ON SPECIAL TYPE OF HEREDITARY ABELIAN CATEGORIES

Manabu HARADA

(Received July 20, 1967)

In the book of Mitchell [5] he has defined a category of a commutative diagrams over an abelian category \mathfrak{A}. Especially he has developed this idea to a finite commutative diagrams and obtained many interesting results on global dimension of this diagram. Among them he has shown in [5], p. 237, Corollary 10. 10 that if I is a linearly ordered set, then $\mathrm{gl} \operatorname{dim}[I, \mathfrak{N}]=1+\mathrm{gl} \operatorname{dim} \mathfrak{A}$ for an abelian category \mathfrak{A} with projectives. This is a generalization of Eilenberg, Rosenberg and Zelinsky [1], Theorem 8.

On the other hand, the author has studied a semi-primary hereditary ring and shown that it is a special type of generalized triangular matrix ring in [2].

In this note we shall generalize the notion of a generalized triangular matrix ring to an abelian category of generalized commutative diagram $\left[I, \mathscr{A}_{i}\right]$ over abelian categories \mathfrak{A}_{i} and obtain the similar results in it to [2], Theorem 1, where I is a finite linearly ordered set. The method in this note is quite similar to [5], IX, $\S 10$ and different from that of [2]. Finally we shall show that if the \mathfrak{H}_{i} are the abelian category of right R_{i}-modules, then [I, \mathfrak{N}_{i}] is equivalent to a generalized triangular matrix ring over R_{i} in [2], where R_{i} is a ring.

The author has shown many applications of generalized triangular matrix ring to semi-primary rings with suitable conditions in [2], [3] and [4]. However we do not study any applications of our results in this note and he hopes to continue this work on some other day.

1. Abelian categories of generalized commutative diagrams

Let $I=\{1,2, \cdots, n\}$ be a linearly ordered set and \mathfrak{N}_{i} be abelian categories. We consider additive covariant functors $\mathrm{T}_{i j}$ of $\mathfrak{\mathscr { N }}_{i}$ to \mathfrak{N}_{j} for $\mathrm{i}<\mathrm{j}$. For objects $A_{i} \in \mathfrak{Y}_{i}, A_{j} \in \mathfrak{A}_{j}$ we define an arrow $\mathrm{D}_{i j}: A_{i} \rightarrow A_{j}$ as follows:

$$
\begin{equation*}
\mathrm{D}_{i j}=d_{i j} \mathrm{~T}_{i j}, \quad \text { where } d_{i j} \text { is a morphism in } \mathfrak{A}_{j} . \tag{1}
\end{equation*}
$$

Using those $\mathrm{D}_{i j}$ we can define a category $\left[I, \mathfrak{N}_{i}\right]$ of diagrams over $\left\{\mathfrak{N}_{i}\right\}_{i \in I}$. Namely, the objects of $\left[I, \mathfrak{N}_{i}\right]$ consist of sets $\left\{A_{i}\right\}_{i \in I}$ with $\mathrm{D}_{i j}\left(A_{i} \in \mathfrak{N}_{i}\right)$ and the morphism of $\left[I, \mathfrak{A}_{i}\right]$ consist of sets $\left(f_{i}\right)_{i \in I}\left(f_{i} \in \mathfrak{A}_{i}\right)$ such that

$$
\begin{equation*}
d_{i j}^{\prime} \mathrm{T}_{i j}\left(f_{i}\right)=f_{j} d_{i j} \tag{2}
\end{equation*}
$$

where $f_{i}: A_{i} A_{i}^{\prime}$ and $\mathrm{D}_{i j}=d_{i j} \mathrm{~T}_{i j}, \mathrm{D}_{i j}^{\prime}=d_{i j}^{\prime} \mathrm{T}_{i j}$ are arrows in $\boldsymbol{A}=\left(A_{i}\right)$ and $\boldsymbol{A}^{\prime}=$ (A_{i}^{\prime}), respectively.

Let $\boldsymbol{f}=\left(f_{i}\right)_{i \in I}$ be a morhphism of \boldsymbol{A} to \boldsymbol{A}^{\prime}. Then we define a set $\left(\operatorname{Im} f_{i}\right)$, ($\operatorname{coker} f_{i}$) and so on. If $\left(\operatorname{Im} f_{i}\right)$, $\left(\operatorname{coker} f_{i}\right) \cdots$ coincide with $\operatorname{Im} \boldsymbol{f}$, coker $\boldsymbol{f} \cdots$ in $\left[I, \mathfrak{N}_{i}\right]$, respectively, we shall call $\left[I, \mathfrak{N}_{i}\right]$ a category induced naturally from \mathfrak{N}_{i}.

Proposition 1.1. Let I and \mathfrak{N}_{i} be as above. [I, $\left.\mathfrak{N}_{i}\right]$ is an abelian category induced naturally from \mathfrak{N}_{i} if and only if $T_{i j}$ is cokernel preserving.

Proof. We assume that $\mathrm{T}_{i j}$ is cokernel preserving. Let $f=\left(f_{i}\right)_{i \in I}:\left(A_{i}\right) \rightarrow$ $\left(A_{i}^{\prime}\right)$ be a morphism in $\mathfrak{A}=\left[I, \mathfrak{N}_{i}\right]$. Then we can easily see that $\left(\operatorname{ker} f_{i}\right)_{i \in I}$ is Kerf in \mathfrak{A} and that (coker $\left.f_{i}\right)_{i \in I}$ is in \mathfrak{A} since $\mathrm{T}_{i j}$ is cokernel preserving. Hence, we know from [1], p. 33, Theorem 20.1 that \mathfrak{A} is an abelian category. Conversely, we assume \mathfrak{A} is an abelian category as above. We may assume $I=(1,2)$. Let $f: A_{1} \rightarrow C_{1}$ be an epimorphism in \mathfrak{A}_{1} and $\mathrm{B}_{2}=\operatorname{im} \mathrm{T}(f)$, where $\mathrm{T}=\mathrm{T}_{1,2}$. Put $A=\left(A_{1}, \mathrm{~T}\left(A_{1}\right)\right) C=\left(C_{1}, \mathrm{~T}\left(C_{1}\right)\right)$ and $\boldsymbol{f}=(f, \mathrm{~T}(f))$. Then $\operatorname{Im} \boldsymbol{f}=\left(C_{1}, B_{2}\right),(\boldsymbol{f}:$ $\left.A \xrightarrow{\boldsymbol{f}^{\prime}} \operatorname{Im} \boldsymbol{f} \xrightarrow{\boldsymbol{i}} C\right)$. By the assumption \boldsymbol{f}^{\prime} and i are morphisms in \mathfrak{A}. Hence, there exists an morphism $d: \mathrm{T}\left(C_{1}\right) \rightarrow B_{2}$ in \mathfrak{N}_{2} such that $d \mathrm{~T}$ is an arrow in im \boldsymbol{f}. Namely

$$
\begin{array}{cc}
\mathrm{T}\left(A_{1}\right) \xrightarrow{\mathrm{T}(f)} \mathrm{T}\left(C_{1}\right) \tag{3}\\
\| d_{12} & \boldsymbol{l}^{\prime}{ }_{2} d \\
\mathrm{~T}\left(A_{1}\right) \xrightarrow{\boldsymbol{f}_{2}} & B_{2}
\end{array}
$$

is commutative, where $i \boldsymbol{f}_{2}^{\prime}=\mathrm{T}(f)$.
Therefore, $\boldsymbol{f}_{2}^{\prime}=d T(f)=d i \boldsymbol{f}_{2}^{\prime}$. Since $\boldsymbol{f}_{2}^{\prime}$ is epimorphic $d i=\mathrm{I}_{B_{2}}$. On the other hand, we obtain similarly from an morphism i that $i d=\mathrm{I}_{\boldsymbol{T}\left(C_{1}\right)}$. Hence, d is isomorphic and T is an epimorphic functor. Let $A_{1}^{\prime \prime} \xrightarrow{g} A_{1} \xrightarrow{f} A_{1} / \mathrm{g}\left(A_{1}^{\prime \prime}\right) \rightarrow 0$ be exact and $B_{2}^{\prime \prime}=\operatorname{im~} \mathrm{T}(g)$. Put $A=\left(A_{1}^{\prime \prime}, B_{2}^{\prime \prime}\right), \mathrm{C}=\left(A_{1}, \mathrm{~T}\left(A_{1}\right)\right)$, and $f=(g, i)$, where $\mathrm{T}(g): \mathrm{T}\left(A^{\prime \prime}\right) \rightarrow B_{2}^{\prime \prime} \xrightarrow{\mathrm{i}} \mathrm{T}\left(A_{1}\right) . \quad$ From the assumption coker $f=\left(A_{1} / \mathrm{g}\left(A_{1}^{\prime \prime}\right), \mathrm{T}\left(A_{1}\right)!\right.$ $\left.B_{2}^{\prime \prime}\right)$. Hence there exists $d: \mathrm{T}\left(A_{1} / \mathrm{g}\left(A_{1}^{\prime \prime}\right)\right) \rightarrow \mathrm{T}\left(A_{1}\right) / B_{2}^{\prime \prime}$ such that $d \mathrm{~T}(f)=h$, where $h=\operatorname{coker}\left(B_{2}^{\prime \prime} \xrightarrow{i} \mathrm{~T}\left(A_{1}\right)\right)$, (cf. (3)). Hence, $\operatorname{ker} \mathrm{T}(f) \subseteq B_{2}^{\prime \prime} . B_{2}^{\prime \prime} \subseteq \operatorname{Ker} \mathrm{T}(f)$ is clear, since $f g=0$. Therefore, T is cokernel preserving.

From this proposition we always assume that $\mathrm{T}_{i j}$ is cokernel preserving.

Let $A=\left(A_{i}\right)_{i \in I}$

$$
\begin{align*}
\mathrm{T}_{i}(A) & =A_{i} \tag{4}\\
\left.\mathrm{~T}_{j} \widetilde{S}_{i}\left(A_{i}\right)\right) & =0 \quad \text { for } \quad \mathrm{j}<\mathrm{i}
\end{align*}
$$

$$
\mathrm{T}_{j} \widetilde{S}_{i}\left(A_{i}\right)=\sum_{i<i_{1}<\cdots<i_{k}<j} \oplus \mathrm{~T}_{i_{k j}} \mathrm{~T}_{i_{k-1} i_{k}} \cdots \mathrm{~T}_{i_{1}}\left(A_{i}\right) \quad \text { for } \quad \mathrm{i}<\mathrm{j},
$$

with arrow $\mathrm{D}_{i k}=\mathrm{T}_{j k}$ for $\mathrm{j}<\mathrm{k}$.
Then we have a natural equivalence $\eta:\left[\widetilde{S}_{i}\left(\mathrm{~A}_{i}\right), \mathrm{D}\right] \approx\left[\mathrm{A}_{i}, \mathrm{~T}_{i}(\mathrm{D})\right]$ for any $\mathrm{A}_{i} \in \mathfrak{A}_{i}$ and $\mathrm{D} \in \mathfrak{Q}$. Hence, we have from [5], p. 138, Coro. 7.4.

Proposition 1.2. We assume that each \mathfrak{A}_{i} has a projective class ε_{i}, and $T_{i j}$ is cokernel preserving. Then $\cap T_{i}^{-1}\left(\varepsilon_{i}\right)$ is a projective class in $\mathfrak{A}=\left[I . \mathfrak{A}_{i}\right]$, whose projectives are the objects of the form $\oplus_{i \in I} \widetilde{S}_{i}\left(P_{i}\right)$ and their retracts, where P_{i} is ε_{i} projective for all $i \in I$.

2. Commutative diagrams with special arrows

In the previous section we study a general case of abelian categories of commutative diagrams. However, it is too general to discuss them. Hence, we shall consider the following conditions:
[I] $T_{i j}$ is cokernel preserving.
[II] There exist natural transformations

$$
\psi_{i j k}: \mathrm{T}_{j k} \mathrm{~T}_{i j} \rightarrow \mathrm{~T}_{i k} \quad \text { for any } \quad i<j<k
$$

[III] For any $i<j<k<l$ and N in A_{i}

$$
\begin{array}{ccc}
\mathrm{T}_{k l} \mathrm{~T}_{j k} \mathrm{~T}_{i j}(N) \\
\left\lvert\, \begin{array}{l}
\mid \mathrm{T}_{k l}\left(\psi_{i j k}\right) \\
\psi_{j k l}
\end{array}\right. & \mathrm{~T}_{k l} \mathrm{~T}_{i k}(N) \\
\mathrm{T}_{j l} \mathrm{~T}_{i j}(N)
\end{array} \xrightarrow{\psi_{i j l}} \begin{aligned}
& \downarrow \psi_{i k l} \\
& \mathrm{~T}_{i l}(N)
\end{aligned}
$$

is commutative
[IV] For arrows $d_{i j}: \mathrm{T}_{i j}\left(A_{i}\right) \rightarrow A_{j}$ in $\mathfrak{A}=\left[I, \mathfrak{A}_{i}\right]$

is commutative.
From now on we always assume I, II and for any arrows in \mathfrak{A}, we require the condition IV.

We note that IV implies $\mathrm{D}_{j k} \mathrm{D}_{i j}\left(A_{i}\right) \subseteq \mathrm{D}_{i k}\left(A_{i}\right)$ for any $A=\left(A_{i}\right)_{i \in I}$ in \mathfrak{N}.
First we shall show that \mathfrak{A} is still an abelian category under the assumption I even if we require IV in \mathfrak{A}.

Proposition 2.1. Let $\left(\mathfrak{H}_{i}\right)_{i \in I}$ be abelian categories. We assume II. Then
$\mathfrak{U}=\left[I, \mathfrak{N}_{i}\right]$ requiring $I V$ is abelian if and only if I is satisfied.
Proof. Let $f=\left(f_{i}\right):\left(A_{i}\right) \rightarrow\left(A_{i}^{\prime}\right)$ in \mathfrak{A}. We consider a diagram

We only prove from Proposition 1.1 that for any morphism $g=\left(g_{i}\right)$, $\left(\operatorname{ker} g_{i}\right)_{i \in I}$ (coker $\left.g_{i}\right)_{i \in I}$ satisfy IV. Put $A_{i}=\operatorname{ker} g_{i}$ and $f_{i}=$ inclusion morphism in the above. Then all squares except the rear in (5) are commutative from II, IV and (2). Since f_{k} is monomorphic, the rear one is commutative. Which shows $\left(\operatorname{ker} g_{i}\right)_{i \in I}$ satisfies IV. Similarly if $A_{i}=\left(\right.$ coker $\left.g_{i}\right)$ and f_{i} epimorphism of cokernel, then (coker g_{i}) satisfies IV, since $\mathrm{T}_{j k} \mathrm{~T}_{i j}\left(f_{i}\right)$ is epimorphic from I.

Next, we shall define functors similarly to \widetilde{S}_{i}. For $A_{i} \in \mathfrak{A}_{i}$ we put

$$
\begin{align*}
& \mathrm{S}_{i}\left(A_{i}\right)=\left(0,0, \cdots, A_{i}, \mathrm{~T}_{i i+1}\left(A_{i}\right), \cdots, \mathrm{T}_{i n}\left(A_{i}\right)\right) \text { with arrows } \tag{6}\\
& \mathrm{D}_{t k}=0 \quad \text { for } \quad t<i \\
& \mathrm{D}_{i k}=\mathrm{T}_{i k} \quad \text { for } \quad k>i \\
& \mathrm{D}_{j k}=\psi_{i j k} \mathrm{~T}_{j k} \quad \text { for } \quad k>j>i
\end{align*}
$$

If $\mathrm{T}_{i j}$'s satisfy III, then $\mathrm{S}_{i}\left(A_{i}\right)$ is an object in $\left[I, \mathfrak{N}_{i}\right]$ requiring IV. Furthermore, we can prove easily $\left[\mathrm{S}_{i}\left(A_{i}\right), D\right] \approx\left[A_{i}, \mathrm{~T}_{i}(D)\right]$ for $D \in\left[I, \mathfrak{Y}_{i}\right]$. Hence, we have similarly to Proposition 1.2

Proposition 1.2'. We assume that each \mathfrak{N}_{i} has a projective class ε_{i} and $I \sim$ III are satisfied. Then $\mathfrak{A}=\left[I, \mathfrak{N}_{i}\right]$ requiring $I V$ has a projective class $\cap T_{i}^{-1}\left(\varepsilon_{i}\right)$ whose projectives are the objects of the form $\underset{i \in I}{ } S_{i}\left(P_{i}\right)$ and their retracts, where P_{i} is ε_{i}-projective for all $i \in I$.

In the rest of the paper we always assume that $\left[I, \mathscr{N}_{i}\right]$ is an abelian category
of the commutative diagrams whose arrows are required IV and that I \sim III are satisfied.

Proposition 2.2. $\left(D_{k l} D_{j k}\right) D_{i j}=D_{k l}\left(D_{j k} D_{i j}\right)$ for $i<j<k<l$.

$$
\begin{array}{rlr}
\text { Proof. } \quad\left(\mathrm{D}_{k l} \mathrm{D}_{j k}\right) \mathrm{D}_{i j}(A) & =d_{j l} \psi_{j k l}\left(\mathrm{~T}_{k l} \mathrm{~T}_{j k}\right)\left(d_{i j}\right) \mathrm{T}_{k l} \mathrm{~T}_{j k} \mathrm{~T}_{i j}(A) \\
& \left.=d_{j l} \mathrm{~T}_{j l}\left(d_{i j}\right) \psi_{j k l} \mathrm{~T}_{k l} \mathrm{~T}_{j k} \mathrm{~T}_{i j}(A) \quad \text { (naturality of } \psi\right) \\
& =d_{i l} \psi_{i j l} \psi_{j k l} \mathrm{~T}_{k l} \mathrm{~T}_{j k} \mathrm{~T}_{i j}(A) & \text { (IV) } \\
& =d_{i l} \psi_{i k l} \mathrm{~T}_{k l}\left(\psi_{i j k}\right) \mathrm{T}_{k l} \mathrm{~T}_{j k} \mathrm{~T}_{i j}(A) \quad \text { (III) } \\
& =d_{k l} \mathrm{~T}_{k l}\left(d_{i k}\right) \mathrm{T}_{k l}\left(\psi_{i j k}\right) \mathrm{T}_{k l} \mathrm{~T}_{j k} \mathrm{~T}_{i j}(A) \quad \text { (IV) } \tag{IV}\\
& =d_{k l} \mathrm{~T}_{k l}\left(\mathrm{~d}_{i k} \psi_{i j k}\right) \mathrm{T}_{k l} \mathrm{~T}_{j k} \mathrm{~T}_{i j}(A) \\
& =\mathrm{D}_{k l}\left(\mathrm{D}_{j k} \mathrm{D}_{i j}\right)(A) \quad \text { for any } \quad A \in \text { N }_{i} .
\end{array}
$$

Theorem 2.3. (cf. [1], p. 234, Lemma 9.3) Let $I=I_{1} \cup I_{2}$ and $I_{1}=\{1,2 \cdots$,
 a suitable functor $\boldsymbol{T}_{12}:\left[I_{1}, \mathfrak{A}_{k}\right] \rightarrow\left[I_{2}, \mathfrak{A}_{k^{\prime}}\right]$.

Proof. First we define a functor \boldsymbol{T}_{12}. Let $\boldsymbol{A}_{1}=\left(A_{i}\right)_{i \in I_{1}}$. For any $k \geqslant i$ we consider a diagram $\mathrm{D}_{k}=\left\{\mathrm{T}_{l_{k}}\left(A_{l}\right), \mathrm{T}_{l^{\prime} k} \mathrm{~T}_{l^{\prime}} A_{l}\right)$ for $l<l^{\prime}<i<k$ with arrows $\mathrm{T}_{l^{\prime} k} \mathrm{~T}_{l l^{\prime}}\left(A_{l}\right) \xrightarrow{\psi} \mathrm{T}_{l_{k}}\left(A_{l}\right)$ and $\left.\left.\mathrm{T}_{l^{\prime} k} \mathrm{~T}_{l l^{\prime}}\left(A_{l}\right) \xrightarrow{\mathrm{T}_{l^{\prime} k}\left(d_{l l^{\prime}}\right)} \mathrm{T}_{l^{\prime}{ }_{k}} A_{l^{\prime}}\right)\right\} . \quad \mathrm{D}_{k}$ has a colimit A_{k} in \mathfrak{A}_{k} by [1], p. 46, Coro. 2.5, $\left(\left\{D_{k}\right\} \xrightarrow{\alpha_{k}} A_{k}\right)$. Put $A_{2}=\left(A_{i}, \cdots, A_{n}\right)$. We shall show that \boldsymbol{A}_{2} is in $\left[I_{2}, \mathfrak{Y}_{k^{\prime}}\right]$. We have to define $\mathrm{D}_{k k^{\prime}}$ for $i \leq k<k^{\prime}$. Consider a diagram

The upper and lower squares are commutative by III and naturality of ψ, respectively. Then (7) implies that these exist compatible morphism: $\left\{\mathrm{T}_{k k^{\prime}}\left(D_{k}\right)\right\} \rightarrow A_{k^{\prime}} . \quad$ Since $\mathrm{T}_{k k^{\prime}}$ is colimit preserving by [5], p. 55. Proposition 6.4, we have a unique morphism $d_{k k^{\prime}}: \mathrm{T}_{k k^{\prime}}\left(A_{k}\right) \rightarrow A_{k^{\prime}}$. Hence we can define $\mathrm{D}_{k k^{\prime}}=$ $d_{k k^{\prime}} \mathrm{T}_{\boldsymbol{k} \boldsymbol{k}^{\prime}}$. Next we show that those $\mathrm{D}_{\boldsymbol{k} k^{\prime}}$ satisfy IV. For $i \leqslant k<k^{\prime}<k^{\prime \prime}$ we have a diagram
(8)

All squares except bottom are commutative by III and the definitions $d_{k k^{\prime}}$, $d_{k k^{\prime \prime}}$ and $d_{k^{\prime} k^{\prime \prime}}$. On the other hand, it is clear that $\varphi_{k}: \mathrm{T}_{k^{\prime} k^{\prime \prime}} \mathrm{T}_{k k^{\prime}}\left(D_{k}\right) \xrightarrow{\mathrm{TT}\left(\alpha_{k}\right)}$ $\mathrm{T}_{k^{\prime} k^{\prime \prime}} \mathrm{T}_{k k^{\prime}}\left(A_{k}\right) \xrightarrow{\psi} \mathrm{T}_{k k^{\prime \prime}}\left(A_{k}\right) \xrightarrow{d_{k k^{\prime \prime}}} \mathfrak{A}_{k^{\prime \prime}}$ is compatible. Since $\mathrm{T}_{k^{\prime} k^{\prime \prime}} \mathrm{T}_{k k^{\prime}}$ is colimit preserving, we have a unique morphism $\Phi: \mathrm{T}_{k^{\prime} k^{\prime \prime}} \mathrm{T}_{k k^{\prime}}\left(A_{k}\right) \rightarrow A_{k^{\prime \prime}}$ such that $\psi_{k}=$ $\Phi \mathrm{TT}\left(\alpha_{k}\right)$. Therefore, the bottom square is also commutative, which means II. Thus we have shown that \boldsymbol{T}_{12} is a functor. Let $\left(\boldsymbol{A}_{1}, \boldsymbol{A}_{2}\right)$ be in $\mathfrak{A}{ }^{\prime}$, where $\boldsymbol{A}_{1}=$ $\left(A_{i}\right)_{i \in I_{1}}$ and $\boldsymbol{A}_{2}=\left(B_{j}\right)_{j \in I_{2}}$. From the definition of \boldsymbol{T}_{12} we have a morphism: $\mathrm{T}_{j k}\left(A_{j}\right) \xrightarrow{\alpha_{k}} A_{k} \xrightarrow{d_{k}} B_{k}$ for $j \in I_{1}, k \in I_{2}$, where $\left(d_{i}\right)_{i \in I}: \boldsymbol{T}_{12}\left(\boldsymbol{A}_{1}\right) \rightarrow \boldsymbol{A}_{2}$. We put

$$
\begin{aligned}
& \mathrm{D}_{j k}^{\prime}=d_{k} \alpha_{k} \mathrm{~T}_{j k} \quad \text { for } \quad j<i<k \text { and } \\
& \mathrm{D}_{s t}^{\prime}=\mathrm{D}_{s t} \quad \text { for } \quad s, t \in I_{1} \quad \text { or } \quad T_{2} .
\end{aligned}
$$

We shall show that $\mathrm{D}^{\prime}{ }_{i j}$ satisfy IV. Take $j<h<k$. If $j \in I_{2}$ or $k \in I_{1}$, then it is obvious. We assume $j \in I_{1}$ and $h, k \in I_{2}$. Then we have

$$
\begin{array}{ccccc}
\mathrm{T}_{h k} \mathrm{~T}_{j h}\left(A_{j}\right) & \xrightarrow{\mathrm{T}\left(\alpha_{h}\right)} & \mathrm{T}_{h k}\left(A_{h}\right) & \xrightarrow{\mathrm{T}\left(d_{k}\right)} & \mathrm{T}_{h k}\left(B_{h}\right) \tag{9}\\
\downarrow & & \|_{k k} & & \int_{k} d^{\prime}{ }_{n k} \\
\mathrm{~T}_{j k}\left(\mathrm{~A}_{j}\right) & \xrightarrow{\alpha_{k}} & d_{k} & \xrightarrow{d_{k}} & B_{k}
\end{array}
$$

where $d^{\prime}{ }_{h k}$ is a given morphism in \boldsymbol{A}_{2}. The left side is commutative by the definition of \boldsymbol{T}_{12} and so is the right side, since $h, k \in \mathrm{I}_{2}$. Hence, the out side square means IV. We can easily see by the defininition of $\left\{D_{k}\right\}$ that IV is satisfied for $j, h \in \mathrm{I}_{1}$ and $k \in \mathrm{I}_{2}$. Hence, $\boldsymbol{T}\left(\boldsymbol{A}_{1}, \boldsymbol{A}_{2}\right)=\left(A_{1}, \cdots, A_{i-1}, B_{i}, \cdots, B_{n}\right)$ is an object in \mathfrak{A}. Conversely, for $\boldsymbol{A}=\left(A_{1}, \cdots, A_{n}\right)$ we put $\boldsymbol{S}(\boldsymbol{A})=\left(\left(A_{1}, \cdots, A_{i-1}\right)\right.$, $\left.\left(A_{i}, \cdots, A_{n}\right)\right)$. Then it is clear that $\boldsymbol{S}(\boldsymbol{A}) \in \mathfrak{Y}^{\prime}$ and $\boldsymbol{T} \boldsymbol{S}=\mathrm{I}_{\mathfrak{A}}, \boldsymbol{S} \boldsymbol{T}=\mathrm{I}_{\mathfrak{\not}}{ }^{\prime} . \quad$ This
shows that \boldsymbol{T}_{12} is cokernel preserving by Proposition 1.1.

3. Hereditary categories

In this section, we always assume that I IV are satisfied and every \mathfrak{A}_{i} has projectives and hence $\mathfrak{A}=\left[I, \mathscr{\mathscr { ~ }}_{i}\right]$ has projectives by Proposition 1.2'.

If every object in an abelian category \mathfrak{B} is projective, we call \mathfrak{B} a semisimple category, which is equivalent to a fact $\mathrm{gl} \operatorname{dim} \mathfrak{B}=0$. If $\mathrm{gl} \operatorname{dim} \mathfrak{B} \leqq 1$ we call \mathfrak{B} hereditary.

Proposition 3.1. ([5], p. 235, Coro. 10.3). We assume that \mathfrak{N}_{i} has projectives and that $T_{i j}$ is projective preserving. Let $D=\left(D_{i}\right)_{i \in I}$ be an object in $\left[I, \mathfrak{H}_{i}\right]$ and $m=\max \left(h d D_{i}\right), n=$ the number of elements of I. Then $h d D \leqslant n+m-1$.

Since $\mathrm{T}_{i j}$ is projective preserving, we can prove it similarly to [1], p. 235.
Corollary. Let $I=(1,2)$ and T_{12} be projective preserving. Then
$\max \left(\mathrm{gl} \operatorname{dim} \mathfrak{A}_{1}, \mathrm{gl} \operatorname{dim} \mathfrak{A}_{2}\right) \leqq \operatorname{gl} \operatorname{dim}\left[(1,2), \mathfrak{A}_{1}, \mathfrak{A}_{2}\right] \leqslant \max \left(\mathrm{gl} \operatorname{dim} \mathfrak{A}_{i}\right)+1$.
Proof. The right side inequality is clear from Proposition 3.1. Let A be an object in $\mathfrak{\Re}_{1}$. It is clear that $\operatorname{hd}(A, 0) \geqq$ hd A. Since T_{12} is projective preserving, we have similarly $\operatorname{hd}\left(0, A^{\prime}\right) \geqq \operatorname{hd} A^{\prime}$ for $A^{\prime} \in \mathfrak{A}_{2}$.

Lemma 3.2. Let $\mathfrak{A}=\left[(1,2), \mathfrak{U}_{1}, \mathfrak{U}_{2}\right]$. If $\mathrm{gl} \operatorname{dim} \mathfrak{U} \leqq 1$, then T_{12} is projective preserving.

Proof. Let P_{1} be projective in $\mathfrak{\Re}_{1}$. Then $\left(P_{1}, \mathrm{~T}_{\mathrm{t} 2}\left(P_{1}\right)\right)$ is projective in \mathfrak{A} by Proposition 1.2. Let $0 \leftarrow \mathrm{~T}_{12}\left(P_{1}\right) \leftarrow Q$ be an exact sequence in \mathfrak{A}_{2} with Q projective. Then $(0.0) \leftarrow\left(P_{1}, 0\right) \leftarrow\left(P_{1}, \mathrm{~T}_{12}\left(P_{1}\right)\right) \leftarrow(0, Q)$ is exact in \mathfrak{N}. Since $\mathrm{gl} \operatorname{dim} \mathfrak{A} \leqq 1,\left(0, \mathrm{~T}_{12}\left(P_{1}\right)\right)$ is projective in $\mathfrak{A}\left(\left(0, \mathrm{~T}_{12}\left(P_{1}\right)\right) \subset\left(P_{1}, \mathrm{~T}_{12}\left(P_{1}\right)\right)\right.$. Hence, $\mathrm{T}\left(P_{1}\right) \leftarrow Q$ is retract and $\mathrm{T}_{12}\left(P_{1}\right)$ is projective in \mathfrak{A}_{2}.

Similarly to the category of modules we have
Lemma 3.3. Let A be an abelian category. If $A \oplus B=A^{\prime} \oplus C$ and $A \supset A^{\prime}$, then $A^{\prime}=A \oplus A^{\prime \prime}, A^{\prime \prime}=A \cap C$ and $C=A^{\prime \prime} \oplus C^{\prime}$.

Lemma 3.4. Let $I=(1,2)$ and $\mathfrak{Y}=\left[I, \mathfrak{Y}_{i}\right] . \quad$ If T_{12} is projective preserving, then every projective object A in \mathfrak{U} is of a form $\left(P_{1}, T_{12}\left(P_{1}\right) \oplus P_{2}\right)$ and the arrow d_{12} in A is monomorphic, where P_{i} is projective in \mathfrak{A}_{i}.

Proof. Since $\boldsymbol{A}=\left(A_{1}, A_{2}\right)$ is a retraction of an object of a form $\boldsymbol{P}=$ $\left(P_{1}, \mathrm{~T}_{12}\left(P_{1}\right) \oplus P_{2}\right)$ with P_{i} projective in \mathfrak{A}_{i}. Hence, $0 \rightarrow \boldsymbol{A} \rightarrow \boldsymbol{P}$ splits. Let $P_{1}=$ $A_{1} \oplus Q_{1}$. Then $\mathrm{T}_{12}\left(P_{1}\right)=\mathrm{T}_{12}\left(A_{1}\right) \oplus \mathrm{T}_{12}\left(Q_{1}\right)$ and A_{2} is a coretract of $\mathrm{T}_{12}\left(A_{1}\right) \oplus$ $\mathrm{T}_{12}\left(Q_{1}\right) \oplus P_{2}$. Furthermore, $\mathrm{T}_{12}\left(A_{1}\right) \xrightarrow{d_{12}} A_{2} \rightarrow \mathrm{~T}_{12}\left(P_{1}\right) \oplus P_{2}=\mathrm{T}_{12}\left(A_{1}\right) \rightarrow \mathrm{T}_{12}\left(P_{1}\right) \oplus$ P_{2}, and the right side is monomorphic. Hence, d_{12} is monomorphic. Thus we
may assume $\mathrm{T}_{12}\left(A_{1}\right) \subset A_{2} \subset \mathrm{~T}_{12}\left(P_{1}\right) \oplus P_{2}$. Therefore, $A_{2}=\mathrm{T}_{12}\left(A_{1}\right) \oplus A_{2}^{\prime}$ by Lemma 3.3. Since P_{1} is projective and T_{12} is projective preserving, $\mathrm{T}_{12}\left(P_{1}\right) \oplus P_{2}$ is projective in \mathfrak{A}_{2}. Hence, A_{2}^{\prime} is projective by Lemma 3.3.

Lemma 3.5. Let $\mathfrak{N}_{1}, \mathfrak{N}_{2}$ be hereditary and T_{12} projective preserving. If $T_{12}\left(P_{2}\right)$ is a coretract of $T_{12}\left(P_{1}\right)$ for any projective objects $P_{1} \supset P_{2}$ in \mathfrak{A}_{1}, then $\mathfrak{A}=$ $\left[(1,2), \mathfrak{H}_{1}, \mathfrak{A}_{2}\right]$ is hereditary.

Proof. Let $\left(A_{1}, A_{2}\right)$ be any object in \mathfrak{N} and $0 \leftarrow\left(A_{1}, A_{2}\right) \stackrel{f}{\leftarrow} P$ be exact, where P श-projective. Then $P=\left(P_{1}, \mathrm{~T}_{12}\left(P_{1}\right) \oplus P_{2}\right)$ with P_{i} projective by Lemma 3.4. Put ker $f=\left(\mathrm{K}_{1}, \mathrm{~K}_{2}\right)$. Since \mathfrak{N}_{1} is hereditary, K_{1} is projective. Hence, $\mathrm{T}_{12}\left(\mathrm{~K}_{1}\right)$ is a coretract of $\mathrm{T}_{12}\left(P_{1}\right)$ by the assumption. Hence, $\mathrm{K}_{2}=\mathrm{T}_{12}\left(\mathrm{~K}_{1}\right) \oplus \mathrm{K}_{2}^{\prime}$ by Lemma 3.3. Since K_{2} is projective, $\left(\mathrm{K}_{1}, \mathrm{~K}_{2}\right)$ is \mathfrak{A}-projective.

Theorem 3.6. Let $I=(1,2, \cdots, n)$ be a linearly ordered set, \mathfrak{U}_{i} abelian categories with projectives. Let $\mathfrak{A}=\left[I, \mathfrak{N}_{i}\right]$ be the abelian category of commutative diagrams over \mathfrak{A}_{i} with functors $T_{i j}$ satisfying $I \sim I V$. If $\mathfrak{\vartheta}$ is hereditary, then we have:
i) Every projective object of \mathfrak{A} is of a form $\bigoplus_{i \in I} S_{i}\left(P_{i}\right)$, where P_{i} is projective in \mathfrak{A}_{i}.
ii) $\mathrm{T}_{i j}$ is projective preserving for any $i<j$.
iii) $\mathrm{T}_{i j}\left(P_{2}\right)$ is a coretract of $\mathrm{T}_{i j}\left(P_{1}\right)$ for any projective objects $P_{1} \supset P_{2}$ in \mathfrak{A}_{i}.
iv) $\left[\left(i_{1}, i_{2}, \cdots, i_{t}\right), A_{i_{1}}, A_{i_{2}}, \cdots, A_{i_{t}}\right] \equiv \mathfrak{A}\left(i_{1}, i_{2}, \cdots, i_{t}\right)$ is hereditary for any $i_{1}<i_{2}<\cdots<i_{t}$.
v) If $P=\left(P_{i}\right)_{i \in I}$ is projective in \mathfrak{A}, then every $d_{i j}$ in P is a coretract. $\left(P_{i_{1}}, P_{i_{2}}, \cdots, P_{i_{t}}\right)$ is $\mathfrak{U}\left(i_{1}, i_{2}, \cdots, i_{t}\right)$-projective.

Proof. We shall prove the theorem by the induction on the number n of element of I. We obtain $\mathfrak{A} \approx\left[(1,2), \mathfrak{\mathscr { A } _ { 1 }}, \mathfrak{A}(I-1)\right] \equiv \mathrm{A}^{\prime}$ from Theorem 3.2. Then $\mathfrak{A}(I-1)$ is hereditary by Lemma 3.2 and Corollary to Proposition 3.1. Furthermore, \boldsymbol{T}_{12} in \mathfrak{X}^{\prime} is projective preserving. i) Let $P=\left(P_{i}\right)_{i \in I}$ be projective in \mathfrak{A}. Then $P=\left(P_{1}, \boldsymbol{T}_{12}\left(P_{1}\right) \oplus \boldsymbol{P}_{2}\right)$ by Lemma 3.4, where \boldsymbol{P}_{2} is projective in $\mathfrak{\because}(I-1)$. We obtain, by the definition of \boldsymbol{T}_{12}, that $\boldsymbol{T}_{12}\left(P_{1}\right)=\left(\mathrm{T}_{1 i}\left(P_{1}\right)_{i \in I-1}\right.$. Hence, $P=$ $\bigoplus_{i \in I} \mathrm{~S}_{i}\left(P_{i}\right)$ by the induction hypothesis. ii) Every component of projective object in $\mathfrak{A}(I-1)$ is projective by the induction. Hence, $\mathrm{T}_{1 i}\left(P_{1}\right)$ is projective in \mathfrak{N}_{i}. iii) Let $P_{1} \supset P_{2}$ be projective in $\mathfrak{\Re}_{1}$. Put $A=\left(P_{1} / P_{2}, 0, \cdots, 0\right)$. Then we have an exact sequence $0 \leftarrow A \leftarrow\left(P_{1}, \boldsymbol{T}_{12}\left(P_{1}\right)\right)$. Since \mathfrak{A} is hereditary, its kernel $\left(P_{2}, \boldsymbol{T}_{12}\left(P_{1}\right)\right)$ is projective. Therefore, $\mathrm{T}_{1 i}\left(P_{2}\right)$ is a coretract from i). iv) We may show that $\mathfrak{A}(I-i)$ is hereditary for any i. $\mathfrak{Y} \approx\left[I_{1}, i, I_{2}, \mathfrak{X}_{1}^{\prime}, \mathfrak{Y}_{i}, \mathfrak{Y}_{2}^{\prime}\right]$, where $I_{1}=$ $(1, \cdots, i-1), I_{2}=(i+1, \cdots, n), \mathfrak{U}_{1}=\mathfrak{A}\left(I_{1}\right)$ and $\mathfrak{A}_{2}=\mathfrak{A}\left(I_{2}\right)$. From Lemma $3.2 \boldsymbol{T}_{13}$ is projective preserving and hence $\mathfrak{A}(I-i)$ is hereditary from iii) and Lemma 3.5 and the definition of \boldsymbol{T}_{13}. v) Since $P=\left(P_{1}, \boldsymbol{T}_{12}\left(P_{1}\right) \oplus P_{2}\right), d_{1 i}: \mathrm{T}_{1 i}\left(P_{1}\right) \rightarrow P_{i}$ is a coretract.
$P \approx\left(\boldsymbol{P}_{1}^{\prime}, P_{2}, \boldsymbol{P}_{3}^{\prime}\right)$, where $\boldsymbol{P}_{1}^{\prime}=\left(P_{j}\right)_{j \in I_{1}}$ and $P_{3}^{\prime}=\left(P_{j}\right)_{j \in I_{2}}$. Then it is clear from i) and induction that $\left(\boldsymbol{P}_{1}^{\prime}, \boldsymbol{P}_{3}^{\prime}\right)$ is $\mathfrak{U}(I-i)$-projective.

Next we shall study a condition of every projective objects in \mathfrak{A} being of a form $\oplus \mathrm{S}_{i}\left(P_{i}\right)$, when $\mathrm{T}_{i j}$ is projective preserving.

Lemma 3.7. Let \mathfrak{A} and \mathfrak{U}_{i} be as above and $T_{i j}$ projective preserving. If we have

$$
\begin{equation*}
\mathrm{T}_{i j}\left(P_{i}\right)=\mathrm{T}_{i+1 j} \mathrm{~T}_{i, i+1}\left(P_{i}\right) \oplus \mathrm{T}_{i+2 j}\left(\mathrm{~K}^{i+2}\left(P_{i}\right)\right) \oplus \cdots \oplus \mathrm{T}_{j-1 j}\left(\mathrm{~K}^{j-1}\left(P_{i}\right)\right) \oplus \mathrm{K}^{j}\left(P_{i}\right) \tag{}
\end{equation*}
$$

for any projective object P_{i} in \mathfrak{N}_{i} for all i, then every object $A=\left(A_{i}\right)_{i \in I}$ in \mathfrak{N} is of a form $\oplus S_{i}\left(Q_{i}\right)$ whenever A is subobject of $P=\left(Q_{i}^{\prime}\right)_{i \in I}$ and A_{i} is a coretract of Q_{i}^{\prime} for all i, where $K^{j}\left(P_{i}\right)$ is an object in \mathfrak{U}_{j}, Q_{i} and Q_{i}^{\prime} are \mathfrak{N}_{i}-projective, and the equality in $\left.{ }^{(}\right)$is given by taking suitable transformution from the right side to the left in (*).

Proof. We may assume $P=\oplus_{i \in I} \mathrm{~S}_{i}\left(P_{i}\right)$ and P_{i} is \mathfrak{U}_{i}-projective. Put $P=$ $\left(\boldsymbol{P}_{i}\right)_{i \in I}$. From the assumption $\boldsymbol{P}_{1}=A_{1} \oplus Q_{1}$. We shall show the following fact by the induction on i.
i)

$$
\begin{gathered}
A_{i}=\mathrm{T}_{1 i}\left(A_{1}\right) \oplus \mathrm{T}_{2 i}\left(K^{2}\right) \oplus \cdots \oplus \mathrm{T}_{i-1 i}\left(K^{i-1}\right) \oplus K^{i} \\
K^{i} \oplus Q_{i}=P_{i} \oplus \Re^{i}\left(Q_{1}\right) \oplus \Re^{i}\left(Q_{2}\right) \cdots \oplus \mathrm{K}^{1}\left(Q_{i-2}\right) \oplus \mathrm{T}_{i-1 i}\left(Q_{i-1}\right),
\end{gathered}
$$

ii)
and this is a coretract of P_{i}, where $\mathrm{K}^{i}\left(Q_{j}\right)$ is the object in (*) for projective Q_{i} and the equalities are considered in P_{i} by suitable imbedding mappings. If $i=1,2$, i) and ii) are clear (see the proof of Lemma 3.4). We assume i) and ii) are true for $k<i$. Using this assumption we first show for $2<j<i-1$ that

$$
\begin{align*}
\boldsymbol{P}_{i}= & \mathrm{T}_{1 i}\left(A_{1}\right) \oplus \mathrm{T}_{2 i}\left(K^{2}\right) \oplus \cdots \oplus \mathrm{T}_{j i}\left(K^{j}\right) \\
& \oplus \mathrm{T}_{j+1 i}\left(P_{j+1} \oplus\left(\mathrm{~K}^{j+1}\left(Q_{1}\right) \oplus \cdots \oplus \mathrm{K}^{j+1}\left(Q_{j-1}\right) \oplus \mathrm{T}_{j j+1}\left(Q_{j}\right)\right)\right. \\
& \oplus \mathrm{T}_{j+2 i}\left(P_{j+2} \oplus \mathrm{~K}^{j+2}\left(Q_{1}\right) \oplus \cdots \oplus \mathrm{K}^{j+2}\left(Q_{j-1}\right) \oplus \mathrm{K}^{j+2}\left(Q_{j}\right)\right) \\
& \oplus \cdots \cdots \cdots \cdots \\
& \oplus \mathrm{T}_{i-1 i}\left(P_{i-1} \oplus\left(\mathrm{~K}^{i-1}\left(Q_{1}\right) \oplus \cdots \oplus \mathrm{K}^{i-1}\left(Q_{j-1}\right) \mathrm{K}^{i-1}\left(Q_{j}\right)\right)\right. \\
& \oplus P_{i} \oplus \mathrm{~K}^{i}\left(Q_{1}\right) \oplus \cdots \oplus \mathrm{K}^{i}\left(Q_{j-1}\right)+\mathrm{K}^{i}\left(Q_{j}\right) .
\end{align*}
$$

Now

$$
\begin{aligned}
\boldsymbol{P}_{i}= & \mathrm{T}_{1 i}\left(P_{1}\right) \oplus \mathrm{T}_{2 i}\left(P_{2}\right) \oplus \cdots \oplus \mathrm{T}_{i-1 i}\left(P_{i-1}\right) \oplus P_{i} \\
= & \mathrm{T}_{1 i}\left(P_{1}\right) \oplus \mathrm{T}_{2 i}\left(P_{2}\right) \oplus \boldsymbol{P}_{i}^{\prime} \quad\left(\boldsymbol{P}_{i}^{\prime}=\mathrm{T}_{3 i}\left(P_{3}\right) \oplus \cdots \oplus P_{i}\right) \\
= & \mathrm{T}_{1 i}\left(A_{1}\right) \oplus \mathrm{T}_{1 i}\left(Q_{1}\right) \oplus \mathrm{T}_{2 i}\left(Q_{1}\right) \oplus \mathrm{T}_{2 i}\left(P_{2}\right) \oplus \boldsymbol{P}_{i}^{\prime} \\
= & \mathrm{T}_{1 i}\left(A_{1}\right) \oplus\left(\mathrm{T}_{2 i} \mathrm{~T}_{12}\left(Q_{1}\right) \oplus \mathrm{T}_{3 i}\left(\mathrm{~K}^{3}\left(Q_{1}\right)\right) \oplus \cdots \oplus \mathrm{T}_{i-1 i}\left(\mathrm{~K}^{i-1}\left(Q_{1}\right)\right)\right. \\
& \left.\oplus \mathrm{K}^{i}\left(Q_{1}\right)\right) \oplus \mathrm{T}_{2 i}\left(P_{2}\right) \oplus \boldsymbol{P}_{i}^{\prime} \quad\left(\left(^{*}\right)\right) \\
= & \mathrm{T}_{1 i}\left(A_{1}\right) \oplus\left(\mathrm { T } _ { 2 i } (P _ { 2 } \oplus \mathrm { T } _ { 1 2 } (Q _ { 1 })) \oplus \left(\mathrm{T}_{3 i}\left(\mathrm{~K}^{3}\left(Q_{1}\right)\right) \oplus \cdots \oplus \mathrm{K}^{i}\left(Q_{1}\right)+\boldsymbol{P}_{i}^{\prime}\right.\right. \\
= & \mathrm{T}_{1 i}\left(A_{1}\right) \oplus \mathrm{T}_{2 i}\left(K^{2}\right) \\
& \oplus \mathrm{T}_{3 i}\left(P_{3} \oplus \mathrm{~K}^{3}\left(Q_{1}\right) \oplus \mathrm{T}_{23}\left(Q_{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \oplus \mathrm{T}_{4 i}\left(P_{4} \oplus \mathrm{~K}^{3}\left(Q_{1}\right) \oplus \mathrm{K}^{4}\left(Q_{2}\right)\right) \oplus \cdots \\
& \oplus \mathrm{T}_{i-1 i}\left(P_{i-1} \oplus \mathrm{~K}^{i-1}\left(Q_{1}\right) \oplus \mathrm{K}^{i-1}\left(Q_{2}\right)\right) \\
& \oplus P_{i} \oplus \Omega^{i}\left(Q_{1}\right) \oplus \mathrm{K}^{i}\left(Q_{2}\right) .
\end{aligned}
$$

This is a case of $j=2$ in iii). We assume iii) is true for $k \leqq j$. Since $j+1<i$, we obtain from ii) and taking $\mathrm{T}_{j+1 i}$

$$
\begin{aligned}
& \mathrm{T}_{j+1 i}\left(K^{j+1}\right) \oplus \mathrm{T}_{j+i i}\left(Q_{j+1}\right)=\mathrm{T}_{j+1 i}\left(P_{j+1} \oplus \mathrm{~K}^{j+1}\left(Q_{1}\right) \oplus \mathrm{K}^{j+1}\left(Q_{2}\right) \oplus \cdots \oplus \mathrm{K}^{j+1}\left(Q_{j-1}\right)\right. \\
& \left.\quad \oplus \mathrm{T}_{j j+1}\left(Q_{j}\right)\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \mathrm{T}_{j+1 i}\left(Q_{j+1}\right)=\mathrm{T}_{j+2 i} \mathrm{~T}_{j+1 j+2}\left(Q_{j+1}\right) \oplus \mathrm{T}_{j+3 i}\left(\mathrm{~K}^{j+3}\left(Q_{j+1}\right)\right) \oplus \cdots \\
& \quad \oplus \mathrm{T}_{i-1 i}\left(\mathrm{~K}^{i-1}\left(Q_{i+1}\right)\right) \oplus \mathrm{K}^{i}\left(Q_{j+1}\right)
\end{aligned}
$$

Since Q_{j+1} is a coretract of \boldsymbol{P}_{j+1} and $\mathrm{T}_{j+1 i}\left(\boldsymbol{P}_{j+1}\right)$ is a coretract of $\boldsymbol{P}_{\boldsymbol{i}}$ by the following Lemma 3.8, we may regard the above objects on the both sides as sub objects in $\boldsymbol{P}_{\boldsymbol{i}}$. Hence, we obtain

$$
\begin{aligned}
\boldsymbol{P}_{i}= & \mathrm{T}_{1 i}\left(A_{1}\right) \oplus \mathrm{T}_{2 i}\left(K^{2}\right) \oplus \cdots \oplus \mathrm{T}_{j i}\left(K^{i}\right) \oplus \mathrm{T}_{j+1 i}\left(K^{j+1}\right) \\
& \left.\oplus \mathrm{T}_{j+2 i}\left(P_{j+2} \oplus \mathrm{~K}^{j+2}\left(Q_{1}\right) \oplus \cdots \oplus \mathrm{K}^{j+2}\left(Q_{j}\right)\right) \oplus \mathrm{T}_{j+1 j+2}\left(Q_{j+1}\right)\right) \oplus \cdots \\
& \left.\oplus \mathrm{T}_{i-1 i}\left(P_{i} \oplus \mathrm{~K}^{i-1}\left(Q_{1}\right) \oplus \cdots \oplus \mathrm{K}^{i-1}\left(Q_{j}\right)\right) \oplus \mathrm{K}^{i-1}\left(Q_{j+1}\right)\right) \\
& \oplus P_{i} \oplus \mathrm{~K}^{i}\left(Q_{1}\right) \oplus \cdots \oplus \mathrm{K}^{i}\left(Q_{j}\right) \oplus \mathrm{K}^{i}\left(Q_{j+1}\right) .
\end{aligned}
$$

Thus we obtain from i) and ii)

$$
\begin{aligned}
\boldsymbol{P}_{i}= & \mathrm{T}_{1 i}\left(A_{1}\right) \oplus \mathrm{T}_{2 i}\left(K^{2}\right) \oplus \cdots \oplus \mathrm{T}_{i-2 i}\left(K^{i-2}\right) \oplus \mathrm{T}_{i-1 i}\left(P_{i-1} \oplus \mathrm{~K}^{i-1}\left(Q_{1}\right) \oplus \cdots\right. \\
& \left.\left.\oplus \mathrm{K}^{i-1}\left(Q_{i-3}\right) \oplus \mathrm{T}_{i-2 i-1}\left(Q_{i-2}\right)\right) \oplus\left(P_{i} \oplus \mathrm{~K}^{i}\left(Q_{1}\right)\right) \oplus \cdots \oplus \mathrm{K}^{i}\left(Q_{i-2}\right)\right) \\
= & \left\{\mathrm{T}_{1 i}\left(A_{1}\right) \oplus \mathrm{T}_{2 i}\left(K^{2}\right) \oplus \cdots \oplus \mathrm{T}_{i-2 i}\left(K^{i-2}\right) \oplus \mathrm{T}_{i-1 i}\left(K^{i-1}\right)\right\} \oplus\left\{P_{i} \oplus \mathrm{~K}^{i}\left(Q_{1}\right) \oplus \cdots\right. \\
& \left.\oplus \mathrm{K}^{i}\left(Q_{i-2}\right) \oplus \mathrm{T}_{i-1 i}\left(Q_{i-1}\right)\right\} .
\end{aligned}
$$

Since $A_{l} \supset K^{l}$ and $A_{i} \supset \mathrm{~T}_{1 i}\left(A_{1}\right) \oplus \mathrm{T}_{2 i}\left(K^{2}\right) \oplus \cdots \oplus \mathrm{T}_{i-1 i}\left(K^{i-1}\right)=A_{i}^{\prime}$, we obtain $A_{i}=A_{i}^{\prime} \oplus K^{i}$ and Q_{i} in \mathfrak{N}_{i} such that

$$
K^{i} \oplus Q_{i}=P_{i} \oplus \mathrm{~K}^{i}\left(Q_{1}\right) \oplus \cdots \oplus \mathrm{K}^{i}\left(Q_{i-2}\right) \oplus \mathrm{T}_{i-1 i}\left(Q_{i-1}\right),
$$

and hence, $K^{i} \oplus Q_{i}$ is a coretract of \boldsymbol{P}_{i}. Therefore, $A=\underset{i \geqslant 2}{\oplus} \mathrm{~S}_{i}\left(K^{i}\right) \oplus \mathrm{S}_{1}\left(A_{1}\right)$. Since $\mathrm{T}_{i j}$ is projective preserving, each K^{i} is \mathscr{A}_{i}-projective.

Lemma 3.8. Let \mathfrak{N} and $\mathfrak{\Re}_{i}$ and $T_{i j}$ be as above. We assume that $T_{i j}$ satisfies the condition (*). Then $T_{i j}\left(P_{i}\right)$ is a coretract of P_{j} for any projective object $P=\left(P_{i}\right)_{i \in I}$.

Proof. We may assume $P=\oplus_{i \in I} \mathrm{~S}_{i}\left(Q_{i}\right)$ by Lemma 3.3, where Q_{i} is \mathfrak{U}_{i}-pro-
jective. Then $P_{i}=\sum_{i=1}^{k-1} \oplus \mathrm{~T}_{k i}\left(Q_{k}\right) \oplus Q_{i}$. We shall show under the assumption of Lemma 3.8 that $\mathrm{T}_{j l} \mathrm{~T}_{i j}\left(P_{i}\right) \xrightarrow{\psi_{i j l}} \mathrm{~T}_{i l}\left(P_{i}\right)$ is a coretract. Let $t=l-i$. If $t=2$, then the fact is clear from (${ }^{*}$). We assume it for $t<k$ and $k=l-i$. $\quad \mathrm{T}_{j l} \mathrm{~T}_{i j}\left(P_{i}\right)=$ $\mathrm{T}_{j l} \mathrm{~T}_{i+1 j} \mathrm{~T}_{i i+1}\left(R_{i}\right) \oplus \mathrm{T}_{j l}\left(\mathrm{~T}_{i+2 j}\left(\mathrm{~K}^{i+2}\left(P_{i}\right)\right) \oplus \cdots \oplus \mathrm{T}_{j-1 j}\left(\mathrm{~K}^{j-1}\left(P_{i}\right)\right) \oplus \mathrm{K}^{j}\left(P_{j}\right)\right)$ and

$$
\begin{aligned}
\mathrm{T}_{i l}\left(P_{i}\right)= & \mathrm{T}_{i+1 l} \mathrm{~T}_{i i+l}\left(P_{i}\right) \oplus \mathrm{T}_{i+2 l}\left(\mathrm{~K}^{i+2}\left(P_{i}\right)\right) \oplus \cdots \oplus \mathrm{T}_{j l}\left(\mathrm{~K}^{j}\left(P_{i}\right)\right) \\
& +\mathrm{T}_{j+1 l}\left(\mathrm{~K}^{j+1}\left(P_{i}\right) \oplus \cdots \oplus \mathrm{K}^{l}\left(P_{i}\right)\right.
\end{aligned}
$$

Hence, we obtain $\psi_{i j l}$ is a coretract from the assumption III, naturality of ψ and induction hypothesis. From those facts we can easily prove Lemma 3.8.

Lemma 3.9. Let \mathfrak{N}_{i} and \mathfrak{N} be as above, and I^{\prime} a subset of I. Then there exist functors $M:\left[I^{\prime}, \mathfrak{Y}\right] \rightarrow[I, \mathfrak{X}], F:\left[I, \mathfrak{X}_{X}\right] \rightarrow\left[I^{\prime}, \mathfrak{A}_{i}\right]$ such that $F M=I_{\left[I^{\prime}, \mathfrak{A}_{i}\right]}$, where F is the restriction functor.

Proof. We may assume $I=I^{\prime} \cup\{i\}$ by the induction. Let $I_{1}=\{j \mid \in I, j<i\}$ $I_{2}=\{j \mid \in I, j>i\}$ and $A=\left(A_{j}\right)_{j \in I^{\prime}}$. If $I_{1}=\phi$, we put $A_{1}=0$. We assume $I_{1}=\phi$. We consider a family $D_{i}=\left\{\mathrm{T}_{k i}\left(A_{k}\right), \mathrm{T}_{k^{\prime} i} \mathrm{~T}_{k k^{\prime}}\left(A_{k}\right) \xrightarrow{\psi_{k k^{\prime} i}} \mathrm{~T}_{k i}\left(A_{k}\right)\right.$ and $\mathrm{T}_{k i} \mathrm{~T}_{k k^{\prime}}\left(A_{k}\right)$ $\xrightarrow{\mathrm{T}_{k i}\left(d_{k k^{\prime}}\right)} \mathrm{T}_{k i}\left(A_{k}\right)$ for $\left.k<k^{\prime}<i\right\}$. Put A_{i} is a colimit of D_{i}. Then we have defined arrows $D_{k i}$ and $D_{i l}$ for $k \in I_{1}, l \in I_{2}$ from (7). It is easily seen from the definition of colimit that those $\mathrm{D}_{i j}$ satisfy IV. Then $\mathrm{M}(A)=\left(A_{k}\right)_{k \in I}$ is a desired functor.

Remark. We note that if $A=\left(A_{k}\right)$ is a coretract of $B=\left(B_{k}\right)_{k \in I^{\prime}}$, then $\mathrm{M}(A)$ is a coretract of $\mathrm{M}(B)$, (cf. [5], p. 47, Coro. 2.10).

Proposition 3.10. Let $\left\{\mathfrak{H}_{i}\right\}_{i \in I}$ be abelian categories with projective class ε_{i} and $\mathfrak{A}(I)=\left[I, \mathfrak{A}_{i}\right]$. We assume $T_{i j}$ is projective preserving. Then every projective object $P=\left(P_{i}\right)_{i \in I^{\prime}}$ in $\mathfrak{A}\left(I^{\prime}\right)$ is of a form $\underset{i \in I^{\prime}}{ } S_{i}\left(Q_{i}\right)$ with Q_{i} projective in \mathfrak{N}_{i} for any subset I^{\prime} of I and $\left(P_{j}\right)_{j \in I^{\prime \prime}}$ is $\mathfrak{2}\left(I^{\prime \prime}\right)$-projective for any subset $I^{\prime \prime}$ of I^{\prime} if and only if $\left({ }^{*}\right)$ is satisfied.

Proof. "only if". Let P_{i} be projective in \mathfrak{A}. Then $\mathrm{S}_{\boldsymbol{i}}\left(P_{\boldsymbol{i}}\right)$ is $\mathfrak{\Re}$-projective, and hence, $\boldsymbol{P}^{\prime}=\left(\mathrm{T}_{i i+1}\left(P_{i}\right), \cdots, \mathrm{T}_{i n}\left(P_{i}\right)\right)$ is $\mathfrak{2}(I-\{1, \cdots, i\}]$-projective. Therefore, the fact $\boldsymbol{P}^{\prime}=\underset{k \geqslant i+1}{\oplus} \mathrm{~S}_{k}\left(Q_{k}\right)$ from the assumption is equivalent to (*). "if". Let $\boldsymbol{P}^{\prime}=\left(P_{k}^{\prime}\right)_{k \in I^{\prime}}$ be projective in $\mathfrak{A}\left(I^{\prime}\right)$. Then \boldsymbol{P}^{\prime} is a retract of $\bigoplus_{t \in I^{\prime}} \bar{S}_{t}\left(P_{t}\right)$, where P_{t} is \mathfrak{N}_{t}-pojectrive and \bar{S}_{t} is functor: $\mathfrak{N}_{t} \rightarrow \mathfrak{Q}\left(I^{\prime}\right)$ in (6). Let M be a functor in Lemma 3.9. Then $\mathrm{M}\left(\underset{t \in I^{\prime}}{ } \bar{S}_{t}\left(P_{t}\right)\right)=\bigoplus_{i \in I^{\prime}} \mathrm{S}_{t}\left(P_{t}\right)$ from the construction of M_{t} and $\mathrm{M}\left(P^{\prime}\right)$ is its retract from the above remark. Hence, $\mathrm{M}\left(P^{\prime}\right)$ is \mathfrak{A}-projective.

Therefore, $\mathrm{M}\left(P^{\prime}\right)=\bigoplus_{i \in I} \mathrm{~S}_{i}\left(Q_{i}\right)$ with Q_{i} projective in \mathfrak{A}_{i} by Lemma 3.7. Let $I^{\prime}=$ $\left\{i_{1}, \cdots, i_{t}\right\}$. We shall show $A_{i_{k}}=\left(\mathrm{T}_{i_{k^{\prime}} \boldsymbol{i}_{k}}\left(Q_{i_{k^{\prime}}}\right)\right)_{k=k^{\prime}}^{t}=\sum_{k=k^{\prime}}^{t} \oplus \bar{S}_{i_{k}}\left(P_{i k^{\prime}}^{\prime \prime}\right)$, where $\mathrm{T}_{\boldsymbol{i}_{k^{\prime}} \boldsymbol{i}^{\prime}}$ $=I_{\mathfrak{N}_{i_{k}^{\prime}}}$ and $P_{i_{k}}^{\prime \prime}$ is $\mathfrak{N}_{i_{k}}$-projective. We obtain from Lemma 3.7 that $\mathrm{T}_{i_{k^{\prime}} i_{k-1}}\left(Q_{i_{k}{ }^{\prime}}\right)$
 Hence,

$$
\begin{aligned}
\mathrm{T}_{i_{k}^{\prime} i_{t}}\left(Q_{i_{k}^{\prime}}\right) & =\mathrm{T}_{i_{t-1} i t} \mathrm{~T}_{i_{t-2} i_{t-1}} \mathrm{~T}_{i_{k}^{\prime} i_{t-2}}\left(Q_{i_{k}^{\prime}}\right) \oplus \mathrm{T}_{i_{t-1} i_{t}}\left(P_{i_{t-1}}^{\prime}\right) \oplus P_{i_{t}}^{\prime} \\
& =\mathrm{T}_{i_{t-2} i_{t}} \mathrm{~T}_{i_{k}^{\prime} i_{t-2}}\left(Q_{i_{k}^{\prime}}\right) \oplus \mathrm{T}_{i_{t-1} i_{t}}\left(P_{i_{t-1}}^{\prime}\right) \oplus P_{i_{t}}^{\prime}
\end{aligned}
$$

from III. Repeating this argument we have $A_{\boldsymbol{i}_{\boldsymbol{k}}}=\sum_{k=k^{\prime}}^{t} \oplus \bar{S}_{i_{\boldsymbol{k}}}\left(P_{i_{k}}^{\prime}\right)$. Therefore, $\boldsymbol{P}=\sum_{k=1}^{t} \oplus A_{i_{k}}=\bigoplus_{i_{k^{\prime}} \in I^{\prime}} \mathrm{S}_{i_{\boldsymbol{k}^{\prime}}}\left(P_{i_{k}}^{\prime \prime \prime}\right)$. This completes the proof.

Proposition 3.11. Let \mathfrak{A} and \mathfrak{U}_{i} be as above. We assume $T_{i j}$ is projective preserving and satisfies (*), then for $D=\left(D_{i}\right)_{i \in I}$ in \mathfrak{A}

$$
h d D \leqq \max \left(h d D_{i}\right)+1
$$

Proof. Put $n=\max \left(h d D_{i}\right)$. Let $0 \leftarrow D \leftarrow P_{0} \leftarrow \cdots \leftarrow P_{n-1} \stackrel{d_{n}}{\longleftrightarrow} P_{n}$ be a projective resolution of D and $K_{n}=\operatorname{ker} d_{n}$. Since $n \geqq$ hd D_{i}, every component of im d_{n} is projective. Hence, K_{n} is \mathfrak{A}-projective by Lemma 3.7.

Corollary. Let A_{i}, A and $T_{i j}$ be as above. Then

$$
\operatorname{gl} \operatorname{dim} \mathfrak{A} \geqq \operatorname{gl} \operatorname{dim} \mathfrak{A}\left(I^{\prime}\right)
$$

for any subset of I^{\prime} and $\mathrm{gl} \operatorname{dim} \mathfrak{A} \leqq \max \left(\mathrm{gl} \mathrm{dim} \mathfrak{A}_{i}\right)+n-1$.
Proof. Let A be in $\mathfrak{A}\left(I^{\prime}\right)$ and $0 \leftarrow \mathrm{M}(A) \leftarrow P_{1} \leftarrow P_{2} \leftarrow \cdots$ be a projective resolution of $\mathrm{M}(A)$ in \mathfrak{Y}. Then $0 \leftarrow A \leftarrow \mathrm{~F}\left(P_{1}\right) \leftarrow \mathrm{F}\left(P_{2}\right) \leftarrow$ is a projective resolution of \mathfrak{A} in $\mathfrak{A}\left(I^{\prime}\right)$ from Proposition 3.10.

We recall that \mathfrak{A} is semi-simple if and only if every object of \mathfrak{A} is projective.
Theorem 3.12. Let \mathfrak{A}_{i} be semi-simple abelian categories and I a linearly ordered finite set. Then $\mathfrak{A}=\left[I, \mathfrak{\Re}_{i}\right]$ with $T_{i j}$ satisfying $I \sim I V$ is hereditary if and only if

$$
\mathrm{T}_{i j}(M)=\mathrm{T}_{i+1 j} \mathrm{~T}_{i i+1}(M) \oplus \mathrm{T}_{i+2 j}\left(\mathrm{~K}^{i+2}(M)\right) \oplus \cdots \oplus \mathrm{T}_{j-1 j}\left(\mathrm{~K}^{j-1}(M)\right) \oplus \mathrm{K}^{j}(M)
$$

for every object M in \mathfrak{A} for all i, where $K^{t}(M) \in \mathfrak{A}_{t}$. Furthermore, gl dim $\mathfrak{U}=1$ if and only if there exists not a zero functor $T_{i j}$, (cf. [2], Theorem 1).

Proof. The first half is clear from Lemmas 3.7 and 3.8 and Proposition 3.11. If $\mathrm{T}_{i j}$ is not a zero functor, then $\boldsymbol{A}=(A, 0)$ is not projective in $\mathrm{A}(i, \mathrm{j})$ for any \mathfrak{A} such that $\mathrm{T}_{i j}(\mathfrak{2}) \neq 0$ by Proposition 3.10. Hence, gl dim $\mathfrak{X} \geqq \operatorname{gl} \operatorname{dim} \mathfrak{Y}(i, j) \geqq 1$. If $\mathrm{T}_{i j}$ is a zero functor for all $i<j$, then $\mathfrak{Y}=\sum \oplus \mathfrak{H}_{i}$. Hence, gl dim $\mathfrak{A}=0$.

Let $\left\{R_{i}\right\}_{i \in I}$ be rings. Finally we assume that \mathfrak{N}_{i} is the abelian category of right R_{i}-modules. By [5], p. 121., Propo. 1.5 we know $U=\oplus_{i} \mathrm{~S}_{i}\left(R_{i}\right)$ is a small, projective generator in \mathfrak{A}. Put $R=[U, U]$. Let r, r^{\prime} be elements in R_{i} and $\mathrm{T}_{i j}\left(R_{i}\right)$, respectively. By r_{l}, r^{\prime}, we denote morphisms in $\left[R_{i}, R_{i}\right]$ and $\left[R_{j}, \mathrm{~T}_{i j}\left(R_{i}\right)\right]$ such that $r_{l}\left(x_{i}\right)=r x_{i}$ and $r_{l}^{\prime}\left(x_{j}\right)=r^{\prime} x_{j}$, respectively where $x_{t} \in R_{t}$. We can naturally regard $\mathrm{T}_{i j}\left(R_{i}\right)$ a left R_{i}-module by setting $\bar{r} y=\mathrm{T}_{i j}\left(r_{l}\right) y$ for any $r \in R_{i}$ and $y \in \mathrm{~T}_{i j}\left(R_{i}\right)$. Furthermore, we define $\bar{r}_{l}^{\prime} z=\psi_{i j k} \mathrm{~T}_{i k}\left(r_{l}\right)$ for any $k>j$ and $z \in \mathrm{~T}_{j k}\left(R_{j}\right)$, where we assume $\mathrm{T}_{i i}=\mathrm{I}_{\mathfrak{A}_{i}}$. Then we identify R with the set

$$
\boldsymbol{R}=\left\{\left(\begin{array}{c}
\mathrm{r}_{1} \mathrm{r}_{12} \cdots \cdots \cdots \mathrm{r}_{1 n} \\
\mathrm{r}_{2} \mathrm{r}_{22} \cdots \cdots \cdots \\
0 \\
\\
\\
\\
\\
\\
\\
\mathrm{r}_{2 n} \\
\mathrm{r}_{n}
\end{array}\right), \quad \mathrm{r}_{i j} \in \mathrm{~T}_{i j}\left(R_{i}\right), \mathrm{r}_{i} \in R_{i}\right\}
$$

Lemma 3.13. $\quad \bar{r}_{i j} \bar{r}_{j k}=\bar{r}_{i j}\left(r_{j k}\right)$ and $\bar{r}_{i j} \bar{r}_{j}=\overline{r_{i j} r_{j}}, \bar{r}_{i} \bar{r}_{i j}=\overline{r_{i} r_{i j}}$.
Proof. For any $k \geqq j$ we have $\bar{r}_{i j} \bar{r}_{j}=\psi_{i j k} \mathrm{~T}_{j k}\left(\left(r_{i j}\right)_{l}\right) \mathrm{T}_{j k}\left(\left(r_{j}\right)_{l}\right)=\psi_{i j k} \mathrm{~T}_{j k}\left(r_{i j}^{\prime} r_{l}\right)$ $=\overline{r_{i j} r}$, and

$$
\begin{aligned}
\bar{r}_{i} \bar{r}_{i j} & \left.=\mathrm{T}_{i k}\left(\left(r_{i}\right)_{l}\right) \psi_{i j k} \mathrm{~T}_{j k}\left(\left(r_{i j}\right)_{l}\right)=\psi_{i j k} \mathrm{~T}_{j k} \mathrm{~T}_{i j}\left(\left(r_{i}\right)_{l}\right) \mathrm{T}_{j k}\left(\left(r_{i j}\right) 0_{l}\right) \quad \text { (naturality of } \psi\right) \\
& =\psi_{i j k} \mathrm{~T}_{j k}\left(\mathrm{~T}_{i j}\left(\left(r_{i}\right)_{l}\right)\left(r_{i j}\right)_{l}\right) \\
& =\psi_{i j k} \mathrm{~T}_{j k}\left(\left(r_{i} r_{i j}\right)_{l}\right) \quad \text { (definition of } R_{i} \text { module } \mathrm{T}_{i j}\left(R_{i}\right) . \\
& =\bar{r}_{i} r_{i j} . \\
\bar{r}_{i j} \bar{r}_{j k} & \left.=\psi_{i j t} \mathrm{~T}_{j t}\left(\left(r_{i j}\right)_{l}\right) \psi_{i k l} \mathrm{~T}_{k t}\left(r_{j k}\right)_{l}\right) \\
& \left.=\psi_{i j t} \psi_{j k l} \mathrm{~T}_{k t}\left(\mathrm{~T}_{j k}\left(r_{i j}\right)_{l}\right) \mathrm{T}_{k t}\left(\left(r_{j k}\right)_{l}\right) \quad \text { (naturality of } \psi\right) .
\end{aligned}
$$

On the other hand we put

$$
\begin{aligned}
r_{i k}= & \left.\bar{r}_{i j}\left(r_{j k}\right)=\left(\psi_{i j k} \mathrm{~T}_{j k}\left(r_{i j}\right)_{l}\right)\right)\left(r_{j k}\right)\left(r_{i k}\right)_{l}: R_{k} \xrightarrow{\left(r_{j k}\right)_{l}} \mathrm{~T}_{j k}\left(R_{j}\right) \\
& \xrightarrow{\mathrm{T}_{j k}\left(r_{i j}\right)} \mathrm{T}_{j k} \mathrm{~T}_{i j}\left(R_{i}\right) \xrightarrow{\psi} \mathrm{T}_{i j}\left(R_{i}\right) . \quad \text { Hence }, \\
\bar{r}_{i k}= & \left(\psi_{i j t} \mathrm{~T}_{k t}\right)\left(\psi_{i j k} \mathrm{~T}_{j k}\left(\left(r_{i j}\right)_{l}\right)\left(r_{j k}\right)_{l}\right) .
\end{aligned}
$$

Therefore, $\overline{\boldsymbol{r}}_{i j} \bar{r}_{j \boldsymbol{k}}=\overline{\overline{\boldsymbol{r}}_{i j}\left(r_{j \boldsymbol{k}}\right)}$ by the assumption III.
If we define a multiplication on \boldsymbol{R} by setting

$$
\begin{equation*}
r_{i j} r_{j k}=\bar{r}_{i j}\left(r_{j k}\right) \tag{*}
\end{equation*}
$$

we have from [5], p. 104, Theorem 4.1 and p. 106, Theorem 5.1
Theorem 3.14. Let $\mathscr{S}^{R_{i}}$ be the abelian category of right R_{i}-module. Then $\left[I, \mathscr{S S}_{i}{ }^{R_{i}}\right.$ is equivalent to the abelian category of a left R-module, where

$$
R=\left(\begin{array}{ccc}
R_{1} \mathrm{~T}_{12}\left(R_{1}\right) \cdots \cdots \cdot \mathrm{T}_{1 n}\left(R_{1}\right) \\
R_{2} \cdots \cdots \cdot \mathrm{~T}_{2 n}\left(R_{2}\right) \\
\ddots & \ddots & \vdots \\
0 & \ddots & \vdots \\
& & \\
R_{n}
\end{array}\right) \text { with product }\left({ }^{* *}\right)
$$

And $\mathrm{T}_{i j}\left(M_{i}\right) \approx M \otimes \mathrm{~T}_{i j}\left(R_{i}\right)$ for any $M_{i} \in A_{i}\left({ }^{* *}\right)$ is given by an $R_{i}-R_{j}$ homomorphism $\psi_{i k} \mathrm{~T}_{i j}\left(R_{i}\right) \bigotimes_{R_{j}} \mathrm{~T}_{j k}\left(R_{j}\right) \rightarrow \mathrm{T}_{i k}\left(P_{i}\right)$ (cf. [2], Theorem 1).

Osaka City University

References

[1] S. Eilenberg, A. Rosenberg and D. Zelinsky: On the dimension of modules and algebras VIII, Nagoya Math. J. 12 (1957), 71-93.
[2] M. Harada: Hereditary semi-primary rings and triangular matrix rings, ibid. 27 (1966), 463-484.
[3] -: On semi-primary PP-rings, Osaka J. Math. 2 (1965), 153-161.
[4] -: QF-3 and semi-primary PP-rings, I, II, ibid. 2 (1965), 357-368 and 3 (1966), 21-27.
[5] B. Mitchell: Theory of Categories, Academic Press, New York and London, 1965.

