{\kappa}_{1}$	$\eta_{1}^{2} \bar{\kappa}_{1}$										
$\bar{\sigma}_{1}$	$\bar{\sigma}_{1} \delta$	0	$\bmod \begin{aligned} & 0 \\ & \bmod \nu_{1} \bar{\sigma}_{1} \delta \end{aligned}$											
$\bar{\kappa}_{1}$	$\delta \bar{\kappa}_{1}$	$\begin{gathered} \eta_{1} \bar{\kappa}_{1} \\ \bmod \delta \nu_{1} \bar{\sigma}_{1} \delta \end{gathered}$	$\begin{gathered} \eta_{2} \bar{\kappa}_{1} \\ \bmod \delta \nu_{1} \sigma_{1} \delta \end{gathered}$											
$\eta_{2} \eta_{3} A^{2}$	$2 \eta_{3} A^{2}$	0	0	0	0									
$\delta \nu_{2} \kappa_{1}$	0	0	0	0										
$\delta \sigma_{1} \sigma_{2} \delta$	0	0	0	0	0	0								
$\nu_{2} \kappa_{1}$	$\delta \nu_{2} \kappa_{1}+2 \bar{\kappa}_{1}$	$\eta_{1}^{2} \overline{\bar{L}}_{1}$	0	0										
$\eta_{1} \bar{K}_{1}$	$2 \bar{\kappa}_{1}$	$\eta_{1}^{2} \bar{\kappa}_{1}$	0	0										
$\eta_{2} \bar{\kappa}_{1}$	0	0	$\eta_{2}^{2} \bar{\kappa}_{1}$	0										
$\delta \sigma_{1} \sigma_{2}$	$\delta \sigma_{1} \sigma_{2} \delta$	0												
$\sigma_{1} \sigma_{2} \delta$	0	0												
$\delta \nu_{1} \bar{\sigma}_{1} \delta$	0	0	0	0										

from multiplying all of the additive generators of π_{*} except for the unit by themselves. But this whole work is too long and tedious. So, we write down a part of the table which plays an essential role for this work. Really, it finishes the proof.

Remark. In Theo. 4.2 we can take $y=0$ by use of the results that $4 \nu \bar{\kappa}=$ $\eta^{3} \bar{c} \neq 0$ in G_{23}.

Finally we mention the following relations in secondary or tertiary compositions.

Proposition 4.3.

$$
\begin{array}{ll}
\eta_{1}=\left\{\delta, \delta, \eta_{2}^{2}\right\}, & \eta_{2}=\left\{\eta_{1}^{2}, \delta, \delta\right\}, \\
\pm \eta_{3}=\left\{\eta_{2}, \eta_{1}, 2\right\}, & \nu_{2} \in\left\{\eta_{1}, 2, \nu_{1}, \eta_{1}\right\}, \\
\kappa_{1} \in\left\{\delta, \delta, \eta_{2} \nu_{2}^{2}\right\}, & \kappa_{2} \in\left\{\eta_{2}, \kappa_{1}, 2\right\}, \\
\kappa_{3} \in\left\{\nu_{1}, 2, \nu_{2}^{2}\right\}, & \bar{\kappa}_{1} \in\left\{\nu_{1}, \eta_{1}, 2, \nu_{2}^{2}+\kappa_{1}\right\} .
\end{array}
$$

Proof. We shall prove the first and the fourth relation.
Clearly, $\left\{\delta, \delta, \eta_{2}^{2}\right\}=\left\{i p, i p, \eta_{2}^{2}\right\} \supseteqq i\left\{p, i, \eta^{2} p\right\}=i\{p, i, 2 \bar{\eta}\} \supseteqq i\{p, i, 2\} \bar{\eta}=\eta_{1}$ since $\{p, i, 2\} \equiv 1 \bmod 2 G_{0}$. A's $\left\{\delta, \delta, \eta_{2}^{2}\right\}$ is a coset of $\delta \pi_{2}+\pi_{-1} \eta_{2}^{2}=0$, we obtain the first.

Since $\left\{\eta_{1}, 2, \nu_{1}\right\}$ is a coset of $\eta_{1} \pi_{4}+\pi_{2} \nu_{1}=\left\{\delta \nu_{1}^{2}\right\}=\pi_{5}$, we have $\eta_{1}(\overline{2})_{\nu_{1}} \in$ $\left\{\eta_{1}, 2, \nu_{1}\right\} p_{\nu_{1}}=\left\{\delta \nu_{1}^{2} p_{\nu_{1}}\right\}=0$ for any $(\overline{2})_{\nu_{1}} \in \operatorname{Ext}_{\nu_{1}} 2$.

As $\left\{2, \nu_{1}, \eta_{1}\right\}=\left\{2, \nu_{1}, i \bar{\eta}\right\} \subseteq\{2, i \nu, \bar{\eta}\} \supseteqq\{0, \nu, \bar{\eta}\}=\pi_{4}^{*}(2) \bar{\eta}=\left\{\eta_{2}^{2} \eta_{3}\right\}=0$ and $\{2, i \nu, \bar{\eta}\}$ is a coset of $2 \pi_{5}+\pi_{4}^{*}(2) \bar{\eta}=0$, we have $\left\{2, \nu_{1}, \eta_{1}\right\}=0$. From this $\overline{(2)})_{\nu_{1}}\left(\widetilde{\eta_{1}}\right)_{\nu_{1}}=0$ for any $\left(\widetilde{\eta_{1}}\right)_{\nu_{1}} \in \operatorname{Coext}_{v_{1}} \eta_{1}$.

Now we define $\left\{\eta_{1}, 2, \nu_{1}, \eta_{1}\right\} \equiv\left\{\eta_{1},(\overline{2)})_{\nu_{1}},\left(\widetilde{\eta_{1}}\right)_{\nu_{1}}\right\} \bmod Q=\left[S^{n+2} M \cup_{\nu_{1}} C S^{n_{+5}} M\right.$, $\left.S^{n} M\right]\left(\tilde{\eta}_{1}\right)_{v_{1}}+\left(\overline{\eta_{1}}\right)_{2}\left[S^{n+6} M, S^{n} M \cup_{2} C S^{n} M\right]$ for some $\left.\overline{\left(\eta_{1}\right.}\right)_{2} \in \operatorname{Ext}_{2} \eta_{1}$, where n is sufficiently large.

It is easy to check the group $Q=\left\{2 \sigma_{1}, 2 \nu_{2}\right\}$. So, we have $p\left\{\eta_{1}, 2, \nu_{1}, \eta_{1}\right\}=$ $\left\{p, \eta_{1},(\overline{(2)})_{\nu_{1}}\right\}\left(\widetilde{\eta_{1}}\right)_{\nu_{1}} \subseteq\left\{ \pm \bar{\eta}, \nu_{1}, \eta_{1}\right\}=\{ \pm \bar{\eta}, i \nu, \bar{\eta}\}=\{\eta, \nu, \bar{\eta}\}$ since $\left\{p, \eta_{1}, \overline{(2)} \nu_{\nu_{1}}\right\} i_{\nu_{1}} \subseteq$ $\left\{p, \eta_{1}, 2\right\}= \pm \bar{\eta}, \bar{\eta} \nu_{1}=0$ and $\{ \pm \bar{\eta}, i \nu, \bar{\eta}\}$ is a coset of $(\pm \bar{\eta}) \pi_{5}+G_{5} \bar{\eta}=0$.

It is easy to check $\{\eta, \nu, \bar{\eta}\}=\overline{\nu^{2}}$ for $\overline{\nu^{2}} \in \operatorname{Ext} \nu^{2}$ which satisfies (2.7). Hence we obtain $\left\{\eta_{1}, 2, \nu_{1}, \eta_{1}\right\} \equiv \pm \nu_{2} \bmod 2 \sigma_{1}$.

5. Direct summands of $\boldsymbol{\pi}_{\boldsymbol{k}}$

The object of this section is to improve Theo. 5.1 of [5]. We shall change the notations $\mu_{8 s+1}$ and $j_{8 s+3}$ of $\S 4$ of [5] into μ_{s} and ζ_{s} respectively.

In [1] Adams proved that $A^{s} \neq 0$ for $s \geqq 1$ and defined $\alpha_{s} \in\left(G_{8 s-1} ; 2\right)$ as follows:

$$
\begin{equation*}
\alpha_{s}=p A^{s} i \tag{5.1}
\end{equation*}
$$

which is of order 2 and satisfies

$$
\begin{equation*}
e_{C}\left(\alpha_{s}\right) \equiv \frac{1}{2} \bmod 1(\text { see }[1]) . \tag{5.2}
\end{equation*}
$$

Choose

$$
\begin{equation*}
\overline{\alpha_{s}}=p A^{s}=\overline{8 \sigma} A^{s-1} \in \operatorname{Ext} \alpha_{s} \quad \text { and } \quad \widetilde{\alpha_{s}}=A^{s} i=A^{s-1} \widetilde{8 \sigma} \in \operatorname{Coext} \alpha_{s} \tag{5.3}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
\alpha_{1}=8 \sigma \quad \text { and } \quad \alpha_{s+t} \in\left\{\alpha_{s}, 2, \alpha_{t}\right\} . \tag{5.4}
\end{equation*}
$$

By use of α_{s} Adams defined $\mu_{s} \in\left(G_{8 s+1} ; 2\right)$ as follows:

$$
\begin{equation*}
\mu_{s} \equiv \bar{\eta} \widetilde{\alpha}_{s} \bmod \eta G_{8 s} . \tag{5.5}
\end{equation*}
$$

By (5.5) and i) of (3.9) of [6], we have $\mu_{s} \equiv\left\{\eta, 2, \alpha_{s}\right\}=\left\{\alpha_{s}, 2, \eta\right\} \equiv$ $\overline{\alpha_{s}} \tilde{\eta} \bmod \eta G_{8 s} . \quad$ So, we can choose $\overline{\mu_{s}} \in \operatorname{Ext} \mu_{s}$ and $\widetilde{\mu_{s}} \in$ Coext μ_{s} as follows:

$$
\begin{equation*}
\overline{\mu_{s}} \equiv \bar{\eta} A^{s} \bmod G_{8 s} \bar{\eta} \quad \text { and } \quad \widetilde{\mu_{s}} \equiv A^{s} \widetilde{\eta} \bmod \widetilde{\eta} G_{8 s} . \tag{5.6}
\end{equation*}
$$

Lemma 5.1.

i) $\quad \alpha_{s}$ is divisible by 8 .
ii) $J(\beta) \alpha_{t}=0$ for $\beta \in \pi_{8 s-1}(S O)$.

Proof. Let $S^{n} \cup_{8} e^{n+1}$ be a complex obtained from an n-sphere S^{n} by attaching an ($n+1$)-dimensional cell e^{n+1}, using a map of degree 8 , where n is sufficiently large. Let $i^{\prime}: S^{n} \rightarrow S^{n} \cup_{8} e^{n+1}$ be a natural inclusion.

Obviously α_{s} is divisible by 8 if and only if $i^{\prime} \alpha_{s}=0$.
By induction assume $i^{\prime} \alpha_{s-1}=0$, then $i^{\prime} \alpha_{s} \in i^{\prime}\left\{\alpha_{s-1}, 2,8\right\}=\left\{i, \alpha_{s-1}, 2\right\} 8 \sigma=$ $8\left(\left\{i^{\prime}, \alpha_{s-1}, 2\right\} \sigma\right)$. By use of Theo. 4.4 in p. 324 of [7], this consists of 0. Therefore we have i).

Next we shall prove ii). Toda defined the element $\sigma^{\prime \prime \prime} \in \pi_{12}\left(S^{5}\right)$ which is of order 2 and satisfies $S^{\infty} \sigma^{\prime \prime \prime}=8 \sigma$ (see p. 48 of [6]). By use of $\sigma^{\prime \prime \prime}$, we can define an element $\alpha_{s}^{\prime} \in \pi_{8 s+4}\left(S^{5}\right)$ for $s \geqq 1$ as follows:

$$
\begin{equation*}
\alpha_{1}^{\prime}=\sigma^{\prime \prime \prime} \quad \text { and } \quad \alpha_{s}^{\prime} \in\left\{\alpha_{s-1}^{\prime}, 2,8 \sigma\right\} \quad \text { for } s \geqq 2 . \tag{5.7}
\end{equation*}
$$

Clealy, α_{s}^{\prime} is of order 2 and we can choose α_{s}^{\prime} such that

$$
\begin{equation*}
S^{\infty} \alpha_{s}^{\prime}=\alpha_{s} \tag{5.8}
\end{equation*}
$$

Now $J(\beta) \alpha_{t}=J\left(\beta S^{8 s-6} \alpha_{t}^{\prime}\right)=0$ since $\beta S^{8 s-6} \alpha_{t}^{\prime} \in \pi_{8(s+t)-2}(S O)=0$.
By use of i) of this lemma,

$$
\begin{equation*}
\mu_{s} \in\left\{\eta, 2, \alpha_{s}\right\} \subseteq\left\{\eta, \alpha_{s}, 2\right\} \bmod 2 G_{8 s+1}+\eta G_{8 s} . \tag{5.9}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
2 A^{s} \equiv i \mu_{s} p \bmod i \eta G_{s s} p \tag{5.10}
\end{equation*}
$$

By use of ii) of Lemma 5.1, we define an element $\rho_{s} \in\left(G_{8 s+7} ; 2\right) \cap$ $J\left(\pi_{8 s+7}(S O)\right)$ as follows:

$$
\begin{equation*}
\rho_{0}=\sigma \quad \text { and } \quad \rho_{s} \equiv\left\{\rho_{s-1}, 8 \sigma, 2\right\} \bmod 2 G_{8 s+7} \quad \text { for } s \geqq 1 . \tag{5.11}
\end{equation*}
$$

We can take ρ_{s} in the J-image since $J\left\{\beta^{\prime}, 8 \sigma, 2\right\} \subseteq\left\{\rho_{s-1}, 8 \sigma, 2\right\}$ if $J\left(\beta^{\prime}\right)=\rho_{s-1}$ for $\beta^{\prime} \in \pi_{s s-1}(S O)$.

We note the following: Since $\rho_{s} \sigma=0$ for $s \geqq 1$, we have, by the facts that $\sigma^{2} \eta=\sigma \varepsilon=0$ and $\{\eta \sigma, 2,8 \sigma\}=\{\varepsilon, 2,8 \sigma\}$,

$$
\begin{equation*}
\rho_{s} \varepsilon=\rho_{s} \sigma \eta=0 \quad \text { for } s \geqq 0 . \tag{5.12}
\end{equation*}
$$

Lemma 5.2.

i) $i \rho_{s+t}=\widetilde{\alpha_{t}} \rho_{s}$ and $\rho_{s+t} p=\rho_{s} \overline{\alpha_{t}}$.
ii) $\rho_{s+t} \equiv\left\{\rho_{s}, \alpha_{t}, 2\right\} \bmod \rho_{s} G_{8 t}+2 G_{8(s+t)+7}$.

This is obvious by use of (5.3), (5.11) and (5.12).
By (5.5) and i) of Lemma 5.2, we have

$$
\begin{equation*}
\eta \rho_{s+t} \equiv \mu_{t} \rho_{s} \bmod \eta \rho_{s} G_{8 t} . \tag{5.13}
\end{equation*}
$$

We can take, by use of i) of Lemma 5.2 and a) of ii) of Prop. 1.8,

$$
\begin{equation*}
\sigma_{1} A^{s} \in \operatorname{Coext}\left(\rho_{s} p\right) \tag{5.14}
\end{equation*}
$$

By (5.6), we have

$$
\begin{equation*}
\eta_{3} A^{s} \equiv \widetilde{\eta} \overline{\mu_{s}} \bmod \widetilde{\eta} G_{8 s} \bar{\eta} . \tag{5.15}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
2 \sigma_{1} A^{s}=i \eta \rho_{s} p \quad \text { and } \quad 2 \eta_{3} A^{s} \equiv i \eta^{2} \overline{\mu_{s}} \bmod i \eta^{2} G_{8 s} \bar{\eta} \tag{5.16}
\end{equation*}
$$

By use of Example 12.15 of [1] and (5.13), we can take

$$
\begin{equation*}
j_{8 s}=\rho_{s-1} \eta \quad \text { and } \quad j_{8 s+1}=\rho_{s-1} \eta^{2} \quad \text { for } s \geqq 1 \tag{5.17}
\end{equation*}
$$

Lemma 5.3.

i) $\zeta_{0}=\nu$ and $\zeta_{s} \equiv\left\{\zeta_{s-1}, 8,2 \sigma\right\} \subseteq\left\{\zeta_{s-1}, 8 \sigma, 2\right\} \bmod 2 G_{8 s+3}+R_{s}$ for $s \geqq 1$,
ii) $\quad \zeta_{s+t} p \equiv \zeta_{s} \overline{\alpha_{t}} \bmod R_{s+t} p$,
iii) $\zeta_{s+t} \equiv\left\{\zeta_{s}, \alpha_{t}, 2\right\} \bmod 2 G_{8(s+t)+3}+R_{s+t}$,
iv) $\zeta_{s} \equiv\left\{2, \eta, \eta^{2} \rho_{s-1}\right\} \bmod 2 G_{8 s+3}+R_{s}$ for $s \geqq 1$,
where R_{s} consists of the elements $\alpha \in\left(G_{8 s+3} ; 2\right)$ which have the following properties : $e_{R}^{\prime}(\alpha)=0,8 \alpha=0$ and $\eta \alpha p=0$.

Proof. By use of Theo. 11.1 of [1], $e_{R}^{\prime}\left(\left\{\zeta_{s-1} 8,2 \sigma\right\}\right) \equiv-8 e_{R}^{\prime}(2 \sigma) e_{R}^{\prime}\left(\zeta_{s-1}\right)$ $\equiv-\frac{1}{8} \bmod 1$ since $e_{R}^{\prime}(\sigma)=e_{C}(\sigma) \equiv \frac{1}{16} \bmod 1$ and $e_{R}^{\prime}\left(\zeta_{s-1}\right) \equiv \frac{1}{8} \bmod 1$. By use of Prop. 3.2. (c) and Prop. 7.1 of [1], $\zeta_{s-1} G_{8}+2 \sigma G_{8 s-4} \subseteq \operatorname{ker} e_{R}^{\prime}$. So, by Theo. 1.5 of [1], we have $-\zeta_{s} \equiv\left\{\zeta_{s-1}, 8,2 \sigma\right\} \bmod \operatorname{ker} e_{R}^{\prime}$. We have $8 \zeta_{s}=0$ and $8\left\{\zeta_{s-1}, 8,2 \sigma\right\}=\left\{8, \zeta_{s-1}, 8\right\} 2 \sigma=0$ by use of Cor. 3.7 of [6]. Since $\eta \zeta_{s}=\mu \zeta_{s-1}$ $=J\left(\pi_{8 s+4}(S O)\right)=0\left(c f . p .39\right.$ and $p .56$ of [6]), we have $\eta\left\{2 \sigma, 8, \zeta_{s-1}\right\}=$ $\{\eta, 2 \sigma, 8\} \zeta_{s-1}=0$. This leads us to i).

We shall prove that $R_{s} \overline{\alpha_{t}} \subseteq R_{s+t} p$. By i) of Lemma 5.1, $\beta \overline{\alpha_{t}} \in\left\{\beta, \alpha_{t}, 2\right\} p=$ $\left\{\beta, 8, \frac{1}{4} \alpha_{t}\right\} p$ for $\beta \in R_{s}$. By use of Cor. 3.7 of $[6], 8\left\{\beta, 8, \frac{1}{4} \alpha_{t}\right\}=\{8, \beta, 8\} \frac{1}{4} \alpha_{t}=0$. By use of Theo. 11.1 of [1]., we have $e_{R}^{\prime}\left(\left\{\beta, 8, \frac{1}{4} \alpha_{t}\right\}\right)=0$. Since $\eta \beta$ is divisible by 2 , we have $\eta\left\{\beta, 8, \frac{1}{4} \alpha_{t}\right\} p=\eta \beta \overline{\alpha_{t}}=0$. Therefore we obtain $\left\{\beta, 8, \frac{1}{4} \alpha_{t}\right\} \subseteq R_{s+t}$.

Now we obtain ii) by use of this fact and i).
iii) forllows from ii).

We shall prove iv). First we note that we can define $\left\{2, \eta, \eta^{2} \rho_{s-1}\right\}$ since $\eta^{3} \rho_{s-1} \in J\left(\pi_{8 s+2}(S O)\right)=0$.

Since $\zeta_{1}=\zeta \equiv\left\{2, \eta, \eta^{2} \sigma\right\} \bmod 2 G_{11}$, we have, by use of ii), $\zeta_{s} p \equiv$ $\zeta \overline{\alpha_{s-1}}=\left\{2, \eta, \eta^{2} \sigma\right\} \bar{\alpha}_{s-1} \bmod R_{s} p$. By use of i) of Lemma 5.2, we have $\zeta_{s} p \equiv$ $\left\{2, \eta, \eta^{2} \sigma \overline{\alpha_{s-1}}\right\}=\left\{2, \eta, \eta^{2} \rho_{s-1} p\right\} \bmod R_{s} p+2 \pi_{8 s+3}(2)$. By Theo. A and Prop. 1.1 of [5] and by Theo. 1.5 of [1], it is clear that $2 \pi_{8 s+3}(2) \subseteq R_{s} p$. Therefore we have iv).

By use of ii) of this lemma and a) of ii) of Prop. 1.8, we can take

$$
\begin{equation*}
\nu_{1} A^{s} \equiv \operatorname{Coext}\left(\zeta_{s} p\right) \bmod \operatorname{Ceoxt}\left(R_{s} p\right)+i \pi_{8 s+4}(2) \tag{5.18}
\end{equation*}
$$

Since $\eta_{3} \sigma_{1}= \pm \tilde{\eta} \sigma \bar{\eta}$ by vi) of Prop. 2.2, we can take, by (5.6) and (5.13),

$$
\begin{equation*}
\eta_{3} \sigma_{1} A^{s} \equiv \widetilde{\eta} \rho_{s} \bar{\eta} \bmod \tilde{\eta} \sigma G_{8 s} \bar{\eta}+\widetilde{\eta} G_{8 s+9} p \tag{5.19}
\end{equation*}
$$

By use of Lemma 5.3, we have

$$
\begin{equation*}
2 \nu_{1} A^{s}=0 \quad \text { and } \quad 2 \eta_{3} \sigma_{1} A^{s} \equiv i \zeta_{s+1} p \bmod i R_{s+1} p \tag{5.20}
\end{equation*}
$$

Now we have been ready for improving Theo. 5.1 of [5].
Theorem 5.4. $\pi_{k}(2), \pi_{k}^{*}(2)$ and π_{k} contain direct summands which are isomorphic to the corresponding groups in the following tables $(k>2)$:

i) | $k=$ | $8 s$ | $8 s+1$ | $8 s+2$ | $8 s+3$ | $8 s+4$ | $8 s+7$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\pi_{k}(2) \boxplus$ | $Z_{2}+Z_{2}$ | $Z_{4}+Z_{2}$ | $Z_{4}+Z_{2}$ | $Z_{2}+Z_{2}$ | Z_{2} | Z_{2} |
| Generators | $\overline{\alpha_{s}}, \eta \rho_{s-1} p$ | $\rho_{s-1} \bar{\eta}, \mu_{s} p$ | $\overline{\mu_{s}}, \rho_{s-1} \eta \bar{\eta}$ | $\overline{\mu_{s}}, \zeta_{s} p$ | $\eta^{2} \overline{\mu_{s}}$ | $\rho_{s} p$ |
| $\pi_{k}^{*}(2) \boxplus$ | $Z_{2}+Z_{2}$ | $Z_{4}+Z_{2}$ | $Z_{4}+Z_{2}$ | $Z_{2}+Z_{2}$ | Z_{2} | Z_{2} |
| Generators | $\widetilde{\alpha_{s}}, i \eta \rho_{s-1}$ | $\widetilde{\eta} \rho_{s-1}, i \mu_{s}$ | $\widetilde{\mu_{s}}, \widetilde{\eta} \eta \rho_{s-1}$ | $\widetilde{\mu_{s} \eta, i \zeta} \zeta_{s}$ | $\widetilde{\mu_{s} \eta^{2}}$ | $i \rho_{s}$ |

Relations: $2 \rho_{s} \bar{\eta}=\rho_{s} \eta^{2} p, \quad 2 \overline{\mu_{s}}=r_{l} \mu_{s} p$,

$$
2 \widetilde{\eta} \rho_{s}=i \eta^{2} \rho_{s}, \quad 2 \overline{\mu_{s}}=i \eta \mu_{s}
$$

$$
\text { ii) } \begin{array}{lccccc}
k= & 8 s & 8 s+1 \\
\pi_{k} \boxplus & Z_{4}+Z_{2}+Z_{2} & & Z_{2}+Z_{2}+Z_{2}+Z_{2} \\
\text { Generators } & A^{s}, \eta_{1} \sigma_{1} A^{s-1}, \eta_{2} \sigma_{1} A^{s-1} & \eta_{1}^{2} \sigma_{1} A^{s-1}, \eta_{1}^{2} \sigma_{2} A^{s-1}, \eta_{1} A^{s}, \eta_{2} A^{s} \\
k= & 8 s+2 & 8 s+3 & 8 s+4 & 8 s+6 & 8 s+7 \\
& Z_{4}+Z_{2}+Z_{2} & Z_{4}+Z_{2} & Z_{2} & Z_{2} & Z_{4}+Z_{2} \\
\text { Generators } & \eta_{3} \sigma_{1} A^{s-1}, \eta_{1}^{2} A^{s}, \eta_{2}^{2} A^{s} & \eta_{3} A^{s}, \nu_{1} A^{s} & \eta_{2} \eta_{3} A^{s} & \delta \sigma_{1} A^{s} & \sigma_{1} A^{s}, \delta A^{s+1} \\
\text { Relations: } & 2 A^{s} \equiv i \mu_{s} p \bmod i \eta G_{8 s} p, 2 \eta_{3} \sigma_{1} A^{s} \equiv i \zeta_{s+1} p \bmod i R_{s+1} p, \\
& 2 \eta_{3} A^{s} \equiv i \eta^{2} \mu_{s} \bmod i \eta^{2} G_{8 s} \bar{\eta}, 2 \sigma_{1} A^{s}=i \eta \rho_{s} p .
\end{array}
$$

Osaka University

References

[1] J.F. Adams: On the groups J(X)-IV, Topology 5 (1966), 21-72.
[2] M. Mimura: On the generalized Hopf homomorphism and the higher composition, Part I, J. Math. Kyoto Univ. 4 (1964), 171-190.
[3] M. Mimura: On the generalized Hopf homomorphism and the higher composition. Part II. $\pi_{n+i}\left(S^{n}\right)$ for $i=21$ and 22, J. Math. Kyoto Univ. 4 (1965), 301-326.
[4] M. Mimura and H. Toda: The $(n+20)$-th homotopy groups of n-spheres, J. Math. Kyoto Univ. 3 (1963), 37-58.
[5] J. Mukai: Stable homotopy of some elementary complexes, Mem. Fac. Sci. Kyushu Univ. Ser. A 20 (1966), 266-282.
[6] H. Toda: Composition methods in homotopy groups of spheres, Ann. of Math. Studies No. 49, Princeton, 1962.
[7] H. Toda: Order of the identity class of a suspension space, Ann. of Math. 78 (1963), 300-325.

