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Let G be a 4-fold transitive group on Q={1,2, ---,n} and H=G,,,,
the subgroup of G consisting of all the elements leaving the four letters
1, 2, 3 and 4 invariant.

Jordan ([2]) proved in 1872 that if H=1 then G must be one of the
following groups: S,, S,, A, or M,,, where M, is the Mathieu group
of degree 11. The Jordan’s theorem was extended by M. Hall ([1],
Theorem 5.8.1) in the following way: If H is of odd order then G
must be one of the following groups: S,, S, 4s, 4, or M,,.

In this paper, we shall treat the case in which H is of even order
and prove the following two theorems.

Theorem 1. Let G and H be as above, P a Sylow 2-subgroup of H
and let A={1, 2, 3, 4, ---} be the totality of the latters left invariant by
P. If H is of even order, P is an elementary abelian group and transitive
on Q—A, then G must be one of the following groups: S,, A, or M,,.

Theorem 2. Let G, H, P and A be as in Theorem 1. If H is of
even order, P is a normal subgroup of H and transitive on Q—A, then G
must be one of the following groups: S,, A,, M, or M,,.

In the proofs of these theorems a central involution of P is im-
portant. From the theorem of M. Hall it follows that the number of
letters in A is not greater than 11. On the other hand, by the transi-
tivity of P on Q— A, the set of all letters left invariant by a central
involution of P coincides with A. This shows that a central involution
of P leaves only small number of letters invariant. This property of a
central involution is essential in the following arguments.

DEFINITIONS AND NOTATIONS. A permutation a is called semi-regular
if there is no letter left invariant by @. A permutation group S is
called regular if S is transitive and each element of S, which is different
from 1, is semi-regular.

For a set X let | X| denote the number of elements of X. For a
set S of permutations on Q, the totality of the letters left invariant by
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S is denoted by I(S). If a subset A of Q is a fixed block of S, i.e. if
AS=A, then the restriction of S on A is a set of permutations on A.
We denote it by S®. If S is a permutation group then we have a
natural homomorphism S—S®. The kernel of this homomorphism consists
of all the elements of S leaving each letter in A invariant. We shall
denote it by S,.

1. Proof of Theorem 1

In this and the next sections, we assume that G is a 4-fold transi-
tive group on Q=1{1,2, ---,n} and H=G, ,,,is of even order. We denote
a Sylow 2-subgroup of H by P, I(P) by A, and the normalizer of P
in G by N.

Now it is known that a 4-fold transitive group of degree less than
35 is one of the four Mathieu groups M,,, M,,, M,,, M,, or a symmetric
or alternating group ([1], p.80). Therefore our theorems are true for
n<35. (For the Mathieu groups, see [5].) In the following, we assume
that

(*) #n is not less than 35

and we shall show that there are no groups satisfying the assumptions
of our theorems.
The following lemma is an easy consequence of the theorem of

M. Hall

Lemma 1. The restriction N* of N on A is one of the following
groups: S,, S, A, A, or M,,.

Proof. By a theorem of Witt ([6]; [1], Theorem 5.7.1) N* is
4-fold transitive. Since (N*),,,.=VNH)/N, and N,DP, (N*),;,, is
of odd order. Then the lemma follows from the theorem of M. Hall.

Lemma 2. Awn element c of the center of P, which is different from
1, is semi-regular on T=Q—A, i.e. I(c)=A if P is transitive on T.

Proof. Let ¢ be a central element of P. Cleary ACI(c). Since
I'NI(c) is a fixed block of P, TNI(c)=¢ or T. If TNI(c)=T then c=1.
Therefore T'NI(c)=¢, i.e. I(c)cQ—T'=A. Thus we have A=I(c) and ¢
is semi-regular on T.

Proof of Theorem 1. We assume that P is an elementary abelian
group and transitive on I'=Q—A. Then by Lemma 2 P is regular on T".
Since G is 4-fold transitive, there is an involution

a=1)2)3,4) -
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in G which is conjugate to an involution of P. Then |I(a)|=|A|. An
involutive automorphism « of H is induced by a« and then « fixes at
least one Sylow 2-subgroup of H. We may assume that o fixes P.
Let P, be the subgroup of P consisting of all the elements left invariant
by «a. Since |[I(a)] =]|A| and a takes the letter 3 in A to the letter 4,
there is a letter ¢ in "N I(a). By the regularity of P on I', for any j
in T there exists only one element b in P such that b=(s, 5)--- and then
j€I(a) if and only if b P,. Therefore |P,|=|TNIla)|<|I(a)| 2=
|A] —2. By Lemma in [3] we have |P|<|P,|*’<(]A]|—2). Now by
Lemma 1 |A| is one of the following number: 4,5,6,7 or 11. If |A| <7
then |P|=|T"| <25. Therefore n=|A|+|T'|<32. This contradicts the
assumption (¥). Therefore we may assume |A|=11. Then |T'|=|P|<
9*=81. Since |P| is a power of 2, |T'| =64, 32, 16 or 8. For |I'|=16
or 8, n<35. Therefore we may treat the two cases in which |T'| =64,
n=75 and |T'| =32, n=43.

Since |N*| is divisible by 11 and #<11? in our cases, there is an
element x of order 11 in N such that x* is a cycle of length 11. If x
is a cycle of length 11, then by a theorem of Jordan ([4]) G must be
a symmetric or alternating group. Therefore by the assumption of the
theorem G must be S, or A,. This contradicts the assumption (x). Thus
x must have at least two cycles of length 11. Let o be the automor-
phism of P induced by x and let P* be the subgroup of P consisting
of all the elements left invariant by o. In our cases %0 (mod 11),
therefore I(x)+¢. Now, since I(x)CT and P is regular on I, we have
|I(x)| = | P*| by the same argument as is used above for a. Therefore
[I(x)] is a power of 2 and » must be of the form 11k+2/ with k>2.
But this is impossible for #=75 or 43.

2. Proof of Theorem 2

Let G, H, P, N and A be as in §1 and assume (x).
We assume here that P is a normal subgroup of H and transitive
on I'=Q—A. By Lemma 1 we have one of the following cases:

Case I N=M,, |A|=11,
Case II. N*=A,, |A]=T,
Caske III. N*=A,, |A|=6,
Cask 1IV. N*=S,, |A|=5,
Case V. N*=S,, |A|=4.

We now treat these cases separately.
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Case L N=M,, |A|=11.

Since N,,,,=NNH=H and (N*),,5.=(N,.;.)"=1, we have I(H)=A.

Now, since G is 4-fold transitive, there is an involution a=(1, 2)
(3,4)--- which is conjugate to a central involution of P. Then |I(a)| =11
by Lemma 2, a= N and ¢* is an involution of M,,. Therefore |I(a*)| =
[I(@)NI(H)| =3 (see [5]). For any subset {i,,i,} of I(a) consisting of
two letters, G, ,;, ;, is normalized by @. From the same reason as above
we have |[I(a)NI(G,.; i) =3. Let Ia)NI(G,,;, :,) = {i % i;}. Then
Gi2iy6,=G1245,=G11,4,- Now consider the mapping @ : {i,, .} =G, ., 4,
from the set of all the subsets of I(a) consisting of two letters into the
set of subgroups of G. Then each ¢ %(G,,;, ;,) consists of three subsets,
since if G,,; :,=G.,;, ;, for some {j,, ,}CI(a@) then {j,, j.}CI(a)N
I(G,:;,:,)={i,, 65, 1;}. Therefore we have ,C,=55=0 (mod 3). This is
a contradiction.

Cask II. NA=A,, |A|=T.

Let @=(1,2):-- be an involution which is conjugate to a central
involution of P. Then |I(a)|=7.

For a subset {i,, i,} of I(a) consisting of two letters, let P’ be a
Sylow 2-subgroup of G,,; ; and let A’=I(P’). Then a normalizes P’
and ¢*’ is an even permutation. Therefore we have

a = (1, 2)(@) @) E) (R D)y

where A’={1, 2, i, i,, i,, b, [}. P’ is then the common Sylow 2-subgroup
of G,:.i, and G,,,,. Thus a subset {i,, 7,} of I(a) determines uniquely
a 2-cycle (k, /) of a. If a subset {j,, j,} of I(a) determines the same
2-cycle (k, 7), then the Sylow 2-subgroup P’ of G,,,,; is contained in
G..j.;,» Therefore {j,, 7} I(P")NI(a)= {i,,1,,4}. Thus just three
subsets {i., i,} of I(P’)NI(a) determine the same 2-cycle (k, /) of a.

Now suppose that a 2-cycle (k, /) of a other than (1, 2) is given.
Let P” be a Sylow 2-subgroup of G, , ., and let A”=I(P")={1, 2, 1i,, i,,
i;, k, I}. Then a normalizes G,,,; and ¢*” is an even permutation.
Therefore {i,, i,, i,} CI(a). Since P”"CG,,;, ;,, {i,, i,} determines (k, /) in
the above sense.

Thus we have that the number of 2-cycles of a other than (1, 2)

%7C2=7. Hence n=2+7+2x7=23. This contradicts the
assumption (x).
Cask III. Nt=A,, |A|=6.
Since N,.,,=H and (N*),,;.,=(N,.:.)"=1, we have I(H)=A.
Let a=(1, 2)--- be an involution which is conjugate to a central

is equal to
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involution of P. Then |I(a)| =6. For a subset {i,, 7,} of I(a) consisting
of two letters let P’ be a Sylow 2-subgroup of G,,; ;, and A’=I(P’)
={1,2,4,,14,, k [}. Then a normalizes P’ and ¢*' is an even permutation.
Therefore we have

at = (1, 2) (Zl) (’2) (k, l) .

Since I(G,,:,:,)=A" we have G,,; ;,=G,,,;. In this way, any given
subset {i,, i,} of I(a) determines uniquely a 2-cycle (k, /) of @ in such
a way that G,,; ;,=G,,,:. Coversely for any given 2-cycle (k, /) of a
other than (1, 2), there is a subset {i,,7,} in (@) such as G,,,;=G,, ;,»
and then I(G,,,)=1(G,,:,:,)=11,2,1,,1,, k I}. Thus we have that the
number of 2-cycles of @ other than (1,2) is equal to ,C,=15 and hence
n=2+6+2x15=38.

Now consider the mapping ¢: i—G,,,; from {4,5, -, 38} to the set
of subgroups {G,,,;}. Since G,,,;=G,,,; if and only if jeI(G,,,;) and
| I(G,.5:)| =6, (G, ;) consists of three letters. Therefore we have
35=0 (mod 3). This is a contradiction.

Caske IV. N*=S,, |A|=b.

As in Cask III we have A=I(H). Let a=(1,2)--- be an involution
which is conjugate to a central involution of P. Then |I(a)| =5.

For any two letters 7, j in I(a), let A’=I(G,,; ;)=1{1,2,4,j, k}. Then
a normalizes G, ,; ; and hence A’“=A’ and k<l(a). Clearly G,,; ;=G,,
=G, i On the other hand, if G,, y=G,,;; for some {7, 7/} CI(a)
then {i,’ ]/}' CI(Gl,z,i,J')‘

Now consider the mapping @: {i, j} =G, ,;; from the set of all the
subsets {7, j} of I(a) consisting of two letters into the set of subgroups
of G. As is shown above, ¢ (G, ; ;) (i, j€l(a)) consists of three subsets.
Therefore we have ,C,=10=0 (mod 3). This is a contradiction.

Case V. N*=S,, |A|=4.

The proof in this case is a little complicated. Since P is transitive
on I'={5,6, ---,n}, H is also transitive on I" and hence G is 5-fold
transitive. Let K=G,,;,s. Then @ =K NP is a normal Sylow 2-subgroup
of K. Let N’ be the normalizer of @ in G, and let A’=I(Q).

We first remark that a central involution ¢ of P is contained in N’
and semi-regular on A’— A, therefore |A’| must be even.

By the same argument as in the proof of Lemma 1, it is shown
that (NV’)* must be one of the following groups: S., S,, 4,, 4, or M,,.
Thus, from the remark above, we have one of the following cases:

Case (V.A). N*=S,, (N)*'=M,, |A|=4, |A|=12,
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Case (V.B.). N*=S,, (N)*=A,, |A|=4, |A’| =8,
Case (V.C.). N*=S,, (N)*=S,, |A|=4, |A’|=6.
We shall treat three cases separately.

Case (V.A). N*=S,, (N)* =M, |A|=4, |A'|=12.

Let A’={1,2, ---,12}. Since G is 5-fold transitive, there is an
involution a=(1, 2)(3,4)(5)--- which is conjugate to a central involution
of P. Then |I(a)]=4. Now a=N’ and ¢* is an involution in M,,.
Therefore we may assume that

a = (1,2)(3,4)(5)(6)(7)(8)(9, 10)(11, 12) ---

and then I(a)=1{5,6,7,8}. Hence I(a)CI(Q), where @ is a Sylow 2-
subgroup of G,,;,.;. From the same reason, for any 2-cycle (&, /) of a
other than (1, 2), we have I(a)CI(Q’), where @’ is a Sylow 2-subgroup
of G,,s5r:. Assume that k,/>12. Since {6,7} CI(a)Cl(Q), @' G, ,54.-
Therefore @ and @’ are both normal Sylow 2-subgroup of G,,;,, and
hence @ =¢’. On the other hand, &,/ are in I(Q’) but not in I(Q). This
is a contradiction. Hence we have #=12, which contradicts the assump-
tion (x).

Case (V.B). N>*=S,, (N)*'=A4,, |A|=4, |A’|=8.

Let A’=1{1,2, ---,8} and let a=(1, 2)(3, 4)(5)-+- be an involution which
is conjugate to a central involution of P. Then |I(a)|=4. Now acN’
and ¢* is an even permutation. Therefore we have

a=(1,2)3,49H6)6)(T)(@O)--

and I(a)={5,6,7,8} CI(Q). Then by the same argument as in CASE
(V.A.) we have a contradiction.

Case (V.C.). N*=S,, (N)*¥=S,, |A| =4, |A’| =6.

Since K=N,,,,s and (N"),..s=(Nl,...*’ =1, we have K*=1,
A'=I(K).

Let C be the center of P. By Lemma 2 C is semi-regular on
Q—A={5,6, -+, n}. Therefore CNK=1. On the other hand, Nj,,,
SCK and N{,2,3,4/K=(N’)ﬁ;’3,4 is of order 2. Therefore the order of C
is 2 and P has the unique central involution ¢. Then ¢ is also the unique
central involution of H, since P is a normal Sylow 2-subgroup of H.

Let ¢; (i>4) be the unique central involution of G,,,;. Then I(c;)
={1,2,3,i}. Let X be the subgroup of G,,, generated by {c=c,, ¢,
-, ¢,}. Then X is a normal subgroup of G,,,. In the following we
shall show that X is a Frobenius group as a permutation group on
{4, 5, ---, n}. If this has been done, the Frobenius kernel of X is a
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normal subgroup which is regular on {4, 5, ---,#}. Then by [3], Theorem
2 G must be one of the following groups: S, S,, S,, A, or M,,. This
contradicts the assumption (x).

We first remark that if ¢;=(1)(2)(3)(#)(k, /) then G, ,;£:=GC123,i%
=G, ,,541. Since ¢; normalizes G,,,,; and [I(G,, ;)| =6, a letter j in
I(G, 5 41), which is different from 1,2, 3, &, /, is left invariant by c;.
Therefore j=i and I(G,,;r:)=11,2,3,i,k,/}.. The remark above follows
now easily.

(a) We first show that the order of c;c; is 3 and I(c;c;)=1{1, 2, 3}
if i=Fj.

Let

¢ = Q)@@ ) s
c;i=1@)RWNE i) .

Then from the remark above I(G,.,:;)=11,2,3,7, 4, 7/}=1{1,2,3,4, 4, i'}.
Therefore we have /=74 and

cic; = (D@ B)G, i 5) - -

Now (c;c;)"ci(cic;)=1)(2)(3)(#)(#',7)--- and it is the central involution
of G,,,;. Hence c;=(c;c;)7'c;(c;c;), (c;c;)’=1. Thus c;c; is of order 3.

Now suppose that a letter k>3 is left invariant by c;c;. Then
ki=Fk%, and ¢; and c¢; have a 2-cycle (k,/) (/=k° =k‘/) in common. But
by the remark above we have I(G,,,,.)=1{1,2,3,k 1,i}=1{1,2,3,k 4,7},
which is a contradiction. Thus we have I(c;c;)={1, 2, 3}.

(b) We next show that c,c,c, is the central involution of G,,,;,
i.e. cicjcp=c, for some /. If two of {i,j, k} are the same, this is clear.
We assume that i, j, £ are all different. For the simpicity, let =4, j=5.

Now let

¢, = (1)(2)(3)(4)(5,6)(7,8)(9, 10)(11, 12) --- .
Then as is shown in (a)
e = (1)(2)(3)(5)(4,6)- .

Since c¢,cic,=c¢s and (c,c;)’=1, we have c,c,c,=c,. Therefore we have only
to prove the assertion for £#>7. Let k=7 and assume that ¢, takes 7
to 9. Then 8°%+10 and hence 8%>11 since (c,c;)’=1. We may assume
that ¢, takes 8 to 11. Then 7%%4%=10%=7%%4=12, ie. ¢, takes 10 to
12. Thus we have

¢ = (1)(2)(3)(5)(4,6)(7,9) (8, 11) (10, 12) --- .
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Using the same arguments as in (a) and as above for ¢, ¢, and c;, ¢;,
we have easily

¢; = (1)(2)(3)(7)(4, 8)(5,9)(6, 12)(10, 11) -
and then
cesc, = (1)(2)(3)(11) (4, 12) (5, 8)(6, 9) (7, 10) --- .

Now we shall show that c,c.,=c,. Since c,,=(c,c;) 'c.{c,cs), ¢,, and
¢,c; induce the same permutation on =={1,2, .--,12}. Since cc.c, is in
G, .41, it commutes with ¢,,. Hence (c,c5¢,)c=c(C,C:C1)s CiCsC1C11C1= C1iC.Cs.
Since c,c.cc,, is in Gy, it commutes with ¢,. Hence c,c.cic.c,,=ciCiCss
() eiCs)eie)=ccs. Thus c¢,c; and c¢.c;, commute with each other.
Therefore we have

((:405(:7611)3 = ((:405)3 ((:7(:11)3 =1.
Now c,c.c, commutes with ¢,,, hence (c,ci.c,,)*=(c,csc,)’c,=1 and we have
(646567)3 = Cy -

This shows that c,cc, is of order 2 or 6 and I(ccc,)=1{1,2,3,11}. If
c.CC, is of order 2, we have c,c.c,=c,,. We assume that c,c,c, is of order
6, and let a=(c,cc,)>. Then |I(a)| =4-+27, where r is the number of
2-cycles of c,c.c,. On the other hand, if (7, j, k) is a 3-cycle of a, then
a normalizes G, ;;, and hence @ commutes with the central involution ¢
of G,; ;. Therefore ¢ induces a semi-regular permutation on /(@)— {1},
and hence |I(a)— {1}| =3+2r must be even. This is a contradiction.

(¢) From (b), it follows that X consists of the elements c;s and
(cic;)’s, and I(c;))=1{1,2,3,4}, I(cic;)=11,2,3} if i=j. Therefore X is a
Frobenius group as a permutation group on {4,5, ---, n}.
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