ON SEMI-PRIMARY PP-RINGS

Manabu HARADA

(Received March 20, 1965)

This paper is a supplement to the author [2]. Let Λ be a ring with identity. If every principal left ideal in Λ is Λ-projective, then Hattori and Nakano called Λ a left PP-ring in [3], [4]. Nakano and Chase ([1], [4]) showed that if Λ is a semi-primary left PP-ring, then Λ is a generalized triangular matrix ring. The author has defined a generalized triangular matrix ring over semi-simple rings with bi-linear mappings $\varphi_{i, k}{ }^{j}$ in [2] and found a criterion of semi-primary hereditary ring.

In §1 we shall use the same argument and give a similar criterion of a semi-primary left PP-ring. Using this criterion we shall show that Λ is a left PP-ring if and only if Λ is a right PP-ring, provided Λ is semi-primary.

As we see in [2], some results were obtained from monomorphic mapping $\varphi_{i, k}{ }^{j}$ in a hereditary ring. Thus, in $\S 2$, we define a partially
 that if Λ is a semi-primary partially PP-ring with nilpotency n, then Λ is isomorphic to a generalized triangular matrix ring over semi-simple rings with degree n and each component of it is uniquely determined up to isomorphism. From this fact we note that some results in [2] are generalized in a case of partially PP-ring.

In this paper we only consider semi-primary rings and semi-simple rings with minimum conditions.

1. PP-rings

We recall the definition of a generalized taiangular matrix ring (briefly g.t.a.matrix ring).

Let $\left\{R_{1}, R_{2}, \cdots, R_{n}\right\}$ be a set of semi-simple rings and $\left\{M_{i, j}\right.$ for $\left.i>j\right\}$ a set of R_{i}, R_{j}-modules. With a bi-linear mapping $\varphi_{i, k}^{{ }^{j}}: M_{i, j} \otimes_{R_{j}} M_{j, k} \rightarrow M_{i, k}$ we define a g.t.a.matrix ring by the usual way. We denote it by $T_{n}\left(R_{i} ; M_{i, j}\right)$ and n is called the degree of it:

$$
\Lambda=\left(\begin{array}{lll}
R_{1} & 0 \cdots \cdots \\
M_{2,1} & R_{2} & 0 \cdots \\
\cdots \cdots \cdots & \\
M_{n, n-1} M_{n, n-2} \cdots & R_{n}
\end{array}\right)=T_{n}\left(R_{i} ; M_{i, j}\right)
$$

(see [2], § 2).
The following lemmas were given in [1] and [4]. We shall give here simple proofs, one of which is the same as in [1], Theorem 4.2 and will be used later.

Lemma 1. Let Λ be a ring and M a left Λ-module. If Λm is Λ projective and $e m=m$ for $m \in M$ and an idempotent e in Λ, then there exists an idempotent f in Λ such that ef $=f e=f, \Lambda f \approx \Lambda m$ and fm $=m$. Especially, e\em is e\e-projective.

Proof. Since $\Lambda e \rightarrow \Lambda m \rightarrow(0)$ splits, we obtain $\Lambda e=\Lambda f \oplus \Lambda f^{\prime}$ and $\Lambda f \approx$ $\Lambda m, f m=m$. Hence, $e \Lambda e m=e \Lambda m \approx e \Lambda f=e \Lambda e f e$ is a direct summand of $e \Lambda e$.

Lemma 2. 1) Every semi-primary left $P P$-ring is a g.t.a.matrix ring.
2) Let $\Lambda=\left(\begin{array}{ll}R & 0 \\ M & S\end{array}\right)$ be a g.t.a.matrix ring, where R is semi-simple, S is a semi-primary left $P P$-ring and M is a S, R-module. If every principal left S-module in M is S-projective, then Λ is a left $P P$-ring.

Proof. 1) Let $N=N(\Lambda)$ be the radical of Λ. We assume $N^{s} \neq(0)$, $N^{s+1}=(0)$. Then N^{s} is completely reducible and hence, N^{s} is Λ-projective by the assumption; $N^{s} \approx \sum \oplus \Lambda e_{i}$, where e_{i} is a primitive idempotent. Then (0) $=\Sigma \oplus N e_{i}$. Let $\left\{e_{i}\right\}$ be a complete set of mutually orthogonal primitive idempotents such that $1=\sum_{i=1}^{n} e_{i}$ and $N e_{t}=(0)$ for $i \leq t \leq n$ and $N e_{i} \neq(0)$ for $j<i$. Let $E=e_{1}+\cdots+e_{i-1}$. Since e_{j}, e_{t} for $j<i \leqslant t, E \Lambda(1-E)$ $=E N(1-E)=(0)$. It is clear that $\left.\Lambda=T_{2}(E \Lambda E,(1-E) \Lambda(1-E) ;(1-E) \Lambda E)\right)$ and that $(1-E) \Lambda(1-E)$ is semi-simple and $E \Lambda E$ is a left PP-ring by Lemma 1. Hence, we can prove 1) by induction on number of idempotents n.
2) Let $\Lambda=T_{2}(R, S ; M)$ and $m \in M, r \in R$. We put $R r=R e, e^{2}=e$. Then $M r+S m=M e \oplus S m(1-e)$. Let $x=T_{2}(r, s ; m)$. Then $\Lambda x=T_{2}(R r, R s$; $M r+S m)=\Lambda T_{2}(e, 0 ; 0) \oplus T_{2}((0),(0) ; S m(1-e)) \oplus T_{2}((0),(0) ; S s) . \quad$ Since $S m(1-e), S s$ are S-projective, the last two modules are Λ-projective by [2] Lemma 4. Hence Λx is Λ-projective.

Proposition 1. Λ is a semi-primary left $P P$-ring if and only if Λ
is a g.t.a.matrix ring $T_{n}\left(R_{i} ; M_{i, j}\right)$ over semi-simple rings R_{i} with the following conditions;

1) $\varphi_{i, k}^{j}: M_{i, j} \otimes_{R_{j}} R_{j} x_{j, k} \rightarrow M_{i, j} x_{j, k}$ is monomorphic for all $i>j>k$ and $x_{j, k} \in M_{j, k}$.
2) For any system $\left\{x_{j+1, j} \cdots, x_{i, j} ; x_{k, j} \in M_{k, j}, i>j\right\} \quad M_{i, j+1} C\left({ }_{j+1, j}\right)+$ $\cdots+M_{i, i-1} C\left(x_{i-1, j}\right)$ is a direct sum in $M_{i, j}$, where $R_{k} x_{k, j}=C\left(x_{k, j}\right) \oplus$ $\left(\sum_{s=j+1}^{k-1} M_{k, s} x_{s, j}\right) \cap R_{k} x_{k, j}$ as a left $R_{k}-$ module.

Proof. We use the same argument as in the proof of [2], Theorem 1. By induction argument and Lemma 2 it is sufficient to show that every principal submodule of

$$
\left(\begin{array}{c}
0 \\
M_{2,1} \\
\vdots \\
M_{n, 1}
\end{array}\right)
$$

is $\Gamma\left(=T_{n-1}\left(R_{2}, \cdots, R_{n} ; M_{i, j}, j \neq 1\right)\right)$-projective.
Let

$$
x=\left(\begin{array}{c}
x_{2,1} \\
\vdots \\
x_{n, 1}
\end{array}\right) .
$$

Then

$$
\Gamma x=\left(\begin{array}{l}
R_{2} x_{2,1} \\
M_{3,2} x_{2,1}+R_{3} x_{3,1} \\
\cdots \cdots \cdots \\
\cdots \cdots \\
\cdots \cdots \\
M_{n, 2} x_{2,1}+\cdots+R_{n} x_{n, 1}
\end{array}\right) \supset N^{\prime} x=\left(\begin{array}{l}
0 \\
0 \\
M_{3,2} x_{2,1} \\
\cdots \cdots \\
\cdots \cdots \\
\cdots \cdots \\
M_{n, 2} x_{2,1}+\cdots+M_{n, n-1} x_{n-1,1}
\end{array}\right)
$$

and

$$
x \Gamma / N^{\prime} x=\left(\begin{array}{c}
C\left(x_{2,1}\right) \\
C\left(x_{3,1}\right) \\
\vdots \\
C\left(x_{n, 1}\right)
\end{array}\right)
$$

where $N^{\prime}=N(\Gamma), C\left(x_{2,1}\right)=R_{2} x_{2,1}$. Hence, Γx is Γ-projective if and only if

$$
\Gamma x \approx \Gamma\left(\begin{array}{l}
x_{2,1} \\
0 \\
\vdots \\
\vdots \\
0
\end{array}\right) \oplus \Gamma\left(\begin{array}{l}
0 \\
C\left(x_{3,1}\right) \\
0 \\
\vdots \\
0
\end{array}\right) \cdots \oplus \Gamma\left(\begin{array}{l}
0 \\
0 \\
\vdots \\
\vdots \\
C\left(x_{n, 1}\right)
\end{array}\right)
$$

and

$$
\Gamma \otimes\left(\begin{array}{l}
0 \\
0 \\
\vdots \\
\dot{C}\left(x_{i, 1}\right) \\
\vdots \\
0
\end{array}\right) \rightarrow \Gamma
$$

is monomorphic. Which is equivalent to 2) and $\left.1^{\prime}\right) \varphi_{i, 1}^{{ }_{1}} M_{i, j} \otimes C\left(x_{j, 1}\right) \rightarrow$ $M_{i, 1}$ is monomorphic. However if we replace $\left\{x_{2,1}, \cdots, x_{n, 1}\right\}$ by $\{0,0, \cdots$, $\left.x_{i, 1}, \cdots, x_{n, 1}\right\}$, the $C\left(x_{i 1}\right)=R_{i} x_{i, 1}$. Hence, we have 1).

Remark 1. Let e be a sum of the set of non-isomorphic primitive idempotents in Λ. From [3], Corollary 1 we know that Λ is hereditary if and only if so is $e \Lambda e$. However, it is not true for a left PP-ring as we see in the following example. (Only if part is true by Lemma 1).

Example. Let K be the field of real numbers. M, N and L be $K-$ vector spaces with basis $(u, v),(a, b)$ and (t, s), respectively. We define a bi-linear mapping $\varphi: M \otimes N \rightarrow L . \quad M \otimes N=u \otimes(K a+K b) \oplus v \otimes(K a+K b)$. $\varphi\left(u(a x+b y)+v\left(a x^{\prime}+b y^{\prime}\right)\right)=t\left(x+y^{\prime}\right)+s\left(y-x^{\prime}\right)$. Then we can easily check that φ is monomorphic on $M \otimes K n$ for any $n \neq 0$ in N. However, $\varphi(u(a+b)+v(a-b))=0$ and $u(a+b)+v(a-b) \neq 0$.

$$
\text { Let } \Lambda=\left(\begin{array}{ccc}
K & 0 & 0 \\
N \\
N & K_{2} & 0 \\
L & (M, M) & K
\end{array}\right) \text { and } e=\left(\begin{array}{cc}
1 & 0 \\
& e_{1,1} \\
0 & 1
\end{array}\right) . \quad \text { Then } e \Lambda e=\left(\begin{array}{lll}
K & 0 & 0 \\
N & K & 0 \\
L & M & K
\end{array}\right) \text {. }
$$

From Proposition 1 and the above observation we know that $e \Lambda e$ is a left PP-ring. Let

$$
x=\left(\begin{array}{ccc}
0 & 0 & 0 \\
\binom{a}{b} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

in $\Lambda . \quad(M, M) \otimes K_{K_{2}}\binom{a}{b}=(M, M) \otimes\binom{N}{N}$. Since φ is not monomorphic on $M \otimes N, \tilde{\mathcal{P}}:(M, M) \underset{K_{2}}{\otimes} K_{2}\binom{a}{b} \rightarrow L$ is not monomorphic, and hence, Λ is not a left PP-ring.

Remark 2. The above example shows that the endomorphism ring of finitely generated projective module over a PP-ring is not, in general, a PP-ring, (cf. [2], Theorem 7). Because $\Lambda=\operatorname{Hom}_{e \Lambda \Lambda}^{r}(\Lambda e, \Lambda e)$ and Λe is a finitely generated $e \Lambda e$-projective module.

Lemma 2. Let Λ be a g.t.a.matrix ring with property 1) and $M_{i, j} \ni y$. We assume $R_{i} y \approx R_{i} e$ by a correspondence $y \leftrightarrow e$ and $e^{2}=e . \quad$ If $x y=0$ for $x \in M_{k, i}$, then $x e=0$.

Proof. $\quad M_{k, i} \otimes_{R_{i}} R_{i} y \approx M_{k, i} \otimes \otimes_{R_{i}} R_{i} e$ is a direct summand of $M_{k, i} \approx M_{k, i} \otimes_{R_{i}} R_{i}$. Hence, $x \otimes y \approx x \otimes e=x e \otimes 1 \approx x e$. Since $M_{k, i} \otimes_{R_{i}} R_{i} y \rightarrow M_{k, j}$ is monomorphic, $x e=0$.

From the example given in [1] we know that a left PP-ring is not necessarily to be a right PP-ring. However, we have

Theorem 1. Let Λ be semi-primary. If Λ is a left PP-ring, then Λ is a right $P P$-ring.

Proof. We shall show that Λ satisfies the following conditions 1^{\prime}) and 2^{\prime}) which are replaced left by right in Proposition 1.
$\left.1^{\prime}\right) \quad \varphi_{i, k}^{j}: x_{i, j} R_{j} \otimes_{R_{j}} M_{j, k} \rightarrow M_{i, k}$ is monomorphic.
2^{\prime}) For any system $\left(x_{j, i}, x_{j, i+1}, \cdots, x_{j, j-1}\right)$
$D\left(x_{j, j-1}\right) M_{j-1, i}+D\left(x_{j, j-2}\right) M_{j-2, i}+\cdots+D\left(x_{j, i+1}\right) M_{i+1, i}$ is a direct sum in $M_{j, i}$, where $x_{j, k} R_{k}=D\left(x_{j, k}\right) \oplus\left(\sum_{t=k+1}^{j-1} x_{j, t} M_{t, k}\right) \cap x_{j, k} R_{k}$ as a right R_{k}-module.
$\left.1^{\prime}\right):$ We assume $\varphi_{j, s}: x_{j, k} R_{k} \otimes M_{k, s} \rightarrow x_{j, k} M_{k, s}$ is not monomorphic. Then there were elements $x=x_{j, k}$ and $m \in M_{k, s}$ such that $x \otimes m \neq 0$ in $x_{j, k} R_{k} \otimes M_{k, s}$ and $x m=0 . \quad M_{k, s}=R m \oplus N$ and $M_{j, k}=x R_{k} \oplus N^{\prime}$ as left and right R_{k}-module, respectively. Then $M_{j, k} \otimes M_{k, s}=x R_{k} \otimes R_{k} m \oplus N^{\prime} \otimes R_{k} m \oplus$ $x R_{k} \otimes N \oplus N^{\prime} \otimes N$. Hence $x \otimes m \neq 0$ in $M_{j, k} \otimes R_{k} m$, which contradicts 1) of Proposition 1. Next, we shall show that Λ satisfies 2^{\prime}). Let $\Lambda=T_{n}\left(R_{i} ; M_{i, j}\right) ; R_{i}$ simple ring. We prove 2^{\prime}) by induction on degree n. If $n=1$, then Λ is simple, and hence, it is clear. From Lemma 1 and the induction hypothesis $\Gamma_{i}=T_{n-1}\left(R_{1}, \cdots{ }_{v}^{i}, R_{n} ; M_{k, j}, k \neq i, j \neq i\right)$ satisfies 2^{\prime}). Hence it is sufficient to consider a system

$$
\left\{x_{n, 2}, x_{n, 3}, \cdots, x_{n, n-1} ; x_{n, j} \in M_{n, j}\right\} .
$$

We shall show a sum $x_{n, n-1} M_{n-1,1}+D\left(x_{n, n-2}\right) M_{n-2,1} \cdots+D\left(x_{n, 2}\right) M_{2,1}$ is a direct sum. If $D\left(x_{n, i}\right)=0$ for some i, then for $\left\{x_{n, 2}, \cdots, i, x_{n, n-1}\right\}$ in $\Gamma_{i} x_{n, n-1} M_{n-1,1}$ $\oplus D^{\prime}\left(x_{n, n-2}\right) M_{n-2,1} \oplus \cdots{ }_{v} \cdots \oplus D^{\prime}\left(x_{n, 2}\right) M_{2,1}$, where $D^{\prime}\left(x_{n, j}\right)$ is a direct summand in $M_{n, j}$ as in 2^{\prime}). Since $D^{\prime}\left(x_{n, j}\right) \supseteq D\left(x_{n, j}\right)$, we obtain $\left.2^{\prime}\right)$. Hence, we assume $D\left(x_{n, i}\right) \neq(0)$ for all i. If the above sum were not a direct sum then there were an element $0=x_{n, n-1}^{\prime} m_{n-1,1}+\cdots+x_{n, 2}^{\prime} m_{2,1}$ such that some $x_{n, j}^{\prime} m_{j, 1} \neq 0$, where $x_{n, j}^{\prime} \in D\left(x_{n, j}\right)$. By the same reason as above, we may assume $x_{n, j}^{\prime} m_{j, 1} \neq 0$ for all j.

Let $x_{n, i}^{\prime} R_{i} \approx e_{i} R_{i}$ by a correspondence $\cdot x_{n, i}^{\prime} \leftrightarrow e_{i}$. Then $x_{n, i}^{\prime} e_{i}=x_{n, i}^{\prime}$. Hence, we may assume $0 \neq m_{i, 1}=e_{i} m_{i, 1}$. We have, from Lemma 1, an idempotent f_{i} such that $R_{i} m_{i, 1} \approx R_{i} f_{i}$ and $f_{i} e_{i} f_{i}=f_{i} e_{i}, f_{i} m_{i, 1}=m_{i, 1}$. Since $x_{n, i}^{\prime} R_{i} \approx e R_{i}, x_{n, 1}^{\prime} f_{i} R_{i} \approx f_{i} R_{i}$. Thus, we may assume that $0 \neq x_{n, i}^{\prime} f_{i}=x_{n, i}^{\prime}$, $f_{i} m_{i, 1}=m_{i, 1}$ and $x_{n, i}^{\prime} R_{i} \approx f_{i} R_{i}, \mathrm{R}_{i} m_{i, 1} \approx R_{i} f_{i}$. Hence, the right annihilator
$r\left(x_{n, i}^{\prime}\right)$ of $x_{n, i}^{\prime}$ in R_{i} is equal to $\left(1-f_{i}\right) R_{i}$. We consider a system $\left\{m_{2,1}, m_{3,1}, \cdots, m_{n-1,1}\right\}$ as in 2). If $C\left(m_{i, 1}\right)=(0)$, then there exist elements $m_{i, j} \in M_{i, j}$ such that $m_{i, 1}=m_{i, 2} m_{2,1}+\cdots+m_{i, i-1} m_{i-1,1}\left(m_{i, j}=m_{i, j} f_{j}\right)$. Hence, (*) $0=x_{n, n-1}^{\prime} m_{n-1,1}+\cdots+x_{n, i+1}^{\prime} m_{i+1,1} i^{i}+\left(x_{n, i}^{\prime} m_{i, i-1}+x_{n, i-1}^{\prime}\right) m_{i-1,1}$ $+\left(x_{n, i}^{\prime} m_{i, 2}+x_{n, 2}^{\prime}\right) m_{2,1}$.
Again we consider a system $\left\{x_{n, n-1}^{\prime}, \cdots, x_{n, i-1}^{\prime},\left(x_{n, i-1}^{\prime}+x_{n, i}^{\prime} m_{i, i-1}\right), \cdots\right.$, $\left.\left(x^{\prime}{ }_{n, 2}+x^{\prime}{ }_{n, i} m_{i, 2}\right)\right\}$ in Γ_{i}. Since $x_{n, t}^{\prime} R_{t} \cap\left(\sum_{k=t+1}^{n-1} x_{n, k}^{\prime} M_{k, t}\right) \subseteq x_{n, t}^{\prime} R_{t} \cap\left(\sum_{k=t+1}^{n-1} x_{n, k} M_{k, t}\right)$ $=(0)$ for $t>i, D^{\prime}\left(x_{n, t}^{\prime}\right)=x_{n, t}^{\prime} R_{t}$ for $t>i$. For $\left(x_{n, t}^{\prime}+x_{n, i}^{\prime} m_{i, t}\right) r \in$ $\left(x_{n t}^{\prime}+x_{n, i}^{\prime} m_{i, t}\right) R_{t} \cap\left(\left(x_{n, t+1}^{\prime}+x_{n, i}^{\prime} m_{i, t+1}\right) M_{t+1, t}+\cdots+\left(x_{n, i-1}^{\prime}+x_{n, i}^{\prime} m_{i, i-1}\right) M_{i-1, t}+\right.$ $\left.x^{\prime}{ }_{n, i+1} M_{i+1, t}+\cdots+x^{\prime}{ }_{n, n-1} M_{n-1, t}\right)(t<i)$, we have $x^{\prime}{ }_{n, t} r \in D\left(x_{n, t}\right) \cap\left(\sum_{k=t+1}^{n-1} x_{n, k} M_{k, t}\right)$ $=(0)$. Hence, $r \in r\left(x_{n, t}^{\prime}\right)=\left(1-f_{t}\right) R_{t}$. Therefore, $x_{n, i}^{\prime} m_{i, t} r=0$, which means $D^{\prime}\left(x_{n, t}^{\prime}+x_{n, i}^{\prime} m_{i, t}\right)=\left(x_{n, t}^{\prime}+x_{n, i}^{\prime} m_{i, t}\right) R_{t}$. From the induction hypothesis we know that $\left(^{*}\right)$ is a direct sum. Hence, $x_{n, n-1}^{\prime} m_{n-1,1}=0$ or $\left(x_{n, i}^{\prime} m_{i, 2}+\right.$ $\left.x_{n, 2}^{\prime}\right) m_{2,1}=0$. From the latter and Lemma 3 we obtain $0=x_{n, i}^{\prime} m_{i, 2} f_{2}+$ $x_{n, 2}^{\prime} f_{2}=x_{n, i}^{\prime} m_{i, 2}+x_{n, 2}^{\prime}$, which contradicts $D\left(x_{n, 2}^{\prime}\right) \neq(0)$. In either case we have a contradiction and hence, $C\left(m_{i, 1}\right) \neq(0)$ for all i. Therefore, we have from 2)

$$
M_{n, 2} m_{2,1}+M_{n, 3} C\left(m_{3,1}\right)+\cdots+M_{n, n-1} C\left(m_{n-1,1}\right)
$$

is a direct sum. Hence,

$$
\begin{aligned}
0= & x_{n, 2}^{\prime} m_{2,1}+\cdots+x_{n, n-1}^{\prime} m_{n-1,1} \\
= & \left(x_{n, 2}^{\prime}+x_{n, n-1}^{\prime} t_{n-1,2}+\cdots+x_{n, 3}^{\prime} t_{3,2}\right) m_{2,1} \\
& +\left(x_{n, 3}^{\prime}+\cdots\right) m_{3,1}^{\prime} \\
& \cdots \cdots \cdots \\
& \cdots \cdots \cdots
\end{aligned}
$$

$$
+x_{n, n-1}^{\prime} m_{n-1,1}^{\prime}
$$

where $m_{i, 1}=m_{i, 1}^{\prime}+t_{i, 2} m_{2,1}+\cdots+t_{i, i-1} m_{i-1,1}$ and $t_{i, j} e_{j}=t_{i, j}, m_{i, 1}^{\prime} \in C\left(m_{i, 1}\right)$. Hence, $x_{n, 2}^{\prime}=-\left(x_{n, n-1}^{\prime} t_{n-1,2}+\cdots+x_{n, 3}^{\prime} t_{3,2}\right)$, which contradicts the fact $D\left(x_{n, 2}^{\prime}\right) \neq(0)$. We have proved the theorem.

2. Partially PP-rings

We found a criterion of semi-primary PP-rings in Proposition 1. However, we need only the condition 1) in this section.

Let Λ be a semi-primary ring such that $\Lambda / N=\sum \oplus S_{i} ; S_{i}$ is a simple ring. Let $1=\sum_{i} E_{i}, E_{i}^{2}=E_{i}$ and E_{i} is the identity is S_{i} modulo N. We assume for idempotents $E_{i}^{\prime}, E_{j}^{\prime}$ that $E_{i} \approx E_{i}^{\prime}, E_{j} \approx E_{j}^{\prime}$. Let x be in $E_{i} \Lambda E_{j}$.

Since $\Lambda E_{j} \approx \Lambda E_{j}^{\prime}$, there exists y^{\prime} in $E_{i} \Lambda E_{j}^{\prime}$ such that $\Lambda x \approx \Lambda y^{\prime}$. Furthermore, since $E_{i} \Lambda \approx E_{i}^{\prime} \Lambda$, we have $t \in E_{i}^{\prime} \Lambda E_{i}, u \in E_{i} \Lambda E_{i}^{\prime}$ such that $u t=E_{i}$. If we put $y=t y^{\prime} \in E_{i}^{\prime} \Lambda E_{j}^{\prime}$, then $\Lambda y=\Lambda t y^{\prime}=\Lambda E_{i} y^{\prime}=\Lambda y^{\prime} \approx \Lambda x$, since $\Lambda t \supseteq$ $\Lambda E_{i} \supseteq \Lambda t$. Hence, if Λx is Λ-projective for every x in $E_{i} \Lambda E_{j}$, then Λy is Λ-projective for every y in $E_{i}^{\prime} \Lambda E_{j}^{\prime}$.

Thus, we can define a partially PP-ring as follows :
Let Λ and E_{i} be as above. If Λx is Λ-projective for all $x \in E_{i} \Lambda E_{j}$ $(i, j=1, \cdots, n)$, then we call Λ a partially $P P$-ring.

From Lemma 1, we obtain
Lemma 4. Let Λ be a partially PP-ring and e an idempotent. Then e Λe is a partilaly $P P$-ring.

Proposition 2. Λ is a partially $P P$-ring if and only if Λ is a g.t.a. matrix ring $T_{n}\left(S_{i} ; M_{i, j}\right)$ over simple rings S_{i} with property 1) in Proposition 1).

Proof. First we shall show that a partially PP-ring is a g.t.a. matrix ring. Let $1=\sum_{i, j=1}^{m, \rho_{i}} e_{i, j}$, where $\left\{e_{i, j}\right\}$ is a complete set of primitive idempotents. Let $N^{n}=(0), N^{n-1} \neq(0)$. Then there exist primitive idempotents e, f such that $(0) \neq e N^{n-1} f \subset E_{i} \Lambda E_{j}$, where $e \leqslant E_{i}, f \leqslant E_{j}$. Hence, Λx is Λ-projective for $0 \neq x \in e N^{n-1} f$. Since $\Lambda x \approx \sum \oplus \Lambda e_{\kappa, 1}$ and $N x=(0)$, there exists a primitive idempotent $e_{\kappa, 1}$ such that $N e_{\kappa, 1}=(0)$. Then we can prove similarly to the proof of Lemma 2 that $\Lambda \approx T\left(R_{i} ; M_{i, j}\right) ; R_{i}$ semi-simple. Hence, the proposition is an immediate consequence from the next lemma.

Lemma 5. Let Λ be a g.t.a.matrix ring. $\quad T_{k}\left(S_{i} ; M_{i, j}\right)$ over simple
 monomorphic for every i, j, k and $x \in M_{j, k}$.

Proof. It is clear from the proof of Proposition 1.
Remark 3. From the first half of the proof of Theorem 1, Λ is a partially PP-ring if $x \Lambda$ is Λ-projective for every $x \in E_{i} \Lambda E_{j}$.

Remark 4. We can show by examples that the set of semi-primary hereditary ring \subset that of PP-rings \subset that of partially PP-rings.

Let Λ be a partially PP-ring and $1=\sum_{i, j=1}^{n, \rho_{i}} e_{i, j}$ as in the proof of Proposition 2. Since we can find an idempotent $e_{n, 1}$ such that $N e_{n, 1}=(0)$, we may assume $N e_{p_{1,1}}=N e_{\boldsymbol{p}_{1}+1,1}=\cdots=N e_{n_{, 1}}=(0)$ and $N e_{i, 1} \neq(0)$ for $i<p$. Then Λ is isomorphic to $\left(\begin{array}{ll}S_{1} & 0 \\ M_{1} & R_{1}\end{array}\right)$ as in the proof of Lemma 2. S_{1} is a
partially PP-ring by Lemma 4. After rearraging primitive idempotents $e_{p_{2}, 1}, \cdots, e_{p_{1}-1,1}$ such that $N\left(S_{1}\right) e_{\phi_{2,1}}=\cdots=N\left(S_{1}\right) e_{r_{1^{-1,1}}}=(0)$ and $N\left(S_{1}\right) e_{i_{1}} \neq(0)$ for $i<p_{2}$, we have

$$
\Lambda=\left(\begin{array}{lll}
S_{2} & & 0 \\
M_{1} & R_{2} & \\
M_{2} & M_{3} & R_{1}
\end{array}\right) ; \begin{gathered}
S_{2} \text { is a partially PP-ring and } R_{1}, \\
R_{2} \text { are semi-simple. }
\end{gathered}
$$

Furthermore, $M_{2} f \neq(0)$ for any primitive idempotent f in R_{2}. Repeating this argument we know that $\Lambda \approx T_{n^{\prime}}\left(R_{i} ; M_{i, j}\right)$ over semi-simple rings R_{i} and $M_{i+1, i} f_{i} \neq(0)$ for any primitive idempotent f_{i} in R_{i}.

The following theorem and corollary are generalizations of [2], Theorem $4^{\prime \prime \prime}$ and Proposition 5.

Theorem 2. Let Λ be a semi-primary partially $P P$-ring and N^{n-1} $\neq(0), N^{n}=(0)$. Then Λ is isomorphic to a g.t.a.matrix ring $T_{n}\left(R_{i}, M_{i, j}\right)$ over semi-simple rings R_{i} with degree n. Furthermore, $M_{i, j} \supseteq M_{i, i-1} M_{i-1, i-2}$ $\cdots M_{j+1, j} f_{j} \neq(0)$ for any idempotent f_{j} in R_{j} and for all i.

Proof. From the above argument we have $\Lambda=T_{m}\left(R_{i} ; M_{i, j}\right)$ and $M_{i+1, i} f_{i} \neq(0)$ for all primitive idempotent f_{i} in R_{i}. Let $L=M_{i, i-1} \cdots$ $M_{j+1, j}$. We assume that $L f_{j} \neq(0)$ for any primitive idempotents f_{j} in R_{j}. There exist $m \in M_{i j-1}$ and f_{j} such that $f_{j} m f_{j-1} \neq 0$ and $R_{j} f_{j} \approx R_{j} f_{j} m f_{j-1}$. Since $L f_{j} \neq(0), L M_{j, j-1} \supseteq L f_{j} m f_{j-1} \neq(0)$ by Lemma 3. Thus, we can prove by induction $M_{i^{\prime}, i^{\prime}-1} \cdots M_{j, j-1} f_{j-1} \neq(0)$ for all i^{\prime}. Therefore, (0) \neq $M_{m, m-1} \cdots M_{2,1} \subseteq N^{m-1}$. Hence, $m-1<n$. Since $N^{n}=(0), m \geqslant n$. Hence, $n=m$.

Corollary. Let Λ be as above. Then

$$
n=\operatorname{gl} \cdot \operatorname{dim}\left(\Lambda / N^{2}\right)=l(\Lambda)
$$

where $l(\Lambda)$ is the maximal length of connected sequence of primitive idempotents (see [2]).

Proof. From [2], Proposition 4 we know $n \leqslant l(\Lambda)=\operatorname{gl} . \operatorname{dim}\left(\Lambda / N^{2}\right)$. On the other hand $\Lambda \approx T_{n}\left(R_{i} ; M_{i, j}\right)$ by Theorem 2. Hence $n \geqslant l(\Lambda)$.

Remark 5. We know from Theorem 2 that $n\left(f_{i}\right)=n-i+1$, where $n(f)$ is an integer m such that $N^{m-1} f \neq(0), N^{m} f=(0)$, (see [2]).

In the expression of Λ as a g.t.a.matrix ring in Theorem 2 the set of primitive idempotents in R_{j} consists of those f_{i} such than $n\left(f_{i}\right)$ $=n-i+1$. Hence, $R_{i}, M_{k, j}$ in $T_{n}\left(R_{i}, M_{k, j}\right)$ are uniquely determined up to isomorphism.

By making use of the same argument as in the proof of [2], Proposition 8 we have

Proposition 3. Let Λ be an indecomposable semi-primary partially PP-ring. Then the center K of Λ is a field. If $\Lambda \underset{K}{\otimes} L$ is a semi-primary partially PP-ring for every extension field L of K, then Λ / N is separable over K.

Remark 6. The converse is not true in general. In the example after Proposition 1 we obtain Λ / N is separable over K. However if C is the field of complex numbers, then φ is not monomorphic on $(M \otimes C) \otimes_{c}(a+b i)$.

Remark 7. Proposition 10 in [2] is valid for a semi-primary PPring from Theorem 2. Furthermore, all results in [2], $\S 5$ are true for a semi-primary PP-ring by a slight change of proof.

Osaka City University

References

[1] S. U. Chase, A generalization of the ring of triangular matrices, Nagoya Math. J. 18 (1961), 13-25.
[2] M. Harada, Semi-primary hereditary rings and triangular matrix rings, to appear in Nagoya Math. J.
[3] A. Hattori, A foundation of torsion theory for modules over general rings, Nagoya Math. J. 17 (1960) 147-158.
[4] T. Nakano, A nearly semi-simple ring, Commentarii Mathematici Universitatis Sancti Pauli 7 (1959) 27-33.

