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1. Introduction

Let P be an irreducible recurrent transition probability on a denumerable

space S with invariant measure a. Let c be an arbitrary (but fixed) state of S.
Then from the work of Kondό [3] and Orey [8], there exist the class of weak

potential kernels A(x, y) defined by the property that, for every null charge/, Af

is bounded and satisfies the equation

(l l) (I-P)Af = f.

Moreover Af is represented by

(1-2) Af='Gf+l(f),

where / is a null charge, 1( ) is an arbitrary linear functional on the space of

null charges and CG is defined as follow;

ΓP(*,

lθ

(1.3) cP(x, y) = ΓP(*, y)

otherwise,

(1.4) 'G(χ,y)=ΓΣ£-*cPm(*,y)
lθ otherwise.

Moreover A satisfies the following maximum principle [4], [5]:

(RSCM)'> If m is a real number and/ is a null charge then the relation that

(1.5) m^Af on the set {/>0}

implies that

(1.6) m—f~:>Af everywhere,

1) This is the abbreviation of "reinforced semi-complete maximum principle"; this
maximum principle corresponds to the semi-complete M.P. as well as the reinforced M.P.
(of Meyer) corresponds to the complete M.P.
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where /' = (—/)VO.

In the present paper we are concerned with the following construction
problem. Given a positive measure a and a (not necessarily positive) kernel A
satisfying (RSCM), does there exist an irreducible recurrent transition probability
which has a as its invariant measure, and A as its weak potential kernel ? This
is not true in genera!2), but as Kondo [4] has proved, it is true if a is a finite
measure. In section 2 we shall introduce another necessary condition for the
weak potential kernel A (referred to as condition (*)). Then we shall prove
(theorem 3.1) that, if the pair (A, a) satisfies maximum principle (RSCM) and
condition (*), A is a weak potential kernel of a (unique) recurrent Markov chain
with a as its invariant measure.

I should like to express my hearty gratitude to T. Watanabe for his kind
advices.

2. Some potential theory for a kernel A satisfying (RSCM)

Let a be a strictly positive measure and A, a kernel on S. A function/ on
S is said to be a null charge with respect to a if Σ a(x) \f(x) \ < °° and 2 a(x)f(x)
=0. Let N be the space of null charges vanishing outside a finite subset of S.
We assume that the kernel A satisfies condition (RSCM) for f^N. Fix an
arbitrary state c and define

(2.1) CG(X, y) = A(x, y)-A(c, y)-(A(x, c)-A(c, c))^-.
a(c)

If A is a weak potential kernel then (2.1) is clearly satisfied by taking/ in
equation (1.2) as

(2.2)

a(y)Y' x = c
a(c)

— 1 x = y

0 otherwise,

and calcurating Af(x)—Af(c).
From definition (2.1) cG(c, x)=cG(xy c)=0 for every

Lemma 2.1 For arbitrary elements x, y in S which are different from c

I(X, y)^G(X, y)^G(y, y) .

Proof. By taking/ as (2.2) we have

a(c)

2) Λ counter example was given by Kondo and T, Watanabe,
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Hence, if we write /+=/vθ, /-=(-/) Vθ, by (RSCM)

A(y, c) , ,
a(c) a(c)

so that

(2.3) A(y, , , ,
a(c) a(c}

^A(c,c)^-A(c,y)-I(X,y),

which proves the lemma.

Corollary. For every x^S there exists a constant C such that

(2.4) cG(x, y) ̂  C a(y) for every y e S .

Proof. Exchanging c and x in the second inequality in (2.3), it follows that

°G(X, y) = A(x, y)-A(c, y)-(A(x, c)-A(c, c))2&
a(c)

a(c) a(x) a(c) a(x)

Let CS be the set S— {c}, and CM be the space of all functions on CS vanishing
outside a finite subset of CS. Let CM + be the space of all non-negative functions
in CM.

Theorem 2.1. The kernel CG satisfies the reinforced maximum principle [7] :
(RM) If a is a non-negative constant and if cf and cg are two elements of CM+,
then the relation that

(2.5) a+cGcf—cf^cGcg on the set [cg>fy implies that

(2.6) a+cGcf-cf^cGcg everywhere on CS.

Proof. Let / be the function on S such that f^N and f\ cs=
cf. Such /

is obviously unique. The function g^N is defined similarly. Then inequality
(2.5) implies that

f on the set £-

For, since c/and cg are non-negative, the set {g— />0} is contained in the union
of c and {cg>0}. Hence by (RSCM)
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<*+A(g-f)(c)-(g-fΓ ^A(g-f) everywhere.

Since the function (g—f)~ is equal to cf on CSΓ\ {£=0}, the above inequality,
combined with (2.5), proves the theorem.

A non-negative function ch on CS is said to be quasi-excessive^ if, for every
cg^cM, the inequality

ch^cGcg on the set {cg>0}
implies that

ch—cg~ ^> °Gcg everywhere.

Moreover Meyer introduced the notion of the pseudo-rtduite cHE

ch for
every quasi-excessive function ch and every subset E of CS. This function
cHE

ch satisfies the following four conditions.

(2.7) cHE°h is quasi-excessive.
(2.8) ΉE

ch^ch on CS and ΉE

ch=ch on E.
(2.9) If chl and Ch2 are two quasi-excessive functions such that Ch^ch2 on ZJ,

(2.10) If cf£ΞcM+ vanishes outside of E then ΉE

cGcf=cGcf.

For example, the function CGC/, c/ecj/+, and every positive constant are
quasi-excessive ([7] see also [5]).

Now we introduce a condition.
Condition (*): There exists a sequence of finite sets {En}n^lf2)... increasing

to S such that c^En for each n, and a sequence {/*„}„ =ι>2, of function on S
satisfying the following conditions.

(i) O^A^l, Aw(c)=0, *„=! on Fn=S-En, and limA^O.
(«) For every f^N and every real number m (^Af(c)) the relation that

m+hn^Af on the set {/>0}.
implies that

m+hn—f~:>Af everywhere on CS.

In section 3 we shall show that if A is a weak potential kernel of an irreduci-
ble recurrent Markov chain, it satisfies condition (*).

Theorem 2.2 Condition (*) is equivalent to the condition that, there exists
a sequence of finite sets {cEn}n=lt2t... increasing to CS such that

(2.11) HmΉcs_cBn l = 0.

Proof. Suppose that condition (*) holds and let chn be the restriction of
hn to CS and cEn=

eSr\En. Obviously cS-cEn=Fn, 0^cAn^l, and chn= I on
Fn. It then follows that chn is a quasi-excessive function for every n. In fact,

3) This definition is slightly different from Meyer's one; this is the discrete version of
Meyer's,
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let c/be in CM and/, the extention of c/to S such that/<ΞΛΓ. If
chn^

 cGcf on the set {c/>0}

then

hn+Af(c)^Af on the set {/>0} ,

since {c/>0} is contained in {/>0} U {c}. Hence from condition (*),

hn+Af(c)—f~:>Af everywhere on CS,

that is,
chn-

cf-^°Gcf everywhere on CS.

Since cHpn* 1 =chn by definition,

limc^M l -0.

Conversely, if (2.11) holds, set eEH\J{c}=En, Fn=S—En and

Γ ΉFn l on CS
h» = 1 A'"[ 0 at c.

It is enough to show the property (ii) of condition (*). Suppose that, for some
f£ΞN and some real number m (2^

on

Then one has

m-Af(c)+ΉFn l^cGcf on {c/

where ef is the restriction of/ to CS. The fact that m—Af(c)-\-ΉFn 1 is a quasi-
excessive function implies that

m-Af(c}+ΉFnΛ-cf-^ιcGcf everywhere on CS,

which is nothing but condition (*).
Note. If a is a finite measure, then condition (*) is satisfied.
Let IF be the indicator function of a set JP, then from lemma 2.1 CGIF^1 on

F. Hence from (2.8) and (2.9) ΉF \^CGIF. Hence if Fn decrease to empty
set, inequality

eίWl(*)^βσ/,β

implies that

Where the second inequality follows from the corollary of lemma 2.1.

3. Main result

Let A be a weak potential kernel of an irreducible recurrent transition
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probability P with invariant measure a. We shall now prove that A satisfies

condition (*) of section 2.
Define CP and CG as (1.3) and (1.4) respectively. Let ΉFbe the rέduite

defined by CP. Since CHF 1 is the pseudo-rόduite associated with the above
CG (see [5] P. 37, theorem 1.3), it is enough to show that for a sequence of finite
sets {°En}n=lt2>... increasing to CS, lim ΉFn l=Q (Fn=

cS—cEn) by theorem 2.2.
One can easily seen that the function ch(x)=\im cHFn l(x) is an invariant function
for CP (i.e. cPch=ch) and bounded by 1. On the other hand,

1 =

 cG(l-cP \)(x)+\imcPn \(x)

and

lim CPΛ \(x) = lim Px[σ{c]>n] = 0 ,

implies that 1 is a potential of non-gengative function (where σ{c} is the
hitting time of the Markov chain with transition probability P). Hence ch is
also a potential. The fact that ch is an invariant function and also a potential
shows that ch=0.

The main result of the present paper is this.

Theorem 3.1. Given a positive measure a and a kernel A satisfying maximum
principle (RSCM) and condition (*), there exists a unique irreducible recurrent
transition probability P which has a as its invariant measure, and A as its weak
potential kernel.

Uniqueness was proved by Kondό [4]. We shalll divide the proof of
existence into several lemmas. In the following we shall use the notation of
section 2 with no further reference.

Lemma 3.1. There exists a sub-Markov transition probability €P(xy y) on
CS such that

cpn(χ> y^ f°r every *> y ίn °s

Proof. See Meyer [7] P. 238 lemma 10.

Lemma 3.2. For every y e cSy Σ*ΦC oί(x)€P(x, y) ̂  a(y).

Proof. To the contrary, suppose that there exists some state y^cS such
that

Then there exists a finite subset F of CS containing y and satisfying

Σ*eF a(x)cP(x, y)-a(y) = a>0 .

Define a function f^N by
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CP(X, y)-I(X, y) x^F

a
7 \ ^—Ca(c)

0 otherwise.

Since Af+f~ attains its maximum on the set {/>0} and since /(c)<0, there
exists a state x0^F such that,

Af(x0)^Af+f" everywhere on S.

In particular,

α(c)

Hence,

°>-^^ Af(c)-Af(Xΰ) = cG(~J)(Xo) ,

where cf is the restriction of / to CS. On the other hand,

CG(-7)(*0) = °G(x<n jO-Σ,^ CG(*0, z)cP(z, y)

^ cG(Xo, y)-(cG(Xo, y)-I(Xΰ, y)) = /(*„, j)^0 .

This lead us to a contradiction.

Lemma 3.3. CG(1-CP \}=\ on CS .

Proof. For any positive integer n, we have

1 - ΣA cP*(l-βP l)(*)+cP"+1 l(*) .

Passing to the limit we obtain

where r(x)=lim cpn+1. l(^). It remains to show that r(x)=0. From condition
(*) for arbitrary £>0 there exists a number M such that for any integer mΞ>M,

Hence

Σ,ΦC

 cP"+l(x, y) = cP"+ίIFm(X)+cP"+ΊEm(x)^Hfm. l(x)+cP"^IEm(X) ,

where IF is the indicator function of F. Tending n to infinity we obtain

Lemma 3.4. Σ*ΦC ̂  (*)( 1 ~ cp 1 ) W ̂

Proof. Let JP be an arbitrary finite subset of C*S, and define
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1-CP-1(*) x<=F

0 otherwise.

As noted in the proof of lemma 3.2, there exists a state xQ^F such that

Af(x0)^Af+f- on S.

In particular,

cGef(x0) = Af(x0)-Af(c)^f-(c) = Σ^F a(y)(l-cP l ) ) / a ( c ) ,

and by lemma 3.3, the left side of the above inequality is bounded by 1.

Now we can define the desired transition probability P.

ί cP(χ,y)

(3.1) P(*,y)= (αOO-α«P(j,))/α(e)

From lemmas 3.2 and 3.4, P is a transition probability on S.

Lemma 3.5. aP=a and (I—P)Af=ffor any

Proof. If #Φ£, then

and

(I-P)Af(x) = (I-P)(Af(c)+°Gf)(X) =f(x) .

By the same argument for ΛJ— c, lemma follows.

Lemma 3.6. The transition probability P is recurrent and irreducible.

Proof. Let σ[χ} be the hitting time for x of the Markov chain with

transition probability P. Then for every #Φ£,

P,['u<<*>] = ΣjΦc'Gfo y)P(y, c) = CG(1-CP 1) (*)=!,

by lemma 3.3. Hence,

where σ>} is the positive hitting time for state c. Thus c is a recurrent state

for P and hence also for P, where P is defined by,

(3.2) P(X,y)= ^\
a(x)
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Moreover,

•P*[<r(c}<°°]=l>
α (C)

shows that

Pc[σ{χ}<°°]>0 for a11 *eΞcS.

Hence x is a recurrent state for P and hence for P. Since # is recurrent and

P*[σ {c}<oo]=l, it follows that Pc[σ{χ}<°°]=l for all Λ:e5. Irreducibility

follows from the fact that, -Pr[σ {c}<00]— 1 and Pc[cτl:v}<oo]=l for every xyy

in 5.
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