Kondō, R. Osaka J. Math. 6 (1969), 13-28

ON A CONSTRUCTION OF RECURRENT MARKOV CHAINS

Ryōji KONDŌ

(Received August 31, 1968)

Let S be a denumerable (possibly finite) set and **B** the space of all real valued and bounded functions defined on S. For a given measure μ , strictly positive at each point of S, we shall denote by $N(\mu)$ the collection of functions f such that the support of f is finite and $\langle \mu, f \rangle = \sum_{x \in S} \mu(x) f(x) = 0$. A linear operator R from $N(\mu)$ to **B** is said to satisfy the *semi-complete maximum principle* if it has the following property:

(S.C.M) For any $f \in N(\mu)$, if $Rf \leq m$ on the set $\{f > 0\}$, then $Rf \leq m$ everywhere, where *m* is a real constant.

We know that if R is a weak potential operator for a recurrent semi-group $(P_t)_{t\geq 0}$ with an invariant measure μ , it satisfies this maximum principle [7, p. 337]. In this work we shall consider the converse problem: Given a measure μ and a linear operator R satisfying (S.C.M), can we find a recurrent semi-group $(P_t)_{t\geq 0}$ which has μ as an invariant measure and R as a weak potential operator?

If μ is bounded, this problem has an affiirmative answer, which will be stated in section 2. However, if μ is unbounded, there are several cases, for example, some operators are weak potential operators for transient semi-groups with invariant measure μ and others are never weak potential operators for any Markov semi-group with invariant measure μ . We shall give such examples in section 3. The appropriate conditions under which the problem is solved are not known yet. In section 1 we shall study, for later use, another type of maximum principle which is satisfied by weak potential operators (weak inverses in Orey [10]) for recurrent Markov chains with discrete parameters.

1. Potential operators satisfying the reinforced semi-complete maximum principle

Throughout this work notations and terminology are mainly taken from [7]. We shall denote the collection of all non-empty finite subsets of S by \mathcal{K} . Further, for each $E \in \mathcal{K}$, we shall use the following notations:

 f_E The function restricted to E.

- ν_E The measure restricted to *E*.
- B_E The space of all functions f_E .
- N^E The space of functions of $N(\mu)$ with supports in E.

For any function f on S, $f^+=\sup(f, 0)$ and $f^-=\sup(-f, 0)$. The indicator function of a set E will be denoted by χ_E .

A linear operator G from $N(\mu)$ to **B** is said to satisfy the *reinforced semi*complete maximum principle if it has the following property:

(R.S.C.M) For any function $f \in N(\mu)$, if $Gf \leq m$ on the set $\{f>0\}$, then $Gf \leq m-f^-$ everywhere, where *m* is a real constant.

Let G be a linear operator from $N(\mu)$ to **B** satisfying (R.S.C.M).

Lemma 1. G is non-singular in the sense: If f is a non-zero element of $N(\mu)$, then Gf is never equal to a constant on the support of f. So that Gf=0 implies f=0.

Proof. Let f be a non-zero element of $N(\mu)$ and Gf=m on the support of f, where m is a constant. From (R.S.C.M) it follows that $Gf \leq m-f^-$ everywhere and hence, $m=Gf \leq m-f^-$ on the set $\{f<0\}$. Therefore $f^-=0$. Similarly we have $f^+=0$, for, $-m=G(-f) \leq -m-(-f)^-=-m-f^+$ on the set $\{f>0\}$. Thus f=0, which is a contradiction.

Lemma 2. There is a family of (signed) measures $(\lambda^E)_{E \in \mathcal{K}}$ on S such that; (i) the support of each λ^E is contained in E, (ii) $\langle \lambda^E, 1 \rangle = 1$ and (iii) $\langle \lambda^E, Gf \rangle = 0$ for all $f \in N^E$. Such a family is unique.

Proof. Let $E \in \mathcal{K}$ and the number of elements of E be n. Then the linear dimensions of B_E and N^E are equal to n and n-1 respectively. Let us define a linear operator G^E from N^E to B_E by

(1.1)
$$G^{E}f = (Gf)_{E} \quad \text{for} \quad f \in \mathbb{N}^{E}.$$

From Lemma 1 it follows that if $G^E f=0$, then f=0 and that 1_E , the restriction of the function 1 to E, does not belong to the range $G^E(N^E)$. Therefore, since dim $G^E(N^E) = \dim N^E = n-1$ and $1_E \notin G^E(N^E)$, we can find exactly one linear functional l_E on B_E such that $l_E(g_E) = 0$ if and only if $g_E \in G^E(N^E)$ and $l_E(1_E) = 1$. Thus if we define the measure λ^E by $\lambda^E(y) = l_E((\chi_{\{y\}})_E)$ for $y \in E$ and $\lambda^E(y) = 0$ for $y \in S \setminus E$, the family $(\lambda^E)_{E \in \mathcal{K}}$ is the desired one. The uniquencess of $(\lambda^E)_{E \in \mathcal{K}}$ is obvious from the above proof.

Let $g \in B$ and $E \in \mathcal{K}$. If we put $h_E = (g - \langle \lambda^E, g \rangle)_E$, then $l_E(h_E) = \langle \lambda^E, g \rangle - \langle \lambda^E, g \rangle = 0$, so that we can find unique $f^E \in N^E$ such that $h_E = G^E f^E$. Now

let us define the mappings H^E and Π^E from **B** to **B** by

(1.2)
$$H^{E}g = Gf^{E} + \langle \lambda^{E}, g \rangle$$

and

(1.3)
$$\Pi^{E}g = Gf^{E} + \langle \lambda^{E}, g \rangle - f^{E} = H^{E}g - f^{E}$$

respectively. Obviously, H^E and Π^E are linear and $H^E g = \Pi^E g$ on $S \setminus E$.

Lemma 3. (i) If $g \ge 0$ on E, then $H^E g \ge 0$ and $\Pi^E g \ge 0$ everywhere. (ii) $H^E 1=1$ and $\Pi^E 1=1$. (iii) If $E, F \in \mathcal{K}$ and $E \subseteq F$, then $H^F H^E g = H^E g$ and $\Pi^F H^E g = \Pi^E g$.

Proof. Let $g \ge 0$ on E and $H^E g = Gf^E + \langle \lambda^E, g \rangle$ where $f^E \in \mathbb{N}^E$. Since $Gf^E + \langle \lambda^E, g \rangle = g$ on $E, Gf^E \ge -\langle \lambda^E, g \rangle$ on the support of f^E . Therefore, using (R.S.C.M), we have

$$Gf^{E} \geq -\langle \lambda^{E}, g \rangle + (f^{E})^{+}$$

everywhere, so that

$$H^{E}g = Gf^{E} + \langle \lambda^{E}, g \rangle \geq (f^{E})^{+} \geq 0$$

and

$$II^{E}g = Gf^{E} + \langle \lambda^{E}, g \rangle - f^{E} \ge Gf^{E} + \langle \lambda^{E}, g \rangle - (f^{E})^{+} \ge 0$$

everywhere. Thus, the assertion (i) is true. Next, if $H^E 1 = Gf^E + \langle \lambda^E, 1 \rangle$, then $f^E = 0$ by Lemma 1. Therefore $H^E 1 = \Pi^E 1 = 1$, which implies (ii). Finally, let $E \subseteq F$ and let

$$egin{aligned} h &= H^E g = G f^E + \langle \lambda^E, \, g
angle \qquad (f^E \in N^E) \ H^F h &= G f^F + \langle \lambda^F, \, h
angle \qquad (f^F \in N^F) \,. \end{aligned}$$

Since $H^F h = h$ on F, we have

$$Gf^F + \langle \lambda^F, h \rangle = Gf^E + \langle \lambda^E, g \rangle$$

on F. Therefore

$$G(f^F - f^F) = \langle \lambda^E, g \rangle - \langle \lambda^F, h \rangle = \text{const.}$$

on the support of $f^F - f^E$. Using Lemma 1, we have $f^F = f^E$ and $\langle \lambda^E, g \rangle = \langle \lambda^F, h \rangle$, which implies $H^F H^E g = H^E g$ and that

$$\Pi^F H^E g = H^F h - f^F = h - f^E = \Pi^E g \,.$$

Thus the assertion (iii) was proved.

From this lemma we can see that H^E and Π^E are Markov kernels on S and that for each $x \in S$ the supports of measures $H^E(x, \cdot)$ and $\Pi^E(x, \cdot)$ are contained in E.

Corollary. If $E, F \in \mathcal{K}, E \subseteq F$ and g is a non-negative function on S with support in E, then $\Pi^E g \ge \Pi^F g$ everywhere.

For,

$$\Pi^{E}g(x) = \Pi^{F}H^{E}g(x)$$

$$= \sum_{y \in E} \Pi^{F}(x, y)g(y) + \sum_{y \in S \setminus E} \Pi^{E}(x, y)H^{E}g(y)$$

$$\geq \sum_{y \in E} \Pi^{F}(x, y)g(y)$$

$$= \Pi^{F}g(x)$$

for all $x \in S$.

Theorem 1. Let μ be a bounded measure which is strictly positive everywhere and G a linear operator from $N(\mu)$ to B satisfying the reinforced semi-complete maximum principle. Then there is a kernel P on S such that

$$(1.4) P \ge 0 \quad and \quad P1 = 1,$$

$$(1.5) \qquad \qquad \mu P = \mu ,$$

(1.6)
$$(I-P)Gf = f \quad for \ all \ f \in \mathbf{N}(\mu) .$$

Such a kernel is unique.¹)

Further, P is irreducible recurrent in the sense:

(1.7)
$$\sum_{n=0}^{\infty} P^n(x, y) = \infty \quad for \ all \ (x, y) \in S \times S.$$

Proof. Let $(E_n)_{n\geq 1}$ be an increasing sequence of \mathcal{K} with the union S and $x, y \in S$. Then, there is some n such that $y \in E_k$ for all $k \geq n$. So that, by Corollary of Lemma 2, we have

$$\Pi^{E}\mathbf{n}(x, y) \geq \Pi^{E}\mathbf{n}^{+1}(x, y) \geq \cdots \geq 0.$$

Therefore the limit;

(1.8)
$$P(x, y) = \lim_{n \to \infty} \Pi^E_n(x, y),$$

exists for any $(x, y) \in S \times S$. We shall prove the kernel P defined by (1.8) has

¹⁾ Precisely speaking, a Markov kernel satisfying (1. 6), if it exists, is unique, even if μ is unbounded. We can see this in the proof of the theorem. Similar circumstance occurs in Lemma 5 and Theorem 2 in the next section.

all the properties stated in the theorem. Since Π^{E_n} are Markov kernels, P is obviously sub-Markov kernel, that is, $P \ge 0$ and $P1 \le 1$, by Fatou's inequality. From the definition of the kernel H^E , we can find $f^{E_n} \in N^{E_n}$ such that

$$H^{E_n}(x, y) = Gf^{E_n}(x) + \lambda^{E_n}(y) .$$

Since,

$$\Pi^{E} n(x, y) = H^{E} n(x, y) - f^{E} n(x),$$

we have,

$$\begin{split} \Sigma_{x \in E_n} \mu(x) \Pi^{E_n}(x, y) \\ &= \Sigma_{x \in E_n} \mu(x) H^{E_n}(x, y) - \Sigma_{x \in E_n} \mu(x) f^{E_n}(x) \\ &= \mu(y) , \end{split}$$

whenever $y \in E_n$. On the other hand, since $0 \leq \chi_{E_n}(x) \prod^{E_n}(x, y) \leq 1$, $\lim_n \chi_{E_n}(x) \prod^{E_n}(x, y) = P(x, y)$ and μ is a bounded measure, we have

$$\mu P(y) = \sum_{x \in S} \mu(x) (\lim_{n \to \infty} \chi_{E_n}(x) \Pi^{E_n}(x, y))$$
$$= \lim_{n \to \infty} \sum_{x \in S} \mu(x) \chi_{E_n}(x) \Pi^{E_n}(x, y)$$
$$= \mu(y)$$

for all $y \in S$. Thus (1.5) was proved. From (1.5) it follows that $\langle \mu, P1 \rangle = \langle \mu P, 1 \rangle = \langle \mu, 1 \rangle$. Since $0 \leq P1 \leq 1$, we have P1 = 1 almost everywhere with respect to μ . However, since μ is strictly positive everywhere, we have P1 = 1. That is, (1.4) is true. Let $f \in N(\mu)$ and g = Gf + ||Gf||, where || || denotes the uniform norm in **B**. If *n* is so large that the support of *f* is contained in E_n , we have

$$\Pi^{E} \mathfrak{n} g(x) = \Pi^{E} \mathfrak{n} Gf(x) + ||Gf||$$

= $Gf(x) - f(x) + ||Gf||$

for all $x \in S$ and hence, noting that $g \ge 0$, we have

$$Pg(x) \leq \liminf_{n \to \infty} \Pi^E ng(x) = Gf(x) - f(x) + ||Gf||,$$

which implies

$$(1.9) PGf \leq Gf - f$$

Similarly, by replacing f to -f in (1.9), we have $PGf \ge Gf - f$, so that PGf = Gf - f which proves (1.6). If \tilde{P} is any kernel satisfying (1.4) and (1.6), then for any $g \in \boldsymbol{B}$

$$\begin{split} \tilde{P}g &= \lim_{n \to \infty} \tilde{P}H^E ng = \lim_{n \to \infty} \tilde{P}(Gf^E n + \langle \lambda^E n, g \rangle) \\ &= \lim_{n \to \infty} \left(Gf^E n - f^E n + \langle \lambda^E n, g \rangle \right) = \lim_{n \to \infty} PH^E ng = Pg \,, \end{split}$$

where $H^{E_{n}}g = Gf^{E_{n}} + \langle \lambda^{E_{n}}, g \rangle$ and $f^{E_{n}} \in N^{E_{n}}$. Thus the uniqueness of P is proved. Finally we shall prove (1.7). If there is some $y \in S$ such that

$$\sum_{n=0}^{\infty} P^n(y, y) < \infty$$
,

then

$$\sum_{n=0}^{\infty} P^n(x, y) \leq \sum_{n=0}^{\infty} P^n(y, y) < \infty$$

for all $x \in S$. Consequently $\lim_{n} P^{n}(x, y) = 0$ for all $x \in S$.

Therefore, using (1.5), we have

$$\mu(y) = \sum_{x \in S} \mu(x) \left(\lim_{n} P^{n}(x, y) \right) = 0,$$

which contradicts the assumption that μ is strictly positive everywhere. Thus (1.7) is true when x=y. To show (1.7) in the case $x \neq y$, it is sufficient that we prove there is some *n* such that $P^n(x, y) > 0$. Let us introduce the function e_y in $N(\mu)$ by

$$e_y(z) = \begin{cases} 1 & z = x \\ -\mu(x)/\mu(y) & z = y \\ 0 & \text{otherwise} \end{cases}$$

If $P^{n}(x, y) = 0$ for all $n \ge 0$, we have

$$\sum_{k=0}^{n} P^{k}(x, x) = \sum_{k=0}^{n} P^{k} e_{y}(x)$$

= $Ge_{y}(x) - P^{n+1} Ge_{y}(x)$
= $[Ge_{y}(x) - Ge_{y}(y)] - P^{n+1} [Ge_{y} - Ge_{y}(y)](x)$
 $\leq Ge_{y}(x) - Ge_{y}(y),$

because $Ge_y \ge Ge_y(y)$ everywhere. Consequently we have

$$\sum_{k=0}^{\infty} P^{k}(x, x) \leq Ge_{y}(x) - Ge_{y}(y) < \infty$$

which is a contradiction. Thus the theorem was proved.

In the proof of this theorem, we have used essentially the boundedness of the measure μ . Examples of operators G for unbounded measures will be given and discussed in section 3.

2. The potential operators satisfying the semi-complete maximum principle.

Let μ be a measure on S, strictly positive everywhere, and R a linear operator from $N(\mu)$ to **B** which satisfies the semi-complete maximum principle.

In this section we shall assume always that μ is bounded. For each positive number α , we put $G_{\alpha} = I + \alpha R$, where I is the identity operator. Evidently G_{α} is a linear operator from $N(\mu)$ to **B**.

Lemma 4. G_{α} satisfies the reinforced semi-complete maximum principle.

Proof. Let $G_{\alpha}f \leq m$ on the set $\{f>0\}$, where *m* is a real constant. Then $\alpha Rf \leq G_{\alpha}f \leq m$ on the set $\{f>0\}$, so that $\alpha Rf \leq m$ everywhere by (S. C. M). Therefore $-f^- + \alpha Rf \leq m - f^-$ everywhere. Hence we have $G_{\alpha}f = -f^- + \alpha Rf \leq m - f^-$ on the set $\{f \leq 0\}$, which implies $G_{\alpha}f \leq m - f^-$ everywhere.

Since G_{α} satisfies (R. S. C. M), we can apply Theorem 1 to G_{α} , so that there is a kernel Q_{α} on S which has all the properties in Theorem 1. Put $R_{\alpha} = Q_{\alpha}/\alpha$, then

Lemma 5. The family of kernels $(R_{\alpha})_{\alpha>0}$ satisfies the following conditions:

- (2.1) $\alpha R_{\alpha} \geq 0 \text{ and } \alpha R_{\alpha} 1 = 1$,
- (2.2) $\alpha \mu R_{\alpha} = \mu$,
- (2.3) $R_{\alpha}-R_{\beta}+(\alpha-\beta)R_{\alpha}R_{\beta}=0,$
- (2.4) $(I \alpha R_{\sigma})Rf = R_{\sigma}f \quad \text{for all} \quad f \in N(\mu) .$

Such a family is unique. Further

(2.5)
$$\lim_{\alpha \to 0} R_{\alpha}(x, y) = \infty \quad \text{for all} \quad (x, y) \in S \times S.$$

Proof. (2.1), (2.2) and (2.4) are the same as (1.4), (1.5) and (1.6) of Theorem 1 respectively and the uniqueness of such a family is a consequence of Theorem 1, too. So we have only to prove (2.3) and (2.5). Let us denote by $(\lambda_{\alpha}^{E})_{E \in \mathcal{K}}$ the family of measures satisfying (i), (ii) and (iii) of Lemma 2 for G_{α} and by H_{α}^{E} the kernel defined by (1.2) with respect to G_{α} and λ_{α}^{E} . If $g \in \mathbf{B}$ and $H_{\beta}^{E}g = G_{\beta}f^{E}$ $+\langle \lambda_{\beta}^{E}, g \rangle$, where $f^{E} \in \mathbb{N}^{E}$, then, noting the relation

$$H^{E}_{\beta}g = G_{a}f^{E} + (\beta - \alpha)Rf^{E} + \langle \lambda^{E}_{\beta}, g \rangle,$$

we have

$$R_{a}H^{E}_{\beta}g=Rf^{E}+(eta-lpha)R_{a}Rf^{E}+\langle\lambda^{E}_{eta},g
angle/lpha$$
 .

Since

$$R_{eta}H^E_{eta}g=Rf^E+\langle\lambda^E_{eta},g
angle/eta$$
 ,

we have

$$R_{\alpha}H^{E}_{\beta}g - R_{\beta}H^{E}_{\beta}g$$

= $(\beta - \alpha)[R_{\alpha}Rf^{E} + \langle \lambda^{E}_{\beta}, g \rangle |\alpha\beta].$

We can easily verify that the last term is equal to $(\beta - \alpha) R_{\alpha}R_{\beta}H^{E}_{\beta}g$, so that

(2.6)
$$R_{a}H^{E}_{\beta}g - R_{\beta}H^{E}_{\beta}g = (\beta - \alpha)R_{a}R_{\beta}H^{E}_{\beta}g$$

for all $g \in B$, $E \in \mathcal{K}$ and α , $\beta > 0$. Let $(E_n)_{n \ge 1}$ be an increasing sequence of sets in \mathcal{K} with the union S. Since $||H_{\beta}^E ng|| \le ||g||$ and $\lim_{n} H_{\beta}^E ng(x) = g(x)$ for all $x \in S$, we have

$$\begin{aligned} R_{\alpha}g - R_{\beta}g &= \lim_{n \to \infty} \left[R_{\alpha}H_{\beta}^{E}ng - R_{\beta}H_{\beta}^{E}ng \right] \\ &= (\beta - \alpha) \lim_{n} R_{\alpha}R_{\beta}H_{\beta}^{E}ng \\ &= (\beta - \alpha) R_{\alpha}R_{\beta}g , \end{aligned}$$

which proves (2.4). Finally we shall prove (2.5). First we prove the inequality

$$(2.7) R_{a}(x, y) \leq R_{a}(y, y) .$$

Since $\beta R_{\alpha+\beta}$ is a sub-Markov kernel on S and $I + \beta R_{\alpha} = \sum_{n=0}^{\infty} (\beta R_{\alpha+\beta})^n$, we have

(2.8)
$$I(x, y) + \beta R_{\alpha}(x, y) \leq I(y, y) + \beta R_{\alpha}(y, y)$$

for all $(x, y) \in S \times S$. Hence, dividing both side of (2.8) by β , and letting $\beta \to \infty$, we obtain (2.7). If there is some $y \in S$ such that $\lim_{\alpha \to 0} R_{\alpha}(y, y) < \infty$, then $\lim_{\alpha \to 0} \alpha R_{\alpha}(x, y) = 0$ for all $x \in S$ by (2.7). Therefore

$$\mu(y) = \lim_{\alpha \to 0} \alpha \mu R_{\alpha}(y) = \mu (\lim_{\alpha \to 0} \alpha R_{\alpha})(y) = 0,$$

which is a contradiction. Thus (2.5) is true when x=y. Let $r_{\beta}(x)=R_{\beta}(x, y)/R_{\beta}(y, y)$ and $r(x)=\liminf_{\beta\to 0} r_{\beta}(x)$. From (2.7) it follows that $0 \le r(x) \le 1$ for all $x \in S$. Since the resolvent equation (2.3) implies

$$\alpha R_{\alpha} r_{\beta}(x) = \beta R_{\alpha} r_{\beta}(x) + r_{\beta}(x) - R_{\alpha}(x, y) / R_{\beta}(y, y)$$

and since

$$0 \leq R_{\alpha}(x, y)/R_{\beta}(y, y) \leq 1/\alpha R_{\beta}(y, y),$$

$$0 \leq \beta R_{\alpha} r_{\beta}(x) \leq \beta/\alpha,$$

we have

$$\alpha R_{\alpha} r(x) \leq \liminf_{\beta \to 0} \alpha R_{\alpha} r_{\beta}(x) \leq \liminf_{\beta \to 0} r_{\beta}(x) = r(x)$$

for all $x \in S$, which implies the function r is excessive with respect to the kernel $Q_{\sigma} = \alpha R_{\sigma}$. By Theorem 1, Q_{σ} is irreducible recurrent, so that r should be a constant function, which is proved in [5, p. 226]. Since r(y)=1, we have

(2.9)
$$r(x) = \lim_{\alpha \to 0} R_{\alpha}(x, y)/R_{\alpha}(y, y) = 1$$

for all $x \in S$, which implies $\lim_{a \to 0} R_a(x, y) = \infty$ for all $(x, y) \in S \times S$. Thus the theorem was proved.

Using (2.9), we can obtain easily the following corollaries:

Corollary 1. $\lim_{\alpha \to 0} \alpha R_{\alpha}(x, y) = \mu(y) / \langle \mu, 1 \rangle$ for all $(x, y) \in S \times S$.

Corollary 2. For each $f \in \mathbf{N}(\mu)$ there exists the limit $R_0 f = \lim_{\alpha \to 0} R_{\alpha} f$ and

$$R_0 f = Rf - \langle \mu, Rf \rangle / \langle \mu, 1 \rangle$$
 for all $f \in N(\mu)$

and hence, the linear operator R_0 satisfies (S.C.M), too.

Let $a \in S$ and define the function f_y by

$$f_{y}(x) = \begin{cases} 1 & x = y \\ -\mu(y)/\mu(a) & x = a \\ 0 & \text{otherwise.} \end{cases}$$

If we put ${}^{a}R(x, y) = Rf_{y}(x) - Rf_{y}(a)$, then ${}^{a}R$ is a non-negative kernel on S with ${}^{a}R(a, y) = {}^{a}R(x, a) = 0$ for all $x, y \in S$.

Corollary 3. Put

$${}^{a}R_{a}(x, y) = R_{a}(x, y) - R_{a}(x, a) R_{a}(a, y) / R_{a}(a, a)$$

then $({}^{a}R_{a})_{a>0}$ is a sub-Markov resolvent with $\lim_{a\to 0} {}^{a}R_{a} = {}^{a}R_{a}$.

The meaning of these corollaries will be made clear later.

Theorem 2. Let μ be a bounded measure on S, strictly positive everywhere, and R a linear operator from $N(\mu)$ to B which satisfies the semi-complete maximum principle. Then there exists a family of kernels $(P_t)_{t>0}$ such that :

$$(2.9) P_t \ge 0 \quad and \quad P_t 1 = 1 \quad for \ all \quad t > 0$$

(2.10)
$$P_t P_s = P_{t+s}$$
 for all $s, t > 0$.

$$(2.11) \qquad \mu P_t = \mu \qquad for \ all \quad t > 0.$$

(2.12) The functions $t \rightarrow P_t(x, y)$ are continuous in the open interval $(0, \infty)$ for all $(x, y) \in S \times S$.

(2.13)
$$(I-P_t)Rf(x) = \int_0^t P_s f(x) ds \quad \text{for all } f \in N(\mu), x \in S \text{ and } t > 0.^{2/3}$$

Such a family is unique.

²⁾ If a linear operator R from $N(\mu)$ to **B** satisfies (2.13) for a Markov semi-group $(P_t)_{t>0}$, it will be called a *weak potential operator* for $(P_t)_{t>0}$.

Further $(P_t)_{t>0}$ is irreducible recurrent in the sense:

(2.14)
$$\int_0^\infty P_t(x, y) dt = \infty \quad \text{for all} \quad (x, y) \in S \times S.$$

Proof. Let $(R_{\alpha})_{\alpha>0}$ be the family constructed in Lemma 6. Since it satisfies (2.1) and (2.3), using the result of Reuter [12], we can find $(P_t)_{t>0}$ which satisfies (2.9), (2.10), (2.11) and

(2.15)
$$R_{\alpha}(x, y) = \int_{0}^{\infty} e^{-\alpha t} P_{t}(x, y) dt \quad \text{for all} \quad (x, y) \in S \times S.$$

Since the functions $t \rightarrow \mu P_t(y)$ are continuous in $(0, \infty)$ and

$$\int_0^\infty e^{-\alpha t} \mu P_t(y) dt = \mu R_\alpha(y) / \alpha = \int_0^\infty e^{-\alpha t} \mu(y) dt,$$

we have (2.11) by the uniqueness of the inverse Laplace transform. We remark here that, for any $f \in \mathbf{B}$ and $x \in S$, the function $t \to P_t f(x)$ is continuous in $(0, \infty)$. In fact, if $0 \leq f \leq 1$, the functions $t \to P_t f(x)$ and $t \to P_t(1-f)(x)=1$ $-P_t f(x)$ are lower-semi-continuous in $(0, \infty)$ and hence, the function $t \to P_t f(x)$ is continuous in $(0, \infty)$. The general case is reduced to this case by the usual procedure. From this remark we know that the both sides of (2.13) are continuous with respect to t in $(0, \infty)$. Since the Laplace transform of (2.13) is equal to (2.4), (2.13) is true by the property of the Laplace transform. Similarly the uniqueness of $(P_t)_{t>0}$ is followed from Lemma 6 and the uniqueness of the inverse Laplace transform. Relation (2.14) is evident by

$$\int_0^\infty P_t(x, y) dt = \lim_{\alpha \to 0} R_\alpha(x, y) = \infty .$$

Thus the theorem was proved.

Corollary 1 of Lemma 6 implies the ergodic property of $(P_t)_{t>0}$; $\lim_{t\to\infty} P_t(x, y) = \mu(y)/\langle \mu, 1 \rangle$, and Corollary 2 implies the normality of $(P_t)_{t>0}$; for any $f \in N(\mu)$ and $x \in S$, there exists the limit; $R_0 f(x) = \lim_{t\to\infty} \int_0^t P_s f(x) ds$, and which satisfies the equation (2.13), too.

Now we discuss the continuity of $(P_t)_{t>0}$ at t=0.

Theorem 3. Under the same conditions of Theorem 1, the relation

(2.16)
$$\lim_{t\to 0} P_t(x, y) = I(x, y) \qquad \text{for all } (x, y) \in S \times S$$

holds if and only if R is non-singular.

Proof. First let us assume that $(P_t)_{t>0}$ satisfies (2.16). Let f be a non-

zero element of $N(\mu)$ and Rf=m on the support of f, where m is a constant. Since R satisfies (S.C.M), Rf=m everywhere, so that $\int_{0}^{t} P_{s}f(x)ds=0$ for all $x \in S$. Therefore, from (2.15) it follows that

$$f(x) = \lim_{t \to 0} \left[\int_0^t P_s f(x) \, ds \right] / t = 0$$

for all $x \in S$, which is a contradiction. Therefore if f is a non-zero element of $N(\mu)$, Rf is never equal to a constant on the support of f, which is the meaning of that R is non-singular. Conversely we assume that R is non-singular. In this case we can define a family of measures $(\lambda^E)_{E \in \mathcal{K}}$ and a family of Markov kernels $(H^E)_{E \in \mathcal{K}}$ corresponding to R in the same way as stated in Lemma 2 and Lemma 3 of section 1 respectively. Let $(E_n)_{n\geq 1}$ be an increasing sequence of \mathcal{K} with the union S and further let $g = \chi_{\{y\}}$ and

$$H^{E}ng = Rf^{E}n + \langle \lambda^{E}n, g \rangle,$$

where $f^{E_n} \in \mathbb{N}^{E_n}$. Then, using (2.9) and (2.13), we have

$$P_{t}H^{E_{n}}g = P_{t}Rf^{E_{n}} + \langle \lambda^{E_{n}}, g \rangle$$
$$= Rf^{E_{n}} - \int_{0}^{t} P_{s}f^{E_{n}}ds + \langle \lambda^{E_{n}}, g \rangle$$
$$= H^{E_{n}}g - \int_{0}^{t} P_{s}f^{E_{n}}ds$$

for each *n* and t>0. On the other hand, we know that, for each $(x, y) \in S \times S$, there exists the limit

(2.18)
$$W(x, y) = \lim_{t \to 0} P_t(x, y)$$

and the kernel W is a sub-Markov kernel with $W^2 = W$ [1, p. 118]. Therefore, using Fatou's inequality, we have

. .

(2.19)
$$WH^{E_{n}}g(x) \leq \liminf_{t \to 0} \left[H^{E_{n}}g(x) - \int_{0}^{t} P_{s}f^{E_{n}}(x) ds\right]$$
$$= H^{E_{n}}g(x)$$

for each *n* and $x \in S$. Noting that $0 \leq H^{E_n}g \leq 1$ and $\lim_{n} H^{E_n}g(x) = \chi_{\{y\}}(x) = I(x, y)$ for all $x \in S$, we have from (2.19)

(2.20)
$$W(x, y) \leq I(x, y) \quad \text{for all} \quad (x, y) \in S \times S.$$

Thus W(x, y) = w(x)I(x, y), where w is a function on S which takes only two values 0 or 1, for $W^2 = W$. However, since

$$\mu(y)w(y) = \mu W(y) = \lim_{t \to 0} \mu P_t(y) = \mu(y)$$

for all $y \in S$ and since μ is strictly positive everywhere, we have w=1 on S. Therefore.

$$I=W=\lim_{t\to 0}P_t.$$

Thus the theorem was proved.

Now the meaning of Corollary 3 of Lemma 5 is the following. Assume that R is non-singular, then the corresponding semi-goup $(P_t)_{t>0}$ in Theorem 3 is continuous at t=0. In this case we can find a Markov process $X=(\Omega, \mathcal{M}, (X_t)_{t\geq 0}, (P_t)_{t\geq 0}, (P_x)_{x\in S})$ with an enlarged state space \overline{S} such that

$$P_x(X_t = y) = P_t(x, y)$$
 for all $(x, y) \in S \times S$ and $t > 0$

(for precise definitions, see [7]). For any $a \in S$, if we define the family of kernels $({}^{a}P_{t})_{t>0}$ by

$${}^{a}P_{t}(x, y) = P_{x}(X_{t} = y, t < T^{a}) \quad \text{for} \quad (x, y) \in S \times S,$$

where T^a denotes the first hitting time of the set $\{a\}$, then $({}^aP_t)_{t>0}$ is a sub-Markov semi-group which is continuous at t=0. Corollary 3 shows that $({}^aP_t)_{t>0}$ is transient and its potential kernel is aR .

3. Examples

In this section we shall give examples of operators satisfying (R.S.C.M) with unbounded measures. Since (R.S.C.M) implies (S.C.M), these are also examples of non-singular operators satisfying (S.C.M).

EXAMPLE 1. Let S be the set of all integers and $\mu(x)=1$ for all $x \in S$. Define a linear operator G by

(3.1)
$$Gf(x) = -\Sigma_{y \in S} | y - x | f(y) \quad \text{for} \quad f \in N(\mu) .$$

Then, by simple calculations, we have the following formulae;

(3.2)
$$Gf(x) = Gf(x-1) + 2 \Sigma_{y \ge x} f(y),$$

(3.3)
$$Gf(x) = Gf(x+1) + 2 \sum_{x \ge y} f(y),$$

(3.4)
$$Gf(x) = \frac{1}{2} [Gf(x-1) + Gf((x+1)] + f(x)]$$

for all $x \in S$. If the support of f is contained in $\{a, a+1, \dots, b\}$, by (3.3) and (3.2), Gf(x) = Gf(a) for x < a and Gf(x) = Gf(b) for x > b, respectively. Therefore Gf is bounded on S, that is, G mapps $N(\mu)$ into **B**. To show that G satisfies

(R.S.C.M) we assume $Gf \leq m$ on the set $\{f > 0\} = \{a_1, a_2, \dots, a_p\}$, where $a_1 < a_2 < \dots < a_p$. For each $x < a_1$, using (3.3), we have $Gf(x) \leq Gf(x+1) + f(x)$ and $Gf(x+1) \leq Gf(a_1)$, so that $Gf(x) \leq Gf(a_1) + f(x) \leq m - f^-(x)$. Similarly, for each $x > a_p$, using (3.2), we have $Gf(x) \leq m - f^-(x)$. For $a_k < x < a_{k+1}$, using (3.4), we have $Gf(x) \leq \sup (Gf(a_k), Gf(a_{k+1})) + f(x) \leq m - f^-(x), k = 1, 2, \dots, p-1$. Therefore $Gf \leq m - f^-$ everywhere, so that G satisfies (R.S.C.M). Let us introduce a Markov kernel P on S by

$$P(x, y) = \begin{cases} 1/2 & y = x \pm 1 \\ 0 & \text{otherwise} \end{cases}$$

then μ is an invariant measure for P and the relation (1.6) of Theorem 1 holds for all $f \in \mathbf{N}(\mu)$, for, (1.6) is equivalent to (3.4) in this case. Further, since Pis the transition function of (simple) symmetric random walk of dimension one, it is irreducible recurrent. Thus, Theorem 1 is valid for G, though μ is unbounded. If we define the Markov semi-group $(P_t)_{t>0}$ by $P_t = e^{t(P-I)}$, that is,

$$P_t(x, y) = e^{-t} \sum_{n=0}^{\infty} \frac{1}{n!} (tP)^n(x, y) \quad \text{for} \quad (x, y) \in S \times S ,$$

it has an invariant measure μ and a weak potential operator G. Obviously $(P_t)_{t>0}$ is irreducible recurrent, so that Theorem 2 is valid for G, too.

EXAMPLE 2. Let S and μ be the same in Example 1. Define a linear operator G from $N(\mu)$ to B by

(3.5)
$$Gf(x) = \sum_{y \ge x} f(y) \quad \text{for all} \quad f \in N(\mu) .$$

To show that G satisfies (R.S.C.M) we assume that $Gf \leq m$ on the set $\{f>0\} = \{a_1, a_2, \dots, a_p\}$, where $a_1 < a_2 < \dots < a_p$. Since $0 \leq Gf(a_1) \leq m$, m should be non-negative. If $a_{k-1} < x < a_k$,

$$Gf(x) = Gf(x+1) + f(x) \leq Gf(a_k) + f(x)$$
$$\leq m - f^{-}(x),$$

 $k=1, 2, \dots, p$ (we regard a_0 as $-\infty$). If $x > a_b$,

$$Gf(x) = Gf(x+1) + f(x) \leq \sup (Gf(a_p), 0) + f(x)$$
$$\leq m - f^{-}(x) .$$

Consequently $Gf \leq m-f^-$ everywhere, which shows that G satisfies (R.S.C.M). Let us now define a Markov kernel P on S by

$$P(x, y) = \begin{cases} 1 & y = x+1 \\ 0 & \text{otherwise.} \end{cases}$$

Obviously, P has μ as an invariant measure and satisfies the relation (1.6) of Theorem 1. However, since $\sum_{n=0}^{\infty} P^n(x, y) = 0$ or = 1 according as x > y or $x \leq y$, P is not irreducible recurrent. If we define a Markov semi-group $(P_t)_{t>0}$ by $P_t = e^{t(P-I)}$, it has μ as an invariant measure and G as a weak potential opeator. But it is transient in the sense:

$$\int_0^\infty P_t(x, y) dt < \infty \quad \text{for all } (x, y) \in S \times S .$$

EXAMPLE 3. Let $S = \{0, 1, \dots\}$ and $\mu(x) = 1$ for all $x \in S$. Define a linear operator G from $N(\mu)$ to **B** by

(3.6)
$$Gf(x) = \sum_{y \ge x} f(y) \quad \text{for all} \quad f \in N(\mu) .$$

That G satisfies (R.S.C.M) is proved in the same way as stated in Example 2. Let us introduce a Markov kernel P on S by

$$P(x, y) = \begin{cases} 1 & y = x+1 \\ 0 & \text{otherwise.} \end{cases}$$

Then P satisfies (1.6) of Theorem 1. Since a Markov kernel satisfying (1.6) is unique, P is only such a kernel. However, the relation; $1=\mu(0)>\mu P(0)=0$, shows that μ is not an invariant measure for P. If a Markov semi-group $(P_t)_{t>0}$ with a weak potential operator G exists, it should be equal to that defined by $P_t = e^{t(P-I)}$. Since μ is not an invariant measure for $(P_t)_{t>0}$, there is never Markov semi-group which has μ as an invariant measure and G as a weak potential operator.

Finally we notice some remarks on our problem. We shall assume again that S is any denumerable set and μ is any measure on S, strictly positive everywhere. Let R be a non-singular operator from $N(\mu)$ to B satisfying (R. C. M.), for example, an operator satisfying (R. S. C. M.). Take a function g on S which is strictly positive everywhere and $\langle \mu, g \rangle < \infty$. Define a measure $\tilde{\mu}$ on S by $\tilde{\mu}(x) = g(x)\mu(x)$ for all $x \in S$. Then, $f \in N(\tilde{\mu})$ if and only if $gf \in N(\mu)$, so that we may define a linear operator \tilde{R} from $N(\tilde{\mu})$ to B by $\tilde{R}f = R(gf)$. We can easily verify that \tilde{R} is also a non-singular operator satisfying (R. C. M.). Since $\tilde{\mu}$ is bounded, by Theorem 2 and 3, we can find a Markov semi-group $(\tilde{P}_t)_{t>0}$ which is continuous at t=0 and has $\tilde{\mu}$ and \tilde{R} as its own invariant measure and weak potential operator, respectively. Let $\tilde{X} = (\Omega, \mathcal{M}, (\tilde{X}_t)_{t\geq 0}, (P_x)_{x\in S})$ be a Markov process with a state space \tilde{S} , some metric completion of S, such that

$$\tilde{P}_t(x, y) = P_x(\tilde{X}_t = y)$$
 for all $(x, y) \in S \times S$.

Let us introduce an additive functional $(A_t)_{t\geq 0}$ for \tilde{X} by

CONSTRUCTION OF RECURRENT MARKOV CHAINS

$$A_t = \begin{cases} \int_0^t [1/g(X_s)] \, ds & ext{for } t < T \ _\infty & ext{for } t \ge T \, , \end{cases}$$

where $T = \sup \{t: \int_{0}^{t} [1/g(X_s)] ds < \infty\}$. Further we put $C_t = s$ if and only if $A_s = t$ for $s \in [0, T)$. If we denote $X_t = \tilde{X}_{C_t}$ and $\theta_t = \tilde{\theta}_{C_t}$, $X = (\Omega, \mathcal{M}, (X_t)_{t \ge 0}, (\theta_t)_{t \ge 0}, (P_x)_{x \in S})$ is a Markov process with a state space \bar{S} , too. Using properties of \tilde{X} , we can prove that a family of kernels $(P_t)_{t>0}$ on S defined by; $P_t(x, y) = P_x(X_t = y)$ for all $(x, y) \in S \times S$, is a sub-Markov semi-group on S, continuous at t=0. If the condition;

$$P_x(T=\infty) = 1 \quad \text{for all } x \in S,$$

is satisfied, we can prove that $(P_t)_{t>0}$ is an irreducible recurrent Markov semigroup with an invariant measure μ and a weak potential operator R. In Example 1, condition (3.7) is true, however, in Example 2 and 3, (3.7) is not true. Unwillingly, we could not express these facts as analytic conditions on R.

SHIZUOKA UNIVERSITY

Bibliography

- K.L. Chung: Markov Chains with Stationary Transition Probabilities, Springer-Verlag, 1960.
- [2] E.B. Dynkin: Markov Processes I, II, Springer-Verlag, 1965.
- [3] W. Feller: On boundaries and lateral conditions for the Kolmogorov differential equations, Ann. of Math. 65 (1957), 527–570.
- [4] G.A. Hunt: Markov processes and potentials II, Illinois J. Math. 1 (1957), 316-396.
- [5] J.G. Kemeny and J.L. Snell: Potentials for denumerable Markov chains, J. Math. Anal. Appl. 3 (1961), 196-260.
- [6] J.G. Kemeny and J.L. Snell: Boundary theory for recurrent Markov chains, Trans. Amer. Math. Soc. 106 (1963), 495-520.
- [7] R. Kondō: On weak potential operators for recurrent Markov chains with continuous parameters, Osaka J. Math. 4 (1967), 327–344.
- [8] H. Kunita and T. Watanabe: Some theorems concerning resolvents over locally compact spaces, Fifth Berkeley Symp. Math. Statist. Probability, Berkeley, II, Part II (1967), 131-164.
- [9] P.A. Meyer: Probability and Potentials, Blaisdell Publishing Company, 1966.
- [10] S. Orey: Potential kernels for recurrent Markov chains, J. Math. Anal. Appl. 8 (1964), 104–132.

- [11] D. Ray: Resolvents, transition functions and strongly Markovian processes, Ann. of Math. 70 (1959), 43-78.
- [12] G.E.H. Reuter: Note on resolvents of denumerable submarkovian processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 9 (1967), 16-19.