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Let S be a denumerable (possibly finite) set and B the space of all real
valued and bounded functions defined on S. For a given measure y, strictly
positive at each point of .S, we shall denote by N(x) the collection of functions
f such that the support of f is finite and {u, fO>= 2,5 p(x)f(x)=0. A linear
operator R from N(p) to B is said to satisfy the semi-complete maximum priniciple
if it has the following property:

(S.C.M) For any f& N(u), if Rf <m on the set {f >0}, then Rf <m everywhere,
where m is a real constant.

We know that if R is a weak potential operator for a recurrent semi-group
(P;)izo with an invariant measure p, it satisfies this maximum principle [7, p.
337]. In this work we shall consider the converse problem: Given a measure
p and a linear operator R satisfying (S.C.M), can we find a recurrent semi-
group (P,);>, which has u as an invariant measure and R as a weak potential
operator ?

If x is bounded, this problem has an affiirmative answer, which will be
stated in section 2. However, if px is unbounded, there are several cases, for
example, some operators are weak potential operators for transient semi-groups
w'th invariant measure x and others are never weak potential operators for any
Markov semi-group with invariant measure u. We shall give such examples
in section 3. The appropriate conditions under which the problem is solved are
not known yet. In section 1 we shall study, for later use, another type of
maximum principle which is satisfied by weak potential operators (weak inverses
in Orey [10]) for recurrent Markov chains with discrete parameters.

1. Potential operators satisfying the reinforced semi-complete
maximum principle

Throughout this work notations and terminology are mainly taken from
[7]. We shall denote the collection of all non-empty finite subsets of S by X.
Further, for each E€ X, we shall use the following notations:
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fe  The function restricted to E.

vp  The measure restricted to E.

B The space of all functions fx.

N% The space of functions of N(u) with supports in E.

For any function f on S, f*=sup (f, 0) and f~=sup (—f, 0). The indicator
function of a set E will be denoted by Xy.

A linear operator G from N(u) to B is said to satisfy the reinforced semi-
complete maximum principle if it has the following property:

(R.S.C.M) For any function fEN(u), if Gf <m on the set {f>0}, then Gf
=m—f~ everywhere, where m is a real constant.

Let G be a linear operator from N(u) to B satisfying (R.S.C.M).

Lemma 1. G is non-singular in the sense: If fis a non-zero element of
N(p), then Gf is never equal to a constant on the support of f. So that Gf=0
implies f=0.

Proof. Let f be a non-zero element of N(u) and Gf=m on the support of
f, where m is a constant. From (R.S.C.M) it follows that Gf =m—f~ every-
where and hence, m=Gf<m—f~ on the set {f<0}. Therefore f~=0.
Similarly we have f+=0, for, —m=G(—f)<—m—(—f)"=—m—f" on the set
{f>0}. Thus f=0, which is a contradiction.

Lemma 2. There is a family of (signed) measures (N°)Ec x on S such that;
(7) the support of each \F is contained in E, (it) {\E, 1>=1 and (i1t) (N5, Gf >=0
for all fe NE.  Such a family is unique.

Proof. Let E<.K and the number of elements of E be n. 'Then the linear
dimensions of By and N¥ are equal to » and n—1 respectively. Let us define
a linear operator G% from N to By by

(1.1) GEf = (Gf)y  for fENE.

From Lemma 1 it follows that if GEf=0, then f=0 and that 1z, the restriction
of the function 1 to E, does not belong to the range GX(N*). Therefore, since
dim GE(NF)=dim N*=n—1 and 1p& G*(N¥), we can find exactly one linear
functional /; on By such that [z(gz)=0 if and only if gr= GE(N®) and Iz(1g)=1.
Thus if we define the measure A by AE(y)=I((X,))e) for yE E and A5(y)=0
for yeS\E, the family (A\®)Ecx is the desired one. The uniquencess of
(ME)Eex is obvious from the above proof.

Let geB and Ec K. If we put hp=(g—\E, g>)&, then lg(hg)=\F, g>
—\E, g>=0, so that we can find unique ff& N¥ such that hz=GEfE. Now
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let us define the mappings HZ and II® from B to B by

(1.2) HEg = GfE+O\E, g>
and
(1.3) I1Eg = GfE4+ONE, g>—fE = HEg—f&

respectively. Obviously, HZ and II” are linear and HXg=1Ig on S\E.

Lemma 3. (7) If g=0 on E, then HXg=0 and I15g >0 everywhere. (it)
HE1=1 and I1¥1=1. (i) If E, FEX and ECF, then H* HEg=H*g and
II*HEg=1I%g.

Proof. Let g=0 on E and HEg=GfE+\E, g> where fE€NE. Since
GfE+\E, g>=g on E, GfE= —(\E, g> on the support of fZ. Therefore, using
(R.S.C.M), we have

Gffz—\E, @+(f5)*
everywhere, so that

HEg = G+, o= (f5) 20
and

II%g = GfP4+- (N5, g>—fE=Gf P+, g>—(fF)* 20

everywhere. Thus, the assertion (i) is true. Next, if H¥1=GfE+4 (A%, 1>, then
ff=0 by Lemma 1. Therefore H¥1=1/¥1=1, which implies (ii). Finally, let
ECF and let

h=HEg = GfE+ (A, g>  (fEEN®)
HFh = GfF+O\F, b (fFENT).

Since H¥h=h on F, we have
Gff+ NF, by = GfE+ANE, g>
on F. Therefore
G(ff—f") = O\F, @>—\F, b = const.

on the support of f¥—fE  Using Lemma 1, we have ff=ff and {\E,g>
={\F, k>, which implies HF HEg=HZ~g and that

HFHEg = HFh—fF = h—fF = [I¥g .

Thus the assertion (iii) was proved.
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From this lemma we can see that H” and //¥ are Markov kernels on .S and
that for each x& .S the supports of measures H%(x, ) and //Z(x, ) are contained
in E.

Corollary. IfE, Fe K, ECF and g is a non-negative function on S with
support in E, then 11Eg > 11"g everywhere.

For, ITEg(x)
= [I"HEg(x)
= Z,ex 17(x, ¥)g(¥)+Zyes e 15(x, y)H"g()
= 2y 17(%, 3)8(y)
— IIg(x)
for all x S.

Theorem 1. Let u be a bounded measure which is strictly positive everywhere
and G a linear operator from N(u) to B satisfying the reinforced semi-complete
maximum principle. Then there is a kernel P on S such that

(1.4) P=0 and P1=1,
(1.5) pP=p,
(1.6) (I—P)Gf=f forall fEN().

Such a kernel is unique."

Further, P is trreducible recurrent in the sense:
(1.7) SVPYx,y) =0 forall (v, y)ESXS.

Proof. Let (E,),>, be an increasing sequence of K with the union S and
x, yES. Then, there is some n such that yeE, for all k=n. So that, by
Corollary of Lemma 2, we have

”En(x, y)i]]En+x(x’ y)z ZO i
Therefore the limit;

(1.8) P(x, y) = lim I1%(x, y),

exists for any (¥, y)€Sx.S. We shall prove the kernel P defined by (1.8) has

1) Precisely speaking, a Markov kernel satisfying (1. 6), if it exists, is unique, even if
uisunbounded. We can see this in the proof of the theorem. Similar circumstance occurs in
Lemma 5 and Theorem 2 in the next section.
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all the properties stated in the theorem. Since /7E» are Markov kernels, P is
obviously sub-Markov kernel, that is, P=0 and P1<1, by Fatou’s inequality.
From the definition of the kernel HZ, we can find fE»& NE» such that

HEn(x, y) = Gf En(x)+1n( y) .
Since,
1I®x(x, y) = HEn(x, y)—f"n(x)
we have,
2 ver, p(*) 17%(x, )
= Zyep, %) HEn(%, y)— 2 1cp, p(x)f n(x)
= n(y)
whenever yeE,. On the other hand, since 0 <X, (x) [15n(x, y) =1, liEn Xg, (%)

IIEn(x, y)=P(x, y) and p is a bounded measure, we have

uP(y) = Zecs u(x) (lim X, (x) ITEn(x, 7))
= lim =g (%) X, (%) 1", )
= u(y)

for all y&S. Thus (1.5) was proved. From (1.5) it follows that (u, P1)
={uP, 1>=<{u, 1>. Since 0=<P1=<1, we have Pl=1 almost everywhere with
respect to u. However, since p is strictly positive everywhere, we have P1=1.
That is, (1.4) is true. Let fN(u) and g=Gf+||Gf||, where || || denotes the
uniform norm in B. If n is so large that the support of f is contained in E,,
we have

T%ng(x) = 1158 Gf(x)+1|Gf |l
= Gf(x)—f(x)+IGS |l
for all xS and hence, noting that g=0, we have
Pg(x) = lim inf /7% g(x)=Gf(x)—f(x)+IGf I,
which implies
(1.9) PGf<Gf—f.
Similarly, by replacing fN to -fin (1.9), we have PGf =Gf—f, so that PGf=Gf—f
which proves (1.6). If Pis any kernel satisfying (1.4) and (1.6), then for any g€ B
Pg = lim PH¥ng = lim P(Gf -+ (\E, £))

n-poo

= Si’rg (GfEn—fEn+<xEn’ g>) — lni—r’g PHEng — Pg ,
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where HEng=Gf%n4(\Fn, g> and fEsc NE». Thus the uniqueness of P is
proved. Finally we shall prove (1.7). If there is some y&.S such that
= P, y)<eo,
then
& P )= R P, y)<e
for all xS. Consequently lim P*(x, y)=0 for all x&S.

Therefore, using (1.5), we have
wy) = 23 w(x) (lim P(x, y)) = 0,

which contradicts the assumption that p is strictly positive everywhere. Thus
(1.7) is true when x=y. To show (1.7) in the case x=+y, it is sufficient that
we prove there is some # such that P"(x, y)>0. Let us introduce the function
ey in N(p) by

1 T=x
e(2) =1 —p®)/u(y) =z=y
0 otherwise .

If P*(x, y)=0 for all n=0, we have

n

31 PH(x, %) = 33 Phe,(w)
= Gey(x)—P""'Ge,(x)

= [Ge,(x)—Ge,(y)]—P"[Ge,—Gey()] (%)
= Gey(x)— Gey(y) ’

because Ge,=>Ge,(y) everywhere. Consequently we have

oo

31 PHx, %)= Gey(x)— Gey(y)< oo

k=

which is a contradiction. Thus the theorem was proved.

In the proof of this theorem, we have used essentially the boundedness of
the measure x. Examples of operators G for unbounded measures will be given
and discussed in section 3.

2. The potential operators satisfying the semi-complete maximum
principle.

Let u be a measure on S, strictly positive everywhere, and R a linear
operator from N(u) to B which satisfies the semi-complete maximum principle.
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In this section we shall assume always that x is bounded. For each positive
number «, we put G,=I+aR, where I is the identity operator. Evidently G,
is a linear operator from N(u) to B.

Lemma 4. G, satisfies the reinforced semi-complete maximum principle.

Proof. Let G,f <m on the set {f>0}, where m is a real constant. Then
aRf <G,f <m on the set {f>0}, so that aRf <m everywhere by (S. C. M).
Therefore —f +aRf<m—f~ everywhere. Hence we have G,f=—f"
+aRf <m—f~ on the set {f <0}, which implies G, f <m—f~ everywhere.

Since G, satisfies (R. S. C. M), we can apply Theorem 1 to G,, so that there
is a kernel Q, on S which has all the properties in Theorem 1. Put R,=0Q,/a,
then

Lemma 5. The family of kernels (R,),>, satisfies the following conditions:

(2.1) aR,=0 and aR,1=1,
(2.2) auR, = 1,
(2.3) R,—Rg+(a—B)R,Rs =0,
(2.4) (I—aR)Rf = R,f  forall feN(u).
Such a family is unique.
Further
(2.5) lim R,(x, y) = oo for all (x,y)ESXS.
@0

Proof. (2.1),(2.2) and (2.4) are the same as (1.4), (1.5) and (1.6) of Theorem
1 respectively and the uniqueness of such a family is a consequence of Theorem
1, too. So we have only to prove (2.3) and (2.5). Let us denote by (A\E)eex
the family of measures satisfying (i), (ii) and (iii) of Lemma 2 for G, and by HE
the kernel defined by (1.2) with respect to G, and A\E. If geBand Hfg=Ggf®
+{0E, g>, where fE€ N”, then, noting the relation

Hig = G fP+(B—a)Rf*+{NF, >

we have

R,HEg = RfFE+(B—a)R,RFE+NE, & .
Since

ReHg = Rf B+0E, 2018,
we have

RwHBEg_RﬁHEg
= (B—a)[RuRf*+NF, g0]aB] -
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We can easily verify that the last term is equal to (3—a) R,RgHEg, so that
(2.6) R,HEg—RoHEg = (B—a) R.ReHEg

for all geB, E€ K and a, 8>0. Let (E,).>; be an increasing sequence of sets
in K with the union S. Since ||HEng||<||g|| and lim Hgng(x)=g(x) for all

xe S, we have
Rag—Rpg = lim [RyHEng— ReH 5rg]
= (8—a) lim RuRoH frg
= (B—a) R,Rsg,
which proves (2.4). Finally we shall prove (2.5). First we prove the inequality

(2.7) Ro(%, y)=Ru(y, ) -
Since B8R, is a sub-Markov kernel on S and I+ BR,= i (BR,+p)", we have
(2.8) I(x, y)+BRu(x, y) =I(y, y)+BR(y, ¥)

for all (x, y)e Sx S. Hence, dividing both side of (2.8) by 8, and letting 8— o,
we obtain (2.7). If there is some y&S such that lim R,(y, y)<<oo, then
@->0

lim aR,(x, y)=0 for all x& S by (2.7). Therefore
@->0
w(y) = Li_g;l apR(y) = p (Li_g)l aR)(y) =0,
which is a contradiction. Thus (2.5) is true when x=y. Let rg(x)=Rg(x, y)/
Rg(y, ¥) and r(x)=lim inf rg(x). From (2.7) it follows that 0=r(x)=<1 for all
g>0
xeS. Since the resolvent equation (2.3) implies
aRyrg(x) = BR,re(x)+76(x)—Ra(%, y)/Re(, ¥)

and since

0=Ra(x, y)/Re(y, y)=1/aRe(, ) ,
0=BRura(x) =B,

we have
aRmr(x)glir;lgnf aR,rg(x) glirglﬁi’nf rg(x) = r(x)

for all xS, which implies the function 7 is excessive with respect to the kernel
QO,=aR,. By Theorem 1, Q, is irreducible recurrent, so that r should be a
constant function, which is proved in [5, p. 226]. Since 7(y)=1, we have

(2.9) (®) = lim Ry(x, y)/Ru(3, ) = 1
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for all x=.S, which implies lim R,(x, y)=-co for all (x, y)SXxS. Thus the
@¥>0
theorem was proved.

Using (2.9), we can obtain easily the following corollaries:
Corollary 1. lim aR,(», y)=u(y)/<{w, 1> for all (x, y)=SXS.
@&->0

Corollary 2. For each f&N(n) there exists the limit R,f=lim R,f
@->0

and
Rf = Rf—<u, RFKu, 1> for all f€ N(u)
and hence, the linear operator R, satisfies (S.C.M), too.

Let ac S and define the function f, by

1 x=y
H#®) =1 —u(@)/u@ x=a
0 otherwise.

If we put “R(x, y)=Rf,(x)—Rf,(a), then “R is a non-negative kernel on S
with “R(a, y)="R(x, a)=0 for all x, yE S.

Corollary 3. Put
“Ra(%, ¥) = Ra(%, y)—Ra(x, a) Ra(a, y)/Ru(a, a)
then (“R,)s>, s a sub-Markov resolvent with lim “R,=“R.
@¥->0
The meaning of these corollaries will be made clear later.

Theorem 2. Let u be a bounded measure on S, strictly positive everywhere,
and R a linear operator from N(p) to B which satisfies the semi-complete maximum
principle.  Then there exists a family of kernels (P,),>, such that :

2.9) P,>20 and P,J1=1 for all 1>0.
(2.10) PP,=P, , foral s, t>0.
(2.11) uP,=u  forall t>0.

(2.12)  The functions t—P (x, y) are continuous in the open interval (0, o) for all
(x,y) €SxS.

(2.13) (I—P,)Rf(x) = S'Psf(x)ds for all feN(p), xS and t>0.

Such a family is unique.

2) If a linear operator R from N (u) to B satisfies (2.13) for a Markov semi-group (P;);>o,
it will be called a weak potential operator for (P;);>,.
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Further (P,),>, is trreducible recurrent in the sense :
(2.14) SMP,(x, Ydt = oo  forall (xy)ESXS.

Proof. Let(R,)s>,be the family constructed in Lemma 6.  Since it satisfies
(2.1) and (2.3), using the result of Reuter [12], we can find (P,),>, which satisfies
(2.9), (2.10), (2.11) and

(2.15) R (%, y) = Swe“"‘Pt(x, y)dt forall (x,y)eSxS.
0

Since the functions t—pP,(y) are continuous in (0. o) and
0

[ e uPiy)dt = pRuy)a = | e u(y)at,

we have (2.11) by the uniqueness of the inverse Laplace transform. We remark
here that, for any feB and xS, the function ¢—P,f(x) is continuous in
(0, o). In fact, if 0<f=<1, the functions t—P,f(x) and t—P,(1—f)(x)=1
— P, f(x) are lower-semi-continuous in (0, ) and hence, the function t—P,f(x)
is continuous in (0, ). The general case is reduced to this case by the usual
procedure. From this remark we know that the both sides of (2.13) are con-
tinuous with respect to ¢ in (0, o). Since the Laplace transform of (2.13) is
equal to (2.4), (2.13) is true by the property of the Laplace transform. Similarly
the uniqueness of (P,),s, is followed from Lemma 6 and the uniqueness of the
inverse Laplace transform. Relation (2.14) is evident by

S‘” P(x, y)dt = lim Ry(x, y) = oo .
0 a->0

Thus the theorem was proved.

Corollary 1 of Lemma 6 implies the ergodic property of (P,);; liril P(x,y)
=u(y)/{w, 1>, and Corollary 2 implies the normality of (P,),,; for a;l—;/ fEN()
and x€ S, there exists the limit; R, f(x)=}1+r°r°1 S:Ps f(x)ds, and which satisfies the

equation (2.13), too.
Now we discuss the continuity of (P,),s, at t=0.

Theorem 3. Under the same conditions of Theorem 1, the relation
(2.16) lim P,(x, y)=1(x, y) for all (x,y) €Sx S
t>0
holds if and only if R is non-singular.

Proof. First let us assume that (P,),, satisfies (2.16). Let f be a non-
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zero element of N(x) and Rf=m on the support of f, where m is a constant.

Since R satisfies (S.C.M), Rf=m everywhere, so that StPsf(x)ds=0 for all
0
x&S. Therefore, from (2.15) it follows that

fw) = tim [ Pof)astje = 0

for all xS, which is a contradiction. Therefore if f is a non-zero element
of N(u), Rf is never equal to a constant on the support of f, which is the meaning
of that R is non-singular. Conversely we assume that R is non-singular. In
this case we can define a family of measures (A¥)Ecx and a family of Markov
kernels (H®)Ecx corresponding to R in the same way as stated in Lemma 2
and Lemma 3 of section 1 respectively. Let (E,),», be an increasing
sequence of K with the union S and further let g=X,,

and

HEng = RfPnt-(\Fn, g5,
where fEs= NEa.  Then, using (2.9) and (2.13), we have
(2.17) P,HExg = P,RfEntN\En, g>
= Rfon—| Puffndst-nF >
0
— HEng—YPs fEnds
0

for each #n and £>0. On the other hand, we know that, for each (¥, y) €S X S,
there exists the limit

(2.18) W(, 3) = lim P (, )

and the kernel W is a sub-Markov kernel with W?=W [1, p. 118]. Therefore,
using Fatou’s inequality, we have

(2.19) WHEng(x) < linllionf [HEng(x)— S: P, fEn(x)ds)
= HPng(x)
for each » and x=S. Noting that 0<HZ»g<1 and lim HE» g(x)=X,(x)
=1(x, y) for all xS, we have from (2.19) "
(2.20) W(x, y)<1(x, y) for all (x, y)eSxS.

Thus W(x, y)=w(x)I(x, ¥), where w is a function on S which takes only two
values 0 or 1, for W?*=W. However, since
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w(y)w(y) = pW(y) = lim uP(y) = pu(y)

for all y&€S and since p is strictly positive everywhere, we have w=1 on S.
Therefore.

I=W=1mP,.

>0
Thus the theorem was proved.
Now the meaning of Corollary 3 of Lemma 5 is the following. Assume that
R is non-singular, then the corresponding semi-goup (P,),>, in Theorem 3 is

continuous at #=0. In this case we can find a Markov process X=(Q, M,
(X )e20(02)e20s (P)zes) With an enlarged state space S such that

P (X, =y)=PJx,9) for all (x,y)€SxS and t>0

(for precise definitions, see [7]). For any a€.S, if we define the family of
kernels (“P,);>, by

‘Px, y) = P (X, =y, t<T°) for (x, y)ESXS,

where T“ denotes the first hitting time of the set {a}, then (“P,),>, is a sub-
Markov semi-group which is continuous at #=0. Corollary 3 shows that (“P,),>,
is transient and its potential kernel is “R.

3. Examples

In this section we shall give examples of operators satisfying (R.S.C.M)
with unbounded measures. Since (R.S.C.M) implies (S.C.M), these are also
examples of non-singular operators satisfying (S.C.M).

ExampLe 1. Let S be the set of all integers and pu(x)=1 for all xES.
Define a linear operator G by

CRY) Gf(x) = —Zyesl y—x(f(y)  for fEN(n).
Then, by simple calculations, we have the following formulae;
(3-2) Gf(x) = Gf(x—1)+2 2,2, f(3) ,

(3-3) Gf(x) = Gf(x+1)+25,2,(3) ,

(34 Gf(x) = %[Gf(x—l)—k Gf(x+1)]+/(x)

forallxeS. If the support of f is contained in {a, a-+1,---, b}, by (3.3) and (3.2),
Gf(x)=Gf(a) for x<<a and Gf(x)=Gf(b) for x>bh, respectively. Therefore
Gf is bounded on S, that is, G mapps N(u) into B. To show that G satisifes
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(R.S.C.M) we assume Gf=<m on the set {f>0}={a,, a,,", a,}, where
a,<a,<--<a,. For each x<a,, using (3.3), we have Gf(x)=Gf(x+1)+f(x)
and Gf(x+1)=Gf(a,), so that Gf(x)<Gf(a,)+f(x)<m—f(x). Similarly, for
each x>a,, using (3.2), we have Gf(x)=m—f~(x). For a,<x<a,,, using

(3.4), we have Gf(x)<sup (Gf(az), Gf(ap+))+f(x)=<m—f~(x), k=1,2,---, p—1.
Therefore Gf <m—f~ everywhere, so that G satisfies (R.S.C.M). Let us
introduce a Markov kernel P on S by

12 y=wx+1

P(x, y) — {
() 0 otherwise ,

then p is an invariant measure for P and the relation (1.6) of Theorem 1 holds
for all f &N(p), for, (1.6) is equivalent to (3.4) in this case. Further, since P
is the transition function of (simple) symmetric random walk of dimension
one, it is irreducible recurrent. Thus, Theorem 1 is valid for G, though u is
unbounded. If we define the Markov semi-group (P,),s, by P,=e'*~D, that is,

Px,3) =" 3) %(tP)”(x, y)  for (% 9)ESXS,
it has an invariant measure p and a weak potential operator G. Obviously

(P,)s> 1s irreducible recurrent, so that Theorem 2 is valid for G, too.

ExampLE 2. Let S and p be the same in Example 1. Define a linear
operator G from N(u) to B by

(3.5) Gf®) = Z,2f(3)  forall fEN().
To show that G satisfies (R.S.C.M) we assume that Gf <m on the set {f >0}
={a,, a,,+, ap}, where @,<a,<---<a,. Since 0=Gf(a,)=<m, m should be non-
negative. If q,_,<x<a,,
Gf(x) = Gf(x+1)+1(x) = Gf(ar)+f(x)
= m_f—(x) ’
k=1,2,..-, p (we regard q, as —0). If x>a,,
Gf(x) = Gf(x+1)+f(x) =sup (Gf(a,), 0)+f(x)
= m—f(x).

Consequently Gf <m—f~ everywhere, which shows that G satisfies (R.5.C.M).
Let us now define a Markov kernel P on S by

1 = 1
P(x’y):{ 7 *

0 otherwise.



26 R. Konbpo

Obviously, P has p as an invariant measure and satisfies the relation (1.6) of
Theorem 1. However, since >, P"(x, y)=0 or =1 according as x>y or
x=y, P is not irreducible recurrent. If we define a Markov semi-group (P,),>,
by P,=¢® P, it has p as an invariant measure and G as a weak potential
opeator. But it is transient in the sense:

g”P,(x, yydt<oo  forall (x, y)ESXS.

ExampLE 3. Let S={0,1,--:} and u(x)=1 for all x=S. Define a
linear operator G from N(u) to B by

(3.6 Gflx) = 202: y)  forall fENu).

That G satisfies (R.S.C.M) is proved in the same way as stated in Example 2.
Let us introduce a Markov kernel P on S by

1 y=x+1
Pl 5) = { 0 otherwise.
Then P satisfies (1.6) of Theorem 1. Since a Markov kernel satisfying (1.6)
is unique, P is only such a kernel. However, the relation; 1=u(0)>pP(0)=0,
shows that u is not an invariant measure for P. If a Markov semi-group
(P,)s>, with a weak potential operator G exists, it should be equal to that
defined by P,=¢'®~". Since p is not an invariant measure for (P;),,, there
is never Markov semi-group which has p as an invariant measure and G as a
weak potential operator.

Finally we notice some remarks on our problem. We shall assume again that
S is any denumerable set and y is any measure on S, strictly positive everywhere.
Let R be a non-singular operator from N(u) to B satisfying (R. C. M.), for
example, an operator satisfying (R.S. C. M.). Take a function g on .S which
is strictly positive everywhere and {u, g><<oo. Define a measure % on S by
E(x)=g(x) p(x) for all x€S. Then, f& N(#) if and only if gf € N(u), so that
we may define a linear operator R from N(/z) to B by Rf=R(gf). We can easily
verify that Ris also a non-singular operator satisfying (R. C. M.). Since # is
bounded, by Theorem 2 and 3, we can find a Markov semi-group (P,),», which
is continuous at t=0 and has % and R as its own invariant measure and weak
potential operator, respectively. Let X=(Q, M, (X,);20 (0)iz0s (Ps)ses) be a
Markov process with a state space S, some metric completion of S, such that

Px,y) =P, (X,=y) forall (x y)SxS.

Let us introduce an additive functional (4,),>, for X by
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e {St[l/g(Xs)]ds for t<T

) for t =T,

where T=sup {¢: St[l/g(Xs)] ds<<co}. Further we put C,=s if and only if 4,
0

=¢ for s€[0, T). If we denote X,=X., and 0,=0;,, X=(Q, H, (X,)iz0
(0:):20 (P,)res) is a Markov process with a state space S, too. Using properties
of X, we can prove that a family of kernels (P,),>, on S defined by; P,(x,y)
=P (X,=y) for all (x, y) €S XS, is a sub-Markov semi-group on .S, continuous
at t=0. If the condition;

3.7 P(T=o)=1 for all xS,

is satisfied, we can prove that (P,),s, is an irreducible recurrent Markov semi-
group with an invariant measure p and a weak potential operator R. In Example
1, condition (3.7) is true, however, in Example 2 and 3, (3.7) is not true. Unwil-
lingly, we could not express these facts as analytic conditions on R.
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