A NECESSARY AND SUFFICIENT CONDITION FOR A KERNEL TO BE A WEAK POTENTIAL KERNEL OF A RECURRENT MARKOV CHAIN

Yoichi ŌSHIMA

(Received December 14, 1968)

1. Introduction

Let P be an irreducible recurrent transition probability on a denumerable space S with invariant measure α . Let c be an arbitrary (but fixed) state of S. Then from the work of Kondo [3] and Orey [8], there exist the class of weak potential kernels A(x, y) defined by the property that, for every null charge f, Af is bounded and satisfies the equation

$$(1.1) (I-P)Af = f.$$

Moreover Af is represented by

$$(1.2) Af = {}^{c}Gf + 1(f),$$

where f is a null charge, $1(\cdot)$ is an arbitrary linear functional on the space of null charges and ^cG is defined as follow;

(1.3)
$${}^{c}P(x, y) = \begin{cases} P(x, y) & x \neq c, y \neq c \\ 0 & \text{otherwise,} \end{cases}$$
(1.4)
$${}^{c}G(x, y) = \begin{cases} \sum_{n=0}^{\infty} {}^{c}P^{n}(x, y) & x \neq c, y \neq c \\ 0 & \text{otherwise.} \end{cases}$$

(1.4)
$${}^{c}G(x, y) = \begin{cases} \sum_{n=0}^{\infty} {}^{c}P^{n}(x, y) & x \neq c, y \neq c \\ 0 & \text{otherwise.} \end{cases}$$

Moreover A satisfies the following maximum principle [4], [5]: $(RSCM)^{1}$ If m is a real number and f is a null charge then the relation that

$$(1.5) m \ge Af on the set \{f > 0\}$$

implies that

$$(1.6) m-f^- \ge Af \text{everywhere,}$$

¹⁾ This is the abbreviation of "reinforced semi-complete maximum principle"; this maximum principle corresponds to the semi-complete M.P. as well as the reinforced M.P. (of Meyer) corresponds to the complete M.P.

where $f^{-}=(-f)\vee 0$.

In the present paper we are concerned with the following construction problem. Given a positive measure α and a (not necessarily positive) kernel A satisfying (RSCM), does there exist an irreducible recurrent transition probability which has α as its invariant measure, and A as its weak potential kernel? This is not true in general?, but as Kondō [4] has proved, it is true if α is a finite measure. In section 2 we shall introduce another necessary condition for the weak potential kernel A (referred to as condition (*)). Then we shall prove (theorem 3.1) that, if the pair (A, α) satisfies maximum principle (RSCM) and condition (*), A is a weak potential kernel of a (unique) recurrent Markov chain with α as its invariant measure.

I should like to express my hearty gratitude to T. Watanabe for his kind advices.

2. Some potential theory for a kernel A satisfying (RSCM)

Let α be a strictly positive measure and A, a kernel on S. A function f on S is said to be a null charge with respect to α if $\sum \alpha(x)|f(x)| < \infty$ and $\sum \alpha(x)f(x) = 0$. Let N be the space of null charges vanishing outside a finite subset of S. We assume that the kernel A satisfies condition (RSCM) for $f \in N$. Fix an arbitrary state c and define

(2.1)
$${}^{c}G(x, y) = A(x, y) - A(c, y) - (A(x, c) - A(c, c)) \frac{\alpha(y)}{\alpha(c)}$$
.

If A is a weak potential kernel then (2.1) is clearly satisfied by taking f in equation (1.2) as

(2.2)
$$f(x) = \begin{cases} \frac{\alpha(y)}{\alpha(c)} & x = c \\ -1 & x = y \\ 0 & \text{otherwise,} \end{cases}$$

and calcurating Af(x) - Af(c).

From definition (2.1) ${}^{c}G(c, x) = {}^{c}G(x, c) = 0$ for every $x \in S$.

Lemma 2.1 For arbitrary elements x, y in S which are different from c

$$I(x, y) \leq^c G(x, y) \leq^c G(y, y)$$
.

Proof. By taking f as (2.2) we have

$$Af(c) = A(c, c) \frac{\alpha(y)}{\alpha(c)} - A(c, y)$$

²⁾ A counter example was given by Kondo and T. Watanabe,

$$Af(y) = A(y, c) \frac{\alpha(y)}{\alpha(c)} - A(y, y).$$

Hence, if we write $f^+=f\vee 0$, $f^-=(-f)\vee 0$, by (RSCM)

$$A(y, c) \frac{\alpha(y)}{\alpha(c)} - A(y, y) + f^{+}(x) \le Af(x) \le A(c, c) \frac{\alpha(y)}{\alpha(c)} - A(c, y) - f^{-}(x)$$

so that

(2.3)
$$A(y, c) \frac{\alpha(y)}{\alpha(c)} - A(y, y) \leq A(x, c) \frac{\alpha(y)}{\alpha(c)} - A(x, y)$$
$$\leq A(c, c) \frac{\alpha(y)}{\alpha(c)} - A(c, y) - I(x, y),$$

which proves the lemma.

Corollary. For every $x \in S$ there exists a constant C such that

(2.4)
$${}^{c}G(x, y) \leq C \cdot \alpha(y)$$
 for every $y \in S$.

Proof. Exchanging c and x in the second inequality in (2.3), it follows that

$${}^{c}G(x, y) = A(x, y) - A(c, y) - (A(x, c) - A(c, c)) \frac{\alpha(y)}{\alpha(c)}$$

$$\leq \left(-\frac{A(x, c)}{\alpha(c)} - \frac{A(c, x)}{\alpha(x)} + \frac{A(c, c)}{\alpha(c)} + \frac{A(x, x)}{\alpha(x)} \right) \alpha(y).$$

Let cS be the set $S-\{c\}$, and cM be the space of all functions on cS vanishing outside a finite subset of cS . Let ${}^cM^+$ be the space of all non-negative functions in cM .

Theorem 2.1. The kernel cG satisfies the reinforced maximum principle [7]: (RM) If a is a non-negative constant and if cf and cg are two elements of ${}^cM^+$, then the relation that

(2.5)
$$a+{}^cG^cf-{}^cf \ge {}^cG^cg$$
 on the set $\{{}^cg>0\}$ implies that

(2.6)
$$a+{}^cG^cf-{}^cf \ge {}^cG^cg$$
 everywhere on cS .

Proof. Let f be the function on S such that $f \in \mathbb{N}$ and $f|_{{}^cS} = {}^cf$. Such f is obviously unique. The function $g \in \mathbb{N}$ is defined similarly. Then inequality (2.5) implies that

$$a+A(g-f)(c) \ge A(g-f)$$
 on the set $\{g-f>0\}$.

For, since cf and cg are non-negative, the set $\{g-f>0\}$ is contained in the union of c and $\{{}^cg>0\}$. Hence by (RSCM)

$$a+A(g-f)(c)-(g-f)^- \ge A(g-f)$$
 everywhere.

Since the function $(g-f)^-$ is equal to cf on ${}^cS \cap \{g=0\}$, the above inequality, combined with (2.5), proves the theorem.

A non-negative function ${}^{c}h$ on ${}^{c}S$ is said to be *quasi-excessive*³⁾ if, for every ${}^{c}g \in {}^{c}M$, the inequality

$${}^{c}h \ge {}^{c}G^{c}g$$
 on the set $\{{}^{c}g > 0\}$

implies that

$${}^{c}h - {}^{c}g^{-} \ge {}^{c}G^{c}g$$
 everywhere.

Moreover Meyer introduced the notion of the *pseudo-réduite* ${}^cH_E{}^ch$ for every quasi-excessive function ch and every subset E of cS . This function ${}^cH_E{}^ch$ satisfies the following four conditions.

- (2.7) ${}^{c}H_{E}{}^{c}h$ is quasi-excessive.
- (2.8) ${}^{c}H_{E}{}^{c}h \leq {}^{c}h$ on ${}^{c}S$ and ${}^{c}H_{E}{}^{c}h = {}^{c}h$ on E.
- (2.9) If ch_1 and ch_2 are two quasi-excessive functions such that ${}^ch_1 \leq {}^ch_2$ on E, then ${}^cH_E{}^ch_1 \leq {}^cH_E{}^ch_2$.
- (2.10) If ${}^{c}f \in {}^{c}M^{+}$ vanishes outside of E then ${}^{c}H_{E}{}^{c}G^{c}f = {}^{c}G^{c}f$.

For example, the function ${}^cG^cf$, ${}^cf \in {}^cM^+$, and every positive constant are quasi-excessive ([7] see also [5]).

Now we introduce a condition.

Condition (*): There exists a sequence of finite sets $\{E_n\}_{n=1,2,\cdots}$ increasing to S such that $c \in E_n$ for each n, and a sequence $\{h_n\}_{n=1,2,\cdots}$ of function on S satisfying the following conditions.

- (i) $0 \le h_n \le 1$, $h_n(c) = 0$, $h_n = 1$ on $F_n = S E_n$, and $\lim h_n = 0$.
- (ii) For every $f \in N$ and every real number $m \ (\ge Af(c))$ the relation that

$$m+h_n \ge Af$$
 on the set $\{f>0\}$.

implies that

$$m+h_n-f^- \ge Af$$
 everywhere on ^cS.

In section 3 we shall show that if A is a weak potential kernel of an irreducible recurrent Markov chain, it satisfies condition (*).

Theorem 2.2 Condition (*) is equivalent to the condition that, there exists a sequence of finite sets ${}^{c}E_{n}{}_{n=1,2,\cdots}$ increasing to ${}^{c}S$ such that

(2.11)
$$\lim {}^{c}H_{{}^{c}S^{-c}B_{n}} \cdot 1 = 0.$$

Proof. Suppose that condition (*) holds and let ch_n be the restriction of h_n to cS and ${}^cE_n = {}^cS \cap E_n$. Obviously ${}^cS - {}^cE_n = F_n$, $0 \le {}^ch_n \le 1$, and ${}^ch_n = 1$ on F_n . It then follows that ch_n is a quasi-excessive function for every n. In fact,

³⁾ This definition is slightly different from Meyer's one; this is the discrete version of Meyer's,

let "f be in "M" and f, the extention of "f to S such that $f \in N$. If

$${}^{c}h_{n} \ge {}^{c}G^{c}f$$
 on the set $\{{}^{c}f > 0\}$

then

$$h_n + Af(c) \ge Af$$
 on the set $\{f > 0\}$,

since $\{{}^cf>0\}$ is contained in $\{f>0\}\cup\{c\}$. Hence from condition (*),

$$h_n + Af(c) - f^- \ge Af$$
 everywhere on cS ,

that is,

$${}^{c}h_{n} - {}^{c}f^{-} \ge {}^{c}G^{c}f$$
 everywhere on ${}^{c}S$.

Since ${}^{c}H_{F_{n}} \cdot 1 \leq {}^{c}h_{n}$ by definition,

$$\lim {}^{c}H_{F_{n}} \cdot 1 = 0.$$

Conversely, if (2.11) holds, set ${}^cE_n \cup \{c\} = E_n$, $F_n = S - E_n$ and

$$h_n = \begin{cases} {}^c H_{F_n} \cdot 1 & \text{on } {}^c S \\ 0 & \text{at } c. \end{cases}$$

It is enough to show the property (ii) of condition (*). Suppose that, for some $f \in \mathbb{N}$ and some real number $m \ (\geq Af(c))$

$$m+h_n \ge Af$$
 on $\{f>0\}$.

Then one has

$$m-Af(c)+{}^cH_{F_n}\cdot 1 \ge {}^cG^cf$$
 on $\{{}^cf>0\}$,

where cf is the restriction of f to cS . The fact that $m-Af(c)+{}^cH_{F_n}\cdot 1$ is a quasi-excessive function implies that

$$m - Af(c) + {}^{c}H_{F_n} \cdot 1 - {}^{c}f = {}^{c}G^{c}f$$
 everywhere on ${}^{c}S$,

which is nothing but condition (*).

Note. If α is a finite measure, then condition (*) is satisfied.

Let I_F be the indicator function of a set F, then from lemma 2.1 ${}^cGI_F \ge 1$ on F. Hence from (2.8) and (2.9) ${}^cH_F \cdot 1 \le {}^cGI_F$. Hence if F_n decrease to empty set, inequality

$${}^{c}H_{F_{n}} \cdot 1(x) \leq {}^{c}GI_{F_{n}}(x) \leq \sum_{y \in F_{n}} C \cdot \alpha(y)$$
,

implies that

$$\lim {}^{c}H_{F_{n}} \cdot 1(x) = 0.$$

Where the second inequality follows from the corollary of lemma 2.1.

3. Main result

Let A be a weak potential kernel of an irreducible recurrent transition

probability P with invariant measure α . We shall now prove that A satisfies condition (*) of section 2.

Define cP and cG as (1.3) and (1.4) respectively. Let cH_F be the réduite defined by cP . Since $^cH_F \cdot 1$ is the pseudo-réduite associated with the above cG (see [5] P. 37, theorem 1.3), it is enough to show that for a sequence of finite sets $\{^cE_n\}_{n=1,2,\cdots}$ increasing to cS , $\lim_{r\to 0} ^cH_{F_n} \cdot 1=0$ $(F_n=^cS-^cE_n)$ by theorem 2.2. One can easily seen that the function $^ch(x)=\lim_{r\to 0} ^cH_{F_n} \cdot 1(x)$ is an invariant function for cP (i.e. $^cP^ch=^ch$) and bounded by 1. On the other hand,

$$1 = {}^{c}G(1 - {}^{c}P \cdot 1)(x) + \lim {}^{c}P^{n} \cdot 1(x)$$

and

$$\lim {}^{c}P^{n} \cdot 1(x) = \lim P_{x}[\sigma_{\{c\}} > n] = 0,$$

implies that 1 is a potential of non-gengative function (where $\sigma_{\{c\}}$ is the hitting time of the Markov chain with transition probability P). Hence ${}^{c}h$ is also a potential. The fact that ${}^{c}h$ is an invariant function and also a potential shows that ${}^{c}h=0$.

The main result of the present paper is this.

Theorem 3.1. Given a positive measure α and a kernel A satisfying maximum principle (RSCM) and condition (*), there exists a unique irreducible recurrent transition probability P which has α as its invariant measure, and A as its weak potential kernel.

Uniqueness was proved by Kondō [4]. We shall divide the proof of existence into several lemmas. In the following we shall use the notation of section 2 with no further reference.

Lemma 3.1. There exists a sub-Markov transition probability ${}^{c}P(x, y)$ on ${}^{c}S$ such that

$$^{c}G(x, y) = \sum_{n=0}^{\infty} {^{c}P^{n}(x, y)}$$
 for every x, y in ^{c}S .

Proof. See Meyer [7] P. 238 lemma 10.

Lemma 3.2. For every $y \in {}^{c}S$, $\sum_{x \neq c} \alpha(x)^{c} P(x, y) \leq \alpha(y)$.

Proof. To the contrary, suppose that there exists some state $y \in {}^cS$ such that

$$\sum_{x \neq c} \alpha(x)^{c} P(x, y) - \alpha(y) > 0.$$

Then there exists a finite subset F of ${}^{c}S$ containing y and satisfying

$$\sum_{x \in F} \alpha(x)^{c} P(x, y) - \alpha(y) = a > 0.$$

Define a function $f \in N$ by

$$f(x) = \begin{cases} {}^{c}P(x, y) - I(x, y) & x \in F \\ -\frac{a}{\alpha(c)} & x = c \\ 0 & \text{otherwise} \end{cases}$$

Since $Af+f^-$ attains its maximum on the set $\{f>0\}$ and since f(c)<0, there exists a state $x_0 \in F$ such that,

$$Af(x_0) \ge Af + f^-$$
 everywhere on S.

In particular,

$$Af(x_0) \ge Af(c) + \frac{a}{\alpha(c)}$$
.

Hence,

$$0 > -\frac{a}{\alpha(c)} \ge Af(c) - Af(x_0) = {}^{c}G(-{}^{c}f)(x_0)$$
,

where ${}^{c}f$ is the restriction of f to ${}^{c}S$. On the other hand,

$${}^{c}G(-{}^{c}f)(x_{0}) = {}^{c}G(x_{0}, y) - \sum_{z \in F} {}^{c}G(x_{0}, z){}^{c}P(z, y)$$

$$\geq {}^{c}G(x_{0}, y) - ({}^{c}G(x_{0}, y) - I(x_{0}, y)) = I(x_{0}, y) \geq 0.$$

This lead us to a contradiction.

Lemma 3.3.
$${}^{c}G(1-{}^{c}P \cdot 1)=1 \text{ on } {}^{c}S$$
.

Proof. For any positive integer n, we have

$$1 = \sum_{k=0}^{n} {}^{c}P^{k}(1 - {}^{c}P \cdot 1)(x) + {}^{c}P^{n+1} \cdot 1(x).$$

Passing to the limit we obtain

$$1 = {}^{c}G(1 - {}^{c}P \cdot 1)(x) + r(x)$$
.

where $r(x)=\lim^{c} P^{n+1} \cdot 1(x)$. It remains to show that r(x)=0. From condition (*) for arbitrary $\varepsilon > 0$ there exists a number M such that for any integer $m \ge M$,

$${}^{c}H_{F_{m}} \cdot 1(x) < \varepsilon$$
.

Hence

$$\sum_{y \neq c} {}^{c}P^{n+1}(x, y) = {}^{c}P^{n+1}I_{F_{m}}(x) + {}^{c}P^{n+1}I_{E_{m}}(x) \leq {}^{c}H_{F_{m}} \cdot 1(x) + {}^{c}P^{n+1}I_{E_{m}}(x),$$

where I_F is the indicator function of F. Tending n to infinity we obtain $r(x) \le \varepsilon$.

Lemma 3.4.
$$\sum_{x \neq c} \alpha(x) (1 - {}^{c}P \cdot 1)(x) \leq \alpha(c)$$
.

Proof. Let F be an arbitrary finite subset of ${}^{c}S$, and define

$$f(x) = \begin{cases} 1 - {}^{c}P \cdot 1(x) & x \in F \\ -\sum_{y \in F} \frac{\alpha(y)}{\alpha(c)} (1 - {}^{c}P \cdot 1(y)) & x = c \\ 0 & \text{otherwise.} \end{cases}$$

As noted in the proof of lemma 3.2, there exists a state $x_0 \in F$ such that

$$Af(x_0) \ge Af + f^-$$
 on S .

In particular,

$${}^{c}G^{c}f(x_{0}) = Af(x_{0}) - Af(c) \ge f^{-}(c) = \sum_{y \in F} \alpha(y)(1 - {}^{c}P \cdot 1))/\alpha(c)$$
,

and by lemma 3.3, the left side of the above inequality is bounded by 1.

Now we can define the desired transition probability P.

(3.1)
$$P(x, y) = \begin{cases} {}^{c}P(x, y) & x \neq c, y \neq c \\ 1 - {}^{c}P \cdot 1(x) & x \neq c, y = c \\ (\alpha(y) - \alpha^{c}P(y))/\alpha(c) & x = c, y \neq c \\ 1 - \sum_{z \neq c} P(c, z) & x = c, y = c \end{cases}$$

From lemmas 3.2 and 3.4, P is a transition probability on S.

Lemma 3.5. $\alpha P = \alpha$ and (I-P)Af = f for any $f \in N$.

Proof. If $x \neq c$, then

$$\alpha P(x) = \sum_{v \neq c} \alpha(v)^{c} P(v, x) + \alpha(x) - \alpha^{c} P(x) = \alpha(x)$$

and

$$(I-P)Af(x) = (I-P)(Af(c) + {}^{c}Gf)(x) = f(x)$$
.

By the same argument for x=c, lemma follows.

Lemma 3.6. The transition probability P is recurrent and irreducible.

Proof. Let $\sigma_{(x)}$ be the hitting time for x of the Markov chain with transition probability P. Then for every $x \neq c$,

$$P_x[\sigma_{(c)} < \infty] = \sum_{y \neq c} {}^c G(x, y) P(y, c) = {}^c G(1 - {}^c P \cdot 1) (x) = 1$$

by lemma 3.3. Hence,

$$P_c[\sigma_{(c)}^+ < \infty] = \sum_{x \in S} P(c, x) P_x[\sigma_{(c)} < \infty] = 1$$

where $\sigma^+_{(c)}$ is the positive hitting time for state c. Thus c is a recurrent state for P and hence also for \hat{P} , where \hat{P} is defined by,

(3.2)
$$\hat{P}(x, y) = \frac{\alpha(y)}{\alpha(x)} P(y, x).$$

Moreover,

$$\hat{P}^{n}(c, x) = \frac{\alpha(x)}{\alpha(c)} P^{n}(x, c)$$
, and $P_{x}[\sigma_{(c)} < \infty] = 1$,

shows that

$$\stackrel{\wedge}{P_c}[\sigma_{\{x\}} < \infty] > 0 \text{ for all } x \in {}^cS.$$

Hence x is a recurrent state for \hat{P} and hence for P. Since x is recurrent and $P_x[\sigma_{(c)}<\infty]=1$, it follows that $P_c[\sigma_{(x)}<\infty]=1$ for all $x\in S$. Irreducibility follows from the fact that, $P_x[\sigma_{(c)}<\infty]=1$ and $P_c[\sigma_{(y)}<\infty]=1$ for every x,y in S.

OSAKA CITY UNIVERSITY

Bibliography

- [1] G.A. Hunt: Markov processes and potentials II, Illinois J. Math. 1 (1957), 316-395.
- [2] J.G. Kemeny and J.L. Snell: Potentials for denumerable Markov chains, J. Math. Anal. Appl. 3 (1961), 196-260.
- [3] R. Kondō: On weak potential operators for recurrent Markov chains with continuous parameters, Osaka J. Math. 4 (1967), 327-344.
- [4] R. Kondō: On a construction of recurrent Markov chains, Osaka J. Math. 6 (1969), 13-28.
- [5] R. Kondō, Y. Ōshima and T. Watanabe: Topics in Markov Chain, Seminar on Probability, vol. 28, 1968 (Japanese).
- [6] P.A. Meyer: Probability and Potentials, Blaisdell Publishing Company, 1966, 13–28.
- [7] P.A. Meyer: Caractérisation des noyaux potentiels des semi-groupes discrets, Ann. Inst. Fourier 16 (1966), 225-240.
- [8] S. Orey: Potential kernels for recurrent Markov chains, J. Math. Anal. Appl. 8 (1964), 104-132.