SOME NOTES ON THE GENERAL GALOIS THEORY OF RINGS

F. R. DEMEYER

(Received January 25, 1965)

Introduction

In [2] M. Auslander and O. Goldman introduced the notion of a Galois extension of commutative rings. Further work by D. K. Harrison [9] indicates that the notion of a Galois extension will have significant applications in the general theory of rings. T. Kanzaki, in this journal, proved a "Fundamental Theorem of Galois Theory" for an outer Galois extension of a central separable algebra over a commutative ring. We generalize, complete, and give a new shorter proof of this result. The inspiration for the improvements in Kanzaki's result came from a paper by S. U. Chase, D. K. Harrison and A. Rosenberg [4].

This author in [6] began the study of 'Galois algebras'. These are not necessarily commutative Galois (in the sense of [2]) extensions of a commutative ring. Here we continue that study by extending some of the results in [4] and by proving a generalized normal basis type theorem in this setting. This paper forms a portion of the author's Doctoral Dissertation at the University of Oregon. The author is indebted to D. K. Harrison for his advice and encouragement.

Section 0

Throughout Λ will denote a K algebra, C will denote the center of Λ (C=3(Λ)). G will denote a finite group represented as ring automorphisms of Λ and Γ the subring of all elements of Λ left invariant by all the automorphisms in G ($\Gamma = \Lambda^{G}$).

Let $\Delta(\Lambda:G)$ be the crossed product of Λ and G with trivial factor set. That is

$$\Delta(\Lambda:G) = \sum_{\sigma \in G} \Lambda U_{\sigma} \qquad \text{such that} \\ x_1 U_{\sigma} x_2 U_{\tau} = x_1 \sigma(x_2) U_{\sigma\tau} \qquad x_1, x_2 \Lambda; \sigma, \tau \in G$$

This work was done while the author held a National Science Foundation Cooperative Fellowship.

View Λ as a right Γ module and define

$$j: \Delta(\Lambda:G) \to \operatorname{Him}_{\mathbf{r}}(\Lambda, \Lambda)$$
 by
 $j(aU_{\sigma})x = a\sigma(x)$ $a, x \in \Lambda; \sigma \in G$.

Theorem 1. The following are equivalent:

A. Λ is finitely generated projective as a right Γ module and $j: \Delta(\Lambda:G) \rightarrow \operatorname{Hom}_{\Gamma}(\Lambda, \Lambda)$ is an isomorphism.

B. There exists $x_1, \dots, x_n; y_1, \dots, y_n \in \Lambda$ such that $\Sigma_i x_i \sigma(y_i) = \begin{cases} 1 & \sigma = e \\ 0 & \sigma \neq e \end{cases}$ for every $\sigma \in G$.

Following Auslander and Goldman, Kanzaki called Λ a Galois extension of Γ in case A held. Condition B was discovered for commutative rings by S. U. Chase, D. K. Harrison and A. Rosenberg in [4]. We call Λ a Galois extension of Γ with group G if either A or B holds.

Our proof of theorem 1 parallels the proof given for theorem (1.3) of [4]. First we prove that B implies A.

Define $f_i \in \operatorname{Hom}_{\Gamma}(\Lambda, \Gamma)$ by $f_i(x) = \sum_{\sigma \in G} \sigma(y_i x) \ x \in \Lambda, \ \sigma \in G$. For any $x \in \Lambda$

$$\sum_{i=1}^n x_i f_i(x) = \sum_{i,\sigma} x_i \sigma(y_i) \sigma(x) = x.$$

Thus by the Dual Basis lemma, Λ is finitely generated and projective as a right Γ module.

Now we show $j: \Delta(\Lambda:G) \rightarrow \operatorname{Hom}_{\Gamma}(\Lambda, \Lambda)$ is an isomorphism. Let U_{τ} be a Basis element in $\Delta(\Lambda:G)$. Then

$$\begin{split} \Sigma_{i=1}^{n} j(U_{\tau}) [x_{i}] \cdot (\Sigma_{\sigma} U_{\sigma}) y_{i} &= \Sigma_{i,\sigma} \tau(x_{i}) \sigma(y_{i}) U_{\sigma} \\ &= \Sigma_{\sigma} \tau(\Sigma_{i} x_{i} \tau^{-1} \sigma(y_{i})) U_{\sigma} = U_{\tau} \,. \end{split}$$

Hence by linearity, for all $U \in \Delta(\Lambda : G)$

$$U = \sum_{i=1}^{n} j(U) [x_i] \cdot (\sum_{\sigma} U_{\sigma}) y_i.$$

Thus if j(U)[x]=0 for all $x \in \Lambda$, then U=0 so j is a monomorphism. To prove j is onto let $h \in \operatorname{Hom}_{\Gamma}(\Lambda, \Lambda)$ and let

$$U = \sum_{i=1}^{n} \sum_{\sigma \in G} h(x_i) U_{\sigma} y_i, \quad U \in \Delta(\Lambda : G)$$

for any $x \in \Lambda$, $j(U)[x] = \sum_{i=1}^{n} \sum_{\sigma \in G} h(x_i) \sigma(y_i x_i)$ = $h(\sum_{i=1}^{n} \sum_{\sigma \in G} x_i \sigma(y_i x))$ $(\sum_{\sigma} \sigma(y_i x) \in \Gamma)$ = $h(\sum_{i=1}^{n} x_i f_i(x)) = h(x)$.

Thus j is an isomorphism.

To prove the converse, we first show that

118

(*)
$$\operatorname{Hom}_{\mathbf{\Gamma}}(\Lambda, \Gamma) = j(t \cdot \Lambda) \quad \text{where} \quad t = \Sigma_{\sigma \in G} U_{\sigma}.$$

Pick $a \in \Lambda$, $j(ta)[x] = \sum_{\sigma \in G} \sigma(ax) \in \Gamma$. So $j(ta) \in \operatorname{Hom}_{\Gamma}(\Lambda, \Gamma)$. Suppose $f = j(y) \in \operatorname{Hom}_{\Gamma}(\Lambda, \Gamma)$, $y \in \Delta(\Lambda : G)$. If $y = \sum_{\sigma} a_{\sigma} U_{\sigma}$, then for all $x \in \Lambda$, $\sum_{\sigma} a_{\sigma} \sigma(x) \in \Gamma$ so $\rho(\sum_{\sigma} a_{\sigma} \sigma(x)) = \sum_{\sigma} a_{\sigma} \sigma(x)$ for all $\rho \in G$. Thus $\sum_{\tau \in G} \rho(a_{\rho^{-1}\tau})\tau(x) = \sum_{\tau \in G} a_{\tau}\tau(x)$, $(\tau = \rho\sigma)$ but j is an isomorphism so $\rho(a_{\rho^{-1}\tau}) = a_{\tau}$ so $a_{\sigma} = \sigma(a)$, thus $y = \sum_{\sigma} \sigma(a) U_{\sigma} = \tau \cdot a_{1}$. This proves (*).

Now we want to find $x_1 \cdots x_n$; $y_1 \cdots y_n \in \Lambda$ satisfying *B*. Let $x_1 \cdots x_n$, $f_1 \cdots f_n$ be given by the Dual Basis Lemma. By (*) there exists $y_1 \cdots y_n \in \Lambda$ so that

$$f_i(x) = j(ty_i)x.$$

Let $U = \sum_{i=1}^{n} x_i t y_i \in \Delta(\Lambda : G)$. Then $j(U)[x] = \sum_{\sigma \in G} \sum_{i=1}^{n} x_i \sigma(y_i x) = \sum_{i=1}^{n} x_i f_i(x)$ = x. j is an isomorphism so $U = \sum_{i=1}^{n} x_i t y_i = 1$. Thus $\sum_{i=1}^{n} x_i U_{\sigma} y_i = \begin{cases} 1 & \sigma = 1 \\ 0 & \sigma \neq 1 \end{cases}$ so since j is an isomorphism, $\sum_{i=1}^{n} x_i \sigma(y_i) = \begin{cases} 1 & \sigma = 1 \\ 0 & \sigma \neq 1 \end{cases}$ and this completes the proof.

Section I

In this section we prove a sharper version of Kanzaki's result. All notation is as it was in section 0.

Lemma 2. Let Λ be separable over C, and assume G induces a group of automorphisms of C isomorphic to G and that C is a Galois extension of $C^G = K$. Then Λ is a Galois extension of $\Lambda^G = \Gamma$ and there exists a 1-1 correspondence between the K-separable subalgebras Ω of Λ containing Γ and the K-separable subalgebras A of C given by

$$A \to A \cdot \Gamma$$
$$\Im(\Omega) \leftarrow \Omega$$

Proof. A is a Galois extension of Γ by B of theorem 1 and by the hypothesis that C is Galois over K.

By theorem (A.3) of [2], $K = \{\Sigma_{\sigma \in G} \sigma(x) | x \in C\}$ so

$$\begin{split} \Gamma &= K \cdot \Gamma \\ &= \{ \Sigma_{\sigma} \sigma(x) | x \in C \} \cdot \Gamma \\ &= \{ \Sigma_{\sigma} \sigma(xt) | x \in C, \ t \in \Gamma \} \subseteq \Gamma , \quad (\Lambda^{G} = \Gamma) \,. \end{split}$$

Thus $\Gamma = \{\Sigma_{\sigma}\sigma(x) | x \in \Lambda\}$ and there exists $f \in \operatorname{Hom}_{\Gamma}(\Lambda, \Gamma)$ $(f = \Sigma_{\sigma \in G}\sigma)$ and there exists an $a \in \Lambda$ so that f(a) = 1. Thus Γ is a direct summand of Λ as a $\Lambda - \Gamma$ module.

We now show Γ is separable over K by showing Γ is a projective

 $\Gamma \otimes_{\kappa} \Gamma^{0}$ module. $\Lambda \oplus \Lambda' \cong \Lambda \otimes_{\kappa} \Lambda^{0}$ as $\Lambda \otimes_{\kappa} \Lambda^{0}$ modules since Λ is separable over K. Since Γ is a direct summand of Λ and the hypothesis insure that Λ is projective over K (Λ is finitely generated projective over Cand C is finitely generated projective over K) the sequence $0 \to \Gamma \otimes_{\kappa} \Gamma^{0}$ $\to \Lambda \otimes_{\kappa} \Lambda^{0}$ is exact. Thus $\Lambda \oplus \Lambda' \cong \Lambda \otimes_{\kappa} \Lambda^{0}$ as $\Gamma \otimes_{\kappa} \Gamma^{0}$ modules. By the symmetry of condition B of theorem 1, Λ is projective as both a left and right Γ module. (Λ is $\Gamma - \Gamma$ projective.) So $\Lambda \otimes_{\kappa} \Lambda^{0}$ is projective as a $\Gamma \otimes_{\kappa} \Gamma^{0}$ module. Hence Λ and thus Γ is projective over $\Gamma \otimes_{\kappa} \Gamma^{0}$.

Now define a homomorphism $h: \Gamma \otimes_K C \to \Lambda$ by $h(t \otimes c) = t \cdot c$; $t \in \Gamma$, $c \in C$. Since C is Galois over K, by theorem (1.7) of [4] or a glance at B of theorem 1, one sees that $\Gamma \otimes_K C$ is Galois of Γ with the same group G. $(\sigma(t \otimes c) = t \otimes \sigma c)$. By lemma (1) of [6] or by a computation using B of theorem 1, h is an isomorphism.

Thus the center of Γ (denoted $\mathfrak{Z}(\Gamma)$) is K, for if $x \in \mathfrak{Z}(\Gamma)$ then $x \in \mathfrak{Z}(\Lambda)$, $(\Lambda = h(\Gamma \otimes_K C))$ so $x \in C$. But $x \in \Gamma$ implies $x \in C^G$ so $x \in K$.

Now we prove the 1-1 correspondence of the lemma. Let Ω be a *K*-separable subalgebra of Δ containing Γ . Let *A* be a *K*-separable subalgebra of *C*. Define

$$\psi: \Omega \to \mathfrak{Z}(\Omega)$$

($\gamma: A \to h(\Gamma \otimes_K)$) (notice $\Gamma \otimes_K A \subseteq \Gamma \otimes_K C$)

If $x \in \mathfrak{Z}(\Omega)$ then x belongs to centralizer in Λ of Γ so $x \in \mathfrak{Z}(\Lambda)$ and $\mathfrak{Z}(\Omega) \subseteq C$. $\mathfrak{Z}(\Omega)$ is separable over K by theorem (3.3) of [2]) thus ψ is well defined.

Since Γ is a central separable K-algebra, $A \otimes_{\kappa} \Gamma$ is a central separable A algebra (theorem (1.6) of [2]) thus $h(A \otimes_{\kappa} \Gamma)$ is a separable K-algebra, central over A and containing Γ . Thus γ is well defined and $\psi \gamma(A) = A$ for all K-separable subalgebras A of C.

Now $\gamma\psi(\Omega) = h(\mathfrak{Z}(\Omega)\otimes_{\kappa}\Gamma) \subseteq$ and $\gamma\psi(\Omega)$ is a central separable over $\mathfrak{Z}(\Omega)$. If $\Omega \neq \gamma\psi(\Omega)$ then by theorems 3.3 and 3.5 of [2] there exist a central separable $\mathfrak{Z}(\Omega)$ algebra Ω' such that

$$\Omega \simeq \gamma \psi(\Omega) \otimes_{\widehat{\mathcal{S}}(\Omega)} \Omega'$$
 and

thus Ω' is contained in the centralizer in Λ of Γ . But then $\Omega' \leq C$. Thus $\Omega' = \mathfrak{Z}(\Omega)$ and $\gamma \psi(\Omega) = \Omega$. This proves the lemma.

Here is the generalization of Kanzaki's result:

Theorem 3. With the notation and hypotheses of lemma 2, assume C has no idempotents except 0 and 1. Then there is a one-one correspondence between the K-separable subalgebras of Λ containing Γ and the subgroups H of G.

If Ω is a K-separable subalgebra of Λ containing Γ then there exists a subgroup H of G so that $\Omega = \Lambda^{H}$.

Moreover for all subgroups H of G, Λ is Galois over Λ^{H} and if H is a normal subgroup of G then Λ^{H} in Galois over Γ with group G/H.

Proof. By theorem (2.3) of [4] there is a one-one correspondence between the K-separable subalgebras of C and the subgroups of G given by $H \leftrightarrow C^H$. By lemma 2 there is a one-one correspondence between the K-separable subalgebras of C and the K-separable subalgebras of Λ containing Γ by

$$A \to h(\Gamma \otimes_{\mathcal{K}} A),$$

Combining these two facts, we have the one-one correspondence, thus every K-separable subalgebra Ω of Λ containing Γ is of the form Λ^{H} for some subgroup H of G.

If *H* is a subgroup of *G* then by theorem (2.2) of [4] *C* is a Galois extension of C^H with group *H*. The same elements which satisfy *B* of theorem 1 for *C* over C^H satisfy *B* of theorem 1 for Λ over Λ^H . The same theorem in [4] and the same reasoning apply when *H* is a normal subgroup of *G*. This completes the proof.

Section II

Now we expand our point of view. Let Λ be a faithful K-algebra and G a finite group represented as ring automorphisms of Λ so that $\Lambda^G = K$. Then all the elements in G are K-algebra automorphisms of Λ . As before, Λ is Galois over K or a Galois K-algebra in case either A or B of theorem 1 hold. In [6] the author showed:

Lemma 4. Assume Λ is a Galois K-algebra with group G. If C = C enter of Λ contains no idempotents except 0 and 1 then $C = \Lambda^H$ where $H = \{\sigma \in G \mid \sigma(x) = x \text{ for all } x \in C\}$ and H is a normal subgroup of G so that C is a Galois extension of K with group G/H.

Proof. See theorem (1) of [6].

We now prove a lemma which allows us to extend the range of application of Lemma 4.

Lemma 5. If K contains no idempotents except 0 and 1 and Λ is a Calois K-algebra then

 $\Lambda = \Lambda e_1 \oplus \cdots \oplus A e_n \quad (e_i \text{ minimal central idempotents})$

and Λe_i is a Galois extension of K with group $J_i = \{\sigma \in G | \sigma(e_i) = e_i\}$. Moreover $\Im(\Lambda e_i) = Ce_i = \Lambda e_i^{H_i}$ where H_i is a normal subgroup of J_i . Proof. C is finitely generated projective and separable over K since Λ is finitely generated projective and separable over K. By theorem (7) of [8] since K has no idempotents but 0 and 1

 $C = \bigoplus \Sigma C e_i$ e_i minimal idempotents in C. thus $\Lambda = \bigoplus \Sigma \Lambda e_i$ e_i minimal central idempotents in Λ .

Let $J_i = \{\sigma \in G \mid \sigma(e_i) = e_i\}$. By the minimality of e_i , $\sigma(e_i) \cdot e_i = \begin{cases} 0 & \sigma \notin J_i \\ e_i & \sigma \in J_i \end{cases}$ so by theorem (7) of [8] Λe_i is a Galois extension of K with group J_i . $Ce_i = \Im(\Lambda e_i)$. Let $H_i = \{\sigma \in J_i \mid \sigma(x) = x \text{ for all } x \in Ce_i\}$. Then by Lemma 3 H_i is a normal subgroup of J_i and $\Lambda e_i^{H_i} = Ce_i$. This completes the proof.

We note that if K has no idempotents except 0 and 1 this lemma reduces the study of Galois K-algebras to those already considered in Section 1 and to the study of central Galois algebras, i.e., Galois algebras Λ over K with group G so that $\Im(\Lambda) = K$. We now give the structure of a broad class of central Galois algebras.

The class group "P(K)" of a commutative ring K was defined by A. Rosenberg and D. Zelinsky in [11] and they showed

1. If Λ is a central separable K-algebra and σ is an algebra automorphism of Λ of finite order *n* such that no element in P(K) has order dividing *n* then σ is an inner automorphism of Λ , i.e., there exists a $U_{\sigma} \in \Lambda$ such that $\sigma(x) = U_{\sigma} x U_{\sigma}^{-1}$ for all $x \in \Lambda$.

2. If K is a field, Principal Ideal Domain or local ring, then P(K)=0.

If Λ is a central Galois K-algebra, then Λ is separable over K, theorem (1) of [6]. Assume the elements of the Galois group G are inner on Λ . Then for each $\sigma \in G$ there is a $U_{\sigma} \in \Lambda$ so that $\sigma(x) = U_{\sigma} x U_{\sigma}^{-1}$ for all $x \in \Lambda$. Pick a U_{σ} for each $\sigma \in G$ and define a(,) mapping $G \times G$ to U(K) = Units of K by

$$a(\sigma, \tau) = U_{\sigma} U_{\tau} U_{\sigma,\tau}^{-1}$$

From the associative law in Λ ,

$$a(\sigma\tau, \rho)a(\sigma, \tau) = a(\sigma, \tau\rho)a(\tau, \rho)$$

for all $\sigma, \tau, \rho \in G$. Thus a(,) is a 2-cocycle of $G(a(,)) \in Z^2(G, U(K))$.

A twisted group algebra KG_a is a free K module with basis $\{U_{\sigma}\}$ $\sigma \in G$ and multiplication given by $U_{\sigma}U_{\tau} = U_{\sigma\tau}a(\sigma, \tau), a(,) \in Z^2(G, U(K)).$

Theorem 6. If Λ is a central Galois extension of K with group G, and if G is represented by inner automorphisms on Λ then

$$\Lambda = KG_a, \qquad a(,) \in Z^2(G, U(K)).$$

Proof. This is theorem 2 of [6].

This result gives a very clear picture of the central Galois algebras over K with Abelian group G if no element in P(K) has order dividing that of an element in G.

Let Λ be a central Galois extension of K with Abelian group G, and assume all the automorphisms in G are inner on Λ . Then $\Lambda = KG_a$ $= \bigoplus \Sigma KU_{\sigma}$ with $U_{\sigma}U_{\tau} = U_{\sigma\tau}a(\sigma, \tau), \ a \in Z^2(G, U(K))$. If $\tau \in G$ then $\tau(U_{\sigma}) = U_{\tau}U_{\sigma}U_t^{-1} = U_{\sigma}a(\tau, \sigma)/a(\sigma, \tau)$. Let $\eta: G \times G \to U(K)$ be defined by $\eta(\sigma, \tau) = a(\sigma, \tau)/a(\tau, \sigma)$. One checks easily that

$$\eta \in _{skew}(G \otimes G, U(K)) =$$

 $\{\gamma \in \text{Hom} (G \otimes G, U(K)) | = \gamma(\sigma, \sigma) = 1$
for all $\sigma \in G\}$.

Moreover since $\Lambda^G = K$, $\eta(\sigma, G) = 1$ implies $\sigma = e$. That is η is a non-singular skew inner product on G.

In [6] a classification of central Galois extensions with Abelian groups was obtained employing this information. Here we extend one of the basic results in [6] and obtain some additional information about Galois extensions with Abelian groups. We notice at once

Corollary 7. If Λ is a central Galois extension of K with Abelian group G, and if all the automorphisms of G are inner on Λ , then there exists a primitive n^{th} root of 1 in K where n is the exponent of G.

Proof. Hom_{skew}($G \otimes G$, U(K)) $\neq \emptyset$.

If G is an Abelian group and $G = H_1 \oplus \cdots H_n$ is its decomposition into sylow *p*-subgroups let

$$H_i^{\perp} = H_1 \oplus \cdots \oplus H_{i-1} \oplus H_{i+1} \cdots \oplus H_n$$

In [6] we showed

Theorem 8. If Λ is a central Galois extension of K with Abelian group G and all the automorphisms of G are inner on Λ then $\Lambda = \Lambda_1 \otimes_K \Lambda_2 \otimes_K \cdots \otimes_K \Lambda_n$ where Λ_i is a central Galois extension of K with group H_i and $\Lambda_i = \Lambda^{H_i^{\perp}}$.

By means of the next lemma we will remove the restriction in theorem 8 that all the automorphisms in G be inner on Λ .

Lemma 9. Let S be a central separable algebra over a commutative ring K. Let S_i (i=1,2) be separable subalgebras, finitely generated and projective over K. Assume that for every prime ideal ϕ of K F. R. DEMEYER

$$(K_{\phi} \otimes_{K} S_{1}) \otimes_{K\phi} (K_{\phi} \otimes_{K} S_{2}) \simeq K_{\phi} \otimes_{K} S \quad by$$

$$\psi_{\phi}(s_{1\phi} (\otimes s_{2\phi}) = s_{1\phi} s_{2\phi} \quad then$$

$$S \simeq S_{1} \otimes_{K} S_{2} \quad by \quad \phi(s_{1} \otimes s_{2}) = s_{1} s_{2}.$$

Proof. By theorem 3.5 of (2) and the fact that the S_i are finitely generated and projective, the $K_{\phi} \otimes_K S_i$ are central separable subalgebras of $K_{\phi} \otimes_K S$, and the centralizer of $K_{\phi} \otimes S_i$ in $K_{\phi} \otimes S$ is $K_{\phi} \otimes S_j$ $(i \neq j)$. The exact sequence

$$0 \to K \to \mathfrak{Z}(S_i) \to \mathfrak{Z}(S_i)/K \to 0 \qquad \text{gives} \\ 0 \to K_\phi \to K_\phi \otimes_K \mathfrak{Z}(S_i) \to K_\phi \otimes_K \mathfrak{Z}(S_i) | K \to 0$$

 $\Im(S_i)$ is finitely generated over K since S_i is finitely generated projective and separable over K so since $K_{\phi} \otimes \Im(S_i)/K = 0$ for all prime ideals ϕ of K, $\Im(S_i) = K$.

By theorem 3.3 of (2), $S \simeq S \otimes_{\kappa} S^{s_1}$, ($S^{s_1} =$

$$\{x \in S \mid ax = xa \text{ for all } a \in S\}$$
),

via the map $\psi(s \otimes t) = st$.

Let $x \in S^{S_1}$, then as above for every prime ideal ϕ of K we obtain the exact sequence

$$0 \to K_{\phi} \otimes_{K} Kx \to K_{\phi} \otimes_{K} (Kx + S_{2}) \to K_{\phi} \otimes_{K} (Kx + S_{2})/S_{2} \to 0$$

and by theorem 3.5 of (2) together with the hypotheses, $K_{\phi} \otimes (x+S_2)/S_2 = 0$; thus $x \in S_2$.

Dually $S_2 \subseteq S^{S_1}$. Again by theorems 3.5 and 3.3 of (2) $S \simeq S \otimes_K S_2$ by $\psi(S_1 \times S_2) = S_1 S_2$.

Theorem 10. If Λ is a central Galois extension of K with Abelian group G then $\Lambda = \Lambda_1 \otimes_K \cdots \otimes_K \Lambda_n$ where Λ_i is a cental Galois extension of K with group H_i and $\Lambda_i = \Lambda^{H_i^{\perp}}$ (the H_i as before are the sylow pcomponents of G).

Proof. Let ϕ be any prime ideal of K, then $K_{\phi} \otimes_{K} \Lambda$ is a central Galois extension of K_{ϕ} with group G. Since K_{ϕ} is local, all automorphisms of G are inner on $K_{\phi} \otimes_{K} S$, thus $K_{\phi} \otimes_{K} S \simeq (K_{\phi} \otimes_{K} S)^{H_{1}} \otimes_{K} \phi(K_{\phi} \otimes_{K} S)^{H_{1}}$ via $\psi_{\phi}(s_{\phi} \otimes s_{2\phi}) = s_{1} \phi s_{2} \phi$. Thus the hypothesis of lemma 9 are satisfied and $S \simeq S^{H_{1}} \otimes_{K} S^{H_{1}^{\perp}}$. By induction on the number of sylow *p*-components of G, the theorem follows.

We now obtain the following amusing result first observed in the situation where K is a field by D. K. Harrison.

Theorem 11. Let Λ be a (non necessarily central) Galois extension

of the commutative ring K with cyclic group G. Then Λ is commutative.

Proof. First observe that if for every prime ideal ϕ of $K, K_{\phi} \otimes_{K} \Lambda$ is commutative, then Λ is commutative. A quick way of seeing this is observing that the K submodule $E = \{xy - yx \mid x, y \in \Lambda\}$ of Λ is finitely generated over K. Since $K_{\phi} \otimes_{K} E = 0$ for each prime ideal ϕ , E = 0 and Λ is commutative.

We may thus assume K is local. By lemma 5, $\Lambda = \Lambda e_1 \oplus \cdots \otimes \Lambda e_n$, e_i minimal central idempotents in Λ and each Λe_i is a Galois extension of K with group J_i , J_i a subgroup of G and thus also cyclic.

Continuing to apply the results of lemma 5, there exists a normal subgroup H_i of J_i so that

$$\mathcal{B}(\Lambda)e_i = \mathcal{B}(\Lambda e_i) = \Lambda e_i^{H_i}$$
 (*H_i* cyclic.)

Now Λe_i is a central Galois extension of $\Im(\Lambda e_i)$ with group H_i . Let μ be a maximal ideal in $\Im(\Lambda e_i)$, then $\Im(\Lambda e_i)/\mu$ is a field and by theorem (2) of [6], $\Im(\Lambda e_i)/\mu \otimes_{\Im(\Lambda e_i)} \Lambda e_i$ is a Galois extension of $\Im(\Lambda e_i)/\mu$ with cyclic group H_i . By Harrison's result for fields, or by theorem 2 plus the fact that if H_i is cyclic, then $\operatorname{Hom}_{\operatorname{skew}}(H_i, U(K)) = \emptyset$ we must have $H_i = \{e\}$ so $\Lambda e_i = \Im(\Lambda e_i)$ and Λ is commutative.

Section III

In this section we deal exclusively with central Galois extensions Λ of a commutative ring K whose group G is Abelian, and such that all the automorphisms in G are inner on Λ . The principal purpose of the section is to prove the Normal Basis Theom in this setting.

Proposition 12. Let Λ , K, G be as above. Then $\Lambda = KG_a$ $a(,) \in Z^2(G, U(K))$ and $KG_a = \{\Sigma_{\sigma} \alpha_{\sigma} U_{\sigma} | \alpha_{\sigma} \in K\}$. Then set $\{U_{\sigma}^{-1}/[G:1], U_{\sigma}\}$ satisfy "B" of theorem 1.

Proof. By lemma (1) of [6] together with theorem 6, $\mathcal{E} = \Sigma_{\sigma} U_{\sigma}^{-1} / [G:1] \otimes U_{\sigma}^{0}$ is an idempotent in $\Lambda \otimes_{\kappa} \Lambda^{0}$ such that $(1 \otimes x^{0} - x^{0} \otimes 1)\mathcal{E} = 0$ for all $x \in \Lambda$.

Since Λ is a Galois extension of K, $\Lambda \otimes_K \Lambda^0 \simeq \bigoplus \Sigma_{\sigma} \Lambda V_{\sigma}$ as K modules under $l(s \otimes t) = \Sigma_{\sigma} s\sigma(t) V_{\sigma}$ (theorem (1.3) of [4])

$$l(\varepsilon) = \Sigma_{\tau} \Sigma_{\sigma} \eta(\tau, \sigma) V_{\tau} \quad \text{where} \quad \tau(V_{\sigma}) = U_{\sigma\eta} a(\sigma, \tau) ,$$

 $\eta \in \operatorname{Hom}_{\operatorname{skew}}(G \otimes G, U(K))$ since $(1 \otimes x - x \otimes 1) \varepsilon = 0$. We have for all $x \in \Lambda$ and $\tau \in G$.

(*)
$$x\Sigma_{\sigma}\cdot\eta(\sigma,\tau)=\Sigma_{\sigma}\eta(\sigma,\tau)\tau(x)$$

thus $(x-\tau(x))\Sigma_{\sigma}\eta(\sigma,\tau)=0$, for all $x \in \Lambda$. Since $\Delta(\Lambda:G)\simeq \operatorname{Hom}_{K}(\Lambda,\Lambda)$ by theorem 1, A;

$$egin{aligned} & [\Sigma_{\sigma}\eta(\sigma,\, au)\!\cdot\!1\!-\!\Sigma_{\sigma}\eta(\sigma,\, au)\!\cdot au]x=0 & ext{for all } x, \ & ext{so} \quad \Sigma_{\sigma}\eta(\sigma,\, au)=egin{cases} & [G\!:\!1] & au\!=\!1 \ & au\!=\!1 \ & au\!=\!1 \ & au\!=\!1 \end{aligned} ext{ which proves the } \end{aligned}$$

proposition.

Using the same argument as above, one can show in the case where G is an arbitrary finite group that $\{U_{\sigma}^{-1}/[G:1], U_{\sigma}\}$ forms a set satisfying B of theorem 1 if and only if

$$\Sigma_{\sigma\in G}\sigma(U_{ au}) = egin{cases} [G:1] & au=e \ 0 & au\neq e \end{bmatrix} ext{ for all } au\in G \,.$$

Finally we have the normal basis theorem in this setting.

Theorem 13. With the same hypothesis as in Proposition 12, there exists an $x \in \Lambda$ such that $\{\sigma(x) | \sigma \in G\}$ are a set of free generators of Λ as a K module.

Proof. $\Lambda = KG_a = \bigoplus \Sigma KU_{\sigma}$ with the $U_{\sigma}U_{\tau} = U_{\sigma\tau}a(\sigma, \tau)$ and $a(,) \in Z^2$ (G, U(K)), and $\eta(\sigma, \tau) = a(\sigma, \tau)/a(\tau, \sigma)$. Let $x = \sum_{\sigma \in G} U_{\sigma}$.

1. $\{\sigma(x)\}\sigma \in G$ generates Λ . Since for each $\tau \in G$, $\tau(x) = \sum_{\sigma \in G} \eta(\sigma, \tau) U_{\sigma}$ it will suffice to show that for all $\tau \in G$ there is $\alpha_{\tau} \in K$ and $\tau \in G$ so that

$$\Sigma_{ au\in G}lpha_{ au}\eta(\gamma, au)=egin{cases} 1 & ext{if} & \gamma=\sigma\ 0 & ext{if} & \gamma\neq\sigma \end{cases}$$

By Proposition 12, $\Sigma_{\tau} \eta(\gamma, \tau) = \begin{cases} 1 & \gamma \neq 1 \\ 0 & \gamma \neq 1 \end{cases}$ for all $\gamma \in G$. Thus

$$\Sigma_{ au\in G}\eta(\sigma^{-1}, au)\eta(\gamma, au)\!=\!\Sigma_{ au\in G}\eta(\sigma^{-1}\gamma, au)=egin{cases} [G\!:\!1] & ext{if} \quad \gamma\!=\!\sigma \ 0 & ext{if} \quad \gamma\!=\!\sigma \ 0 & ext{if} \quad \gamma\!=\!\sigma \end{cases}$$

so we just let $\alpha_{\tau} = \eta(\sigma^{-1}, \tau)/[G:1]$.

2. $\{\sigma(x)\sigma \{ \in G \text{ are linearly independent. Assume } \Sigma_{\tau \in G} \alpha_{\tau} \tau(x) = 0.$ Then $\Sigma_{\sigma \in G} \Sigma_{\tau \in G} \alpha_{\tau} \eta(\sigma, \tau) U_{\sigma} = 0$ so $\Sigma_{\tau} \alpha_{\tau} \eta(\sigma, \tau) = 0$ for all σ . By the nonsingularity of η , the characters $\eta(\tau, \tau)$ are linearly independent over K. Thus $\alpha_{\tau} = 0$ for all τ . This proves the theorem.

Employing theorem (4.2) of [4] together with this result, one may obtain several generalized normal basis type theorems.

UNIVERSITY OF OREGON

126

Bibliography

- [1] E. Artin, Geometric Algebra, Interscience Tracts in Pure and Applied Mathematics, Vol. 3, Interscience Publishers, Inc., 1957.
- [2] M. Auslander and O. Goldman, *The Brauer group of a commutative ring*, Trans. Amer. Math. Soc. 97 (1960), 367-409.
- [3] H. Cartan and S. Eilenberg, Homological Algebra, Princeton, Princeton University Press, 1956.
- [4] S. U. Chase, D. K. Harrison, A. Rosenberg, *Galois theory and Galois cohomology of commutative rings*, Mem. Amer. Math. Soc. No. 52, (1965).
- [5] C. W. Curtis and Irving Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience Publishers, 1962.
- [6] F. R. DeMeyer, Galois theory in algebras over commutative rings, Illinois J. Math. (to appear)
- [7] D. K. Harrison, Abelian extensions of arbitrary fields, Trans. Amer. Math. Soc. 106 (1963), 230-235.
- [8] D. K. Harrison, Abelian extensions of commutative rings, Trans. Amer. Math. Soc. (1965).
- [9] D. K. Harrison, Finite and infinite primes for rings and fields, Trans. Amer. Math. Soc. (1965).
- [10] T. Kanzaki, On commutor rings and Galois theory of separable algebras, Osaka J. Math. 1 (1964), 103-115.
- [11] A. Rosenberg and D. Zelinsky, Automorphisms of separable algebras, Pacific J. Math. 11 (1957), 1109-1118.
- [12] S. Williamson, Crossed products and hereditary orders, Nagoya Math. J. 23 (1963), 103-120.