Osaka Mathematical Journal Vol. 6, No. 2, December, 1954

Theorems of the Phragmén-Lindelöf Type on an Open Riemann Surface

by Tadashi KURODA*)

Introduction

1. In the theory of analytic functions of a complex variable, the maximum principle for regular functions plays important roles. Especially, in the investigation of the behaviour of a single-valued analytic function with a general existence domain, maximum principles of the Lindelöf type and theorems of the Phragmén-Lindelöf type are very important.

In this paper, we shall prove some theorems of the Phragmén-Lindelöf type and state some applications of them. The Iversen property of a covering surface spread over the complex plane is essentially deduced from the fact that a theorem of the Phragmén-Lindelöf type holds for a region on the covering surface.

The author wishes to express his warmest thanks to Mr. Z. Kuramochi for his kindness and valuable suggestions.

§ 1.

2. Let F be an open Riemann surface and let $\{F_n\}$ $(n=0, 1, 2, \cdots)$ be an exhaustion of F such that, for each n, the boundary Γ_n of F_n consists of a finite number of analytic closed curves and such that F_n is contained in F_{n+1} with its boundary Γ_n and further such that each component of $F-F_n$ is non-compact. We denote by $u_n(p)$ the harmonic function in $F_n - F_{n-1}$ $(n \ge 1)$ which is equal to zero on Γ_{n-1} and to $\log \sigma_n$ on Γ_n and whose conjugate function $v_n(p)$ has the variation 2π on Γ_{n-1} , i.e.,

$$\int_{\Gamma_{n-1}} dv_n = 2\pi ,$$

where the integral is taken in the positive sense with respect to F_{n-1} . The quantity $\log \sigma_n$ is the so-called harmonic modulus of the open set $F_n - \overline{F}_{n-1}$. If we choose an additive constant of $v_n(p)$ suitably, the

^{*)} Yukawa Fellow.

regular function $u_n(p) + iv_n(p)$ maps $F_n - F_{n-1}$ with a finite number of suitable slits onto a slit-rectangle $0 \le u_n < \log \sigma_n$, $0 < v_n < 2\pi$ in a one to one conformal manner. Hence the function u(p) + iv(p) defined by $u_n(p) + iv_n(p) + \sum_{i=1}^{n-1} \log \sigma_i$ for each $F_n - F_{n-1}$ $(n \ge 1)$ maps $F - F_0$ with at most an enumerable number of suitable slits onto a strip domain $0 \le u < \sum_{i=1}^{\infty} \log \sigma_i$, $0 < v < 2\pi$ with at most an enumerable number of slits one to one conformally. This strip domain is the graph associated with the exhaustion $\{F_n\}$ in the sense of Noshiro [6]. We put

$$R=\sum_{i=1}^{\infty}\log\sigma_i.$$

By Sario-Noshiro's theorem [8], [6], there exists an exhaustion $\{F_n\}$ $(n=0, 1, 2, \cdots)$ of F satisfying $R = \infty$ if and only if F has a null boundary.

3. Let G be a non-compact domain on an open Riemann surface F whose relative boundary C consists of at most an enumerable number of analytic curves being compact or non-compact and clustering nowhere in F. For the sake of convenience, we shall call such a domain G a non-compact region on F. If a non-compact region on F is prolongable analytically over an open Riemann surface F^* , we shall say that G is imbedded conformally into F^* .

Here we shall give a condition for G to be able to be imbedded conformally into an open Riemann surface with null boundary.

If we denote by γ_r the niveau curve u(p) = r(0 < r < R) on F, γ_r consists of a finite number of analytic closed curves and separates the ideal boundary of F from F_0 . Denoting by θ_r the part of γ_r contained in G and putting

$$\int_{\theta_r} dv = \theta(r) ,$$

we have the following

Theorem 1. The non-compact region G on F can be imbedded conformally into an open Riemann surface with null boundary, if and only if there exists an exhaustion of F such that the integral

(1)
$$\int_{-\infty}^{\infty} \frac{dr}{\theta(r)}$$

is divergent.

Proof. First we shall prove the necessity of the condition. For the purpose, we may suppose that F has a null boundary. As stated

above, there exists an exhaustion $\{F_n\}$ $(n=0, 1, 2, \cdots)$ such that $R = \infty$. Since $\theta(r) \leq 2\pi$, the integral (1) is divergent for this exhaustion.

Next we shall give the proof of sufficiency. By the usual process of symmetrization, we can construct an open Riemann surface \hat{G} . There is given an indirectly conformal mapping of \hat{G} on itself which leaves every point on *C* fixed, where *C* is the relative boundary of *G* with respect to *F*. It is sufficient to prove that \hat{G} has a null boundary under our condition.

Let Δ be a simply connected domain in G such that the boundary of Δ is an analytic closed curve and such that the closure $\overline{\Delta}$ of Δ is contained in G. Denote by $\tilde{\Delta}$ and $\tilde{\Delta}$ the images of Δ and $\bar{\Delta}$, respectively, under the indirectly conformal mapping of \hat{G} on itself. We choose an exhaustion $\{\hat{G}_n\}$ $(n=1,2,\dots)$ of \hat{G} such that, for each n, \hat{G}_n contains $\tilde{\Delta}$ and $\tilde{\Delta}$ and is symmetric with respect to C. If we construct the harmonic measure $\omega_n(p)$ $(p \in \hat{G}_n - (\bar{\Delta} \cup \bar{\Delta}))$ of the boundary of \hat{G}_n with respect to the domain $\hat{G}_n - (\bar{\Delta} \cup \bar{\tilde{\Delta}})$, we get a sequence $\{\omega_n(p)\}$ $(n=1, 2, \cdots)$ of uniformly bounded harmonic functions. It is easily seen from the configuration of \hat{G}_n that $\omega_n(p) = \omega_n(\tilde{p})$, where \tilde{p} is the image of the point p under the indirectly conformal mapping of \hat{G} on itself. Since $0 < \omega_n(p) < 1$ for each *n*, we can select a subsequence of $\{\omega_n(p)\}\$ which is uniformly convergent on $G - (\overline{\Delta} \cup \widetilde{\Delta})$ in the wider sense and which has a uniquely determined limiting function $\omega(p)$. This function $\omega(p)$ is harmonic in $G - (\overline{\Delta} \cup \widetilde{\Delta})$ and equals zero on the boundary of Δ and $\tilde{\Delta}$. From the fact that $\omega_n(p) = \omega_n(\tilde{p})$ for each *n*, we can see that the normal derivative $\frac{\partial \omega}{\partial \nu}$ vanishes at every point on C. \hat{G} has a null boundary if and only if the function $\omega(p)$ is identically equal to zero. Hence we shall prove that $\omega(p)$ vanishes throughout $G-\overline{\Delta}$ under our condition.

Now we construct a graph $0 \le u < R$, $0 < v < 2\pi$ associated with an exhaustion $\{F_n\}$ $(n=0, 1, 2, \cdots)$ for which the integral (1) is divergent. Without loss of generality, we may assume that F_0 is identical to Δ . Let us denote by G_r the open subset of $G-\overline{\Delta}$ consisting of points, each of which satisfies the condition 0 < u(p) < r (0 < r < R). The boundary of G_r consists of θ_r , a part of C and the boundary of Δ . It is evident that G_r is not empty for any r > 0. Denoting by D(r) the Dirichlet integral of $\omega(p)$ taken over G_r , we have

$$D(r) = \int_{\theta_r} \omega \frac{\partial \omega}{\partial u} dv$$
,

because $\omega(p)$ equals zero on the boundary of Δ and the normal derivative $\frac{\partial \omega}{\partial \nu}$ vanishes at every point on C. By the Schwarz inequality, we get

$$(D(r))^2 \leq \int_{ heta_r} dv \int_{ heta_r} \left(\frac{\partial \omega}{\partial u} \right)^2 dv$$

 $\leq \theta(r) \frac{dD(r)}{dr},$

whence follows that

$$\frac{dr}{\theta(r)} \leq \frac{dD(r)}{(D(r))^2}.$$

Integrating both sides, we obtain

$$\int_{r_0}^r \frac{dr}{\theta(r)} \leq \frac{1}{D(r_0)} - \frac{1}{D(r)} \leq \frac{1}{D(r_0)},$$

where r_0 is a positive number fixed arbitrarily. Since the integral of the left hand side is divergent as $r \to R$, the Dirichlet integral $D(r_0)$ of $\omega(p)$ taken over the non-empty open set G_{r_0} must be equal to zero and hence the function $\omega(p)$ must reduce to the constant zero. Thus our proof is complete.

This theorem is the same as the result essentially which was obtained by Noshiro (Cf. [3]). Further, the following is easily obtained from the proof of the above theorem.

Corollary (KURAMOCHI [2]). Suppose that G is a non-compact region on an open Riemann surface with null boundary. Then the double \hat{G} , which is obtained from G by the process of symmetrization, has also a null boundary.

§ 2.

4. Here we shall state some theorems of the Phragmén-Lindelöf type. Let F be an open Riemann surface and let G be a non-compact region on F with the relative boundary C. In the following, we choose an exhaustion $\{F_n\}$ $(n=0, 1, 2, \cdots)$ of F satisfying the condition $F_0 \cap G = 0$ and associate the graph $0 \leq u < R$, $0 < v < 2\pi$ with F which corresponds to this exhaustion and we denote by γ_r the niveau curve

u(p) = r on F as in §1. We shall prove the following

Theorem 2. Suppose that a function f(p) regular in G is continuous on $G \cup C$ and that |f(p)| is single-valued on $G \cup C$ and satisfies the condition $|f(p)| \leq 1$ on C. If there exists a point p_0 in G such that $|f(p_0)| > 1$, then

$$\frac{\lim_{r\to R} \frac{(\log M(r))^2}{\int_{r_0}^r \frac{dr}{\theta(r)}} > 0,$$

where M(r) is the maximum of |f(p)| on $\theta_r (= \gamma_r \cap G)$ and $u(p_0) = r_0$ and further, $\theta(r) = \int_{\theta_u} dv$.

Proof. We put $h(p) = \log |f(p)|$, where, for any real number x, $\log x$ is the maximum of zero and $\log x$. Let us denote by G_r the open subset of G which consists of points of G satisfying u(p) < r. If $u(p_0) = r_0$, h(p) is non-constant in G_r for any number $r \ge r_0$. Denoting by D(r) the Dirichlet integral of h(p) taken over G_r , we have

$$D(r) = \int_{\theta_r} h \frac{\partial h}{\partial u} dv ,$$

for, h(p) is non-constant in G_r and harmonic at every point p satisfying $h(p) = \log |f(p)| > 0$ and reduces to the constant zero elsewhere. It is obvious that D(r) is positive for any $r \ge r_0$. By the Schwarz inequality, we get

$$(D(r))^2 \leq \int_{ heta_r} h^2 dv \int_{ heta_r} \left(\frac{\partial h}{\partial u}\right)^2 dv$$

 $\leq \theta(r) (\log M(r))^2 \frac{dD(r)}{dr},$

or

$$\frac{dr}{\theta(r)} \leq (\log M(r))^2 \frac{dD(r)}{(D(r))^2}.$$

Integrating both sides, we obtain

$$\begin{split} \int_{r_0}^r \frac{dr}{\theta(r)} &\leq (\log M(r))^2 \Big[\frac{1}{D(r_0)} - \frac{1}{D(r)} \Big] \\ &\leq (\log M(r))^2 \frac{1}{D(r_0)}, \end{split}$$

because M(r) is a monotonically increasing function of r. Hence it follows that, for any $r > r_0$,

$$0 < D(r_0) \leq \frac{(\log M(r))^2}{\int_{r_0}^r \frac{dr}{\theta(x)}},$$

which proves our theorem.

This theorem implies the following which contains Kusunoki's result [4].

Theorem 3. Under the same conditions in Theorem 2,

$$\lim_{r\to R} \frac{\log M(r)}{\sqrt{r}} > 0.$$

5. In the preceding section we dealt with the regular function with uniform modulus. Here we shall consider the single-valued regular function.

Let G be a non-compact region on F with the relative boundary C and let f(p) = U(p) + iV(p) be a single-valued regular function in G being continuous on $G \cup C$. Denote by G_r the open subset of G, every point of which satisfies the condition u(p) < r.

Suppose that the real part U(p) of f(p) equals zero on C. The part θ_r of the niveau curve $\gamma_r: u(p) = r$ contained in G consists of at most a finite number of components θ_r^i $(i=1, 2, \dots, n=n(r))$. If we denote by D(r) the Dirichlet integral of f(p) taken over G_r , then we get

$$D(r) = \sum_{i=1}^{n(r)} \int_{\theta_r^i} U dV = \sum_{i=1}^{n(r)} \int_{\theta_r^i} U \frac{\partial U}{\partial u} dv.$$

In the case of θ_r^i which is a cross-cut of G, since by Wirtinger's inequality

$$\int_{\theta_r^i} U^2 dv \leq \frac{(\theta_i(r))^2}{\pi^2} \int_{\theta_r^i} \left(\frac{\partial U}{\partial v}\right)^2 dv,$$

where $\theta_i(r) = \int_{\theta_r^i} dv$, we have

$$egin{aligned} &\left(\int_{ heta_r^t} U rac{\partial U}{\partial u} dv
ight)^2 &\leq \int_{ heta_r^t} U^2 dv \ \int_{ heta_r^t} \left(rac{\partial U}{\partial u}
ight)^2 dv \ &\leq rac{(heta_s(r))^2}{\pi^2} \int_{ heta_r^t} \left(rac{\partial U}{\partial v}
ight)^2 dv \ \int_{ heta_r^t} \left(rac{\partial U}{\partial u}
ight)^2 dv \ , \end{aligned}$$

and hence we obtain

$$\int_{\theta_r^i} U \frac{\partial U}{\partial u} dv \leq \frac{\theta_i(r)}{2\pi} \int_{\theta_r^i} \left[\left(\frac{\partial U}{\partial u} \right)^2 + \left(\frac{\partial U}{\partial v} \right)^2 \right] dv .$$

Next we consider the case of θ_r^j being a loop-cut of G. We can choose a constant m_j such that $\int_{\theta_r^j} (U-m_j) dv = 0$. By Wirtinger's inequality, we have

$$\int_{\theta_r^j} (U-m_j)^2 dv \leq \frac{(\theta_j(r))^2}{4\pi^2} \int_{\theta_r^j} \left(\frac{\partial U}{\partial v}\right)^2 dv.$$

On the other hand, since f(p) is single-valued, it follows that

$$\int_{\theta_r^j} U dV = \int_{\theta_r^j} (U - m_j) dV,$$

whence we obtain

$$\left(\int_{\theta_r^j} U \frac{\partial U}{\partial u} dv\right)^2 = \left(\int_{\theta_r^j} (U - m_j) \frac{\partial U}{\partial u} dv\right)^2$$
$$\leq \int_{\theta_r^j} (U - m_j)^2 dv \int_{\theta_r^j} \left(\frac{\partial U}{\partial u}\right)^2 dv$$
$$\leq \frac{(\theta_j(r))^2}{4\pi^2} \int_{\theta_r^j} \left(\frac{\partial U}{\partial v}\right)^2 dv \int_{\theta_r^j} \left(\frac{\partial U}{\partial u}\right)^2 dv.$$

Thus we get

$$\int_{\theta_r^j} U \frac{\partial U}{\partial u} dv \leq \frac{\theta_j(r)}{4\pi} \int_{\theta_r^j} \left[\left(\frac{\partial U}{\partial u} \right)^2 + \left(\frac{\partial U}{\partial v} \right)^2 \right] dv \,.$$

Therefore, it holds for any number i that

$$\int_{ heta_r^i} U rac{\partial U}{\partial u} dv \leq rac{\Theta(r)}{2\pi} \, \int_{ heta_r^i} \left[\left(rac{\partial U}{\partial u}
ight)^z + \left(rac{\partial U}{\partial v}
ight)^z
ight] dv \, ,$$

where $\Theta(r) = \underset{1 \le i \le n(r)}{\text{Max}} \theta_i(r)$. Summing up these inequalities for $i = 1, 2, \dots, n(r)$, we have

$$D(r) \leq \frac{\Theta(r)}{2\pi} \frac{dD(r)}{dr},$$

or

$$2\pi \frac{dr}{\Theta(r)} \leq \frac{dD(r)}{D(r)}.$$

Integrating both sides, we obtain

$$2\pi \, \int_{r_0}^r rac{dr}{\Theta(r)} \leq \log rac{D(r)}{D(r_{_0})}$$
 ,

where r_0 is a suitable number such that there exists a point p_0 of G satisfying $u(p_0) = r_0$. Hence it follows that

 $D(r_{\circ})e^{2\pi\int_{r_{\circ}}^{r}\frac{dr}{\Theta(r)}} \leq D(r) .$

(2)

On the other hand, since

$$\frac{d}{dr}\left(\int_{\theta_r} U^2 dv\right) = 2 \int_{\theta_r} U \frac{\partial U}{\partial u} dv = 2D(r),$$

it is easy to see that

$$\begin{split} \int_{r_0}^r D(r)dr &= \frac{1}{2} \Big(\int_{\theta_r} U^2 dv - \int_{\theta_{r_0}} U^2 dv \Big) \\ &\leq \frac{1}{2} \int_{\theta_r} U^2 dv \leq \pi (M^*(r))^2 \,, \end{split}$$

where $M^*(r)$ is the maximum of |U(p)| on θ_r . From this and (2), we get

$$\frac{(M^*(r))^2}{\int_{r_0}^r e^{2\pi\int_{r_0}^r \frac{dr}{\Theta(r)}} dr} \geq \frac{D(r_0)}{\pi}.$$

If the function is non-constant, $D(r_0)$ is positive. Thus we have the following

Theorem 4. Suppose that f(p) is a single-valued regular function in a non-compact region G on an open Riemann surface and that the real part of f(p) is equal to zero on the relative boundary of G. Denote by $M^*(r)$ the maximum of the absolute values of the real part of f(p)on θ_r . If

$$\frac{\lim_{r\to\pi}\frac{(M^*(r))^2}{\int_{r_0}^r e^{2\pi}\int_{r_0}^r \frac{dr}{\Theta(r)} dr} = 0,$$

then f(p) reduces to a constant.

The argument of the above proof is due to Pfluger [7].

This theorem is applicable to investigate the behaviour of functions on an open Riemann surface satisfying the condition similar to that of Pfluger.

§ 3.

6. Let F be an open Riemann surface and let w=f(p) be a nonconstant single-valued analytic function defined on F. The space formed by elements q=[p, f(p)] defines a covering surface Φ spread

over the *w*-plane and the point q = [p, f(p)] has the projection w = f(p). The correspondence $p \leftrightarrow q$ gives a topological and conformal mapping between F and Φ .

Let $\Phi_{\mathcal{A}}$ be any connected piece of Φ lying on the disc (c_{ρ}) , where (c_{ρ}) is the disc $|w-w_0| < \rho$ for any finite point $w = w_0$ and for any positive number ρ or is the disc $|w| > \frac{1}{\rho}$ for any positive number ρ . We shall denote by Δ the domain of F corresponding to $\Phi_{\mathcal{A}}$ by $p \leftrightarrow q$. If Δ is non-empty for a disc (c_{ρ}) and if either there exists a point p in Δ such that $w^* = f(p)$ or there exists a path in Δ tending to the ideal boundary of F such that $\lim f(p) = w^*$ along the path, where w^* is the centre of (c_{ρ}) , then we shall say that Φ has the Iversen property.

Mori [5] proved that Φ has the Iversen property if F belongs to the class O_{IB} which is the class of Riemann surfaces not allowing the existence of the non-constant single-valued bounded harmonic function. In the case of F with null boundary, Stoïlow [10] proved this result.

7. Let $\{F_n\}$ $(n=0, 1, 2, \cdots)$ be an exhaustion of F and let the strip domain $0 \le u < R$, $0 < v < 2\pi$ be the graph of F associated with the exhaustion $\{F_n\}$. The niveau curve $\gamma_r: u(p) = r$ consists of a finite number of closed analytic curves γ_r^t $(i=1, \cdots, m=m(r))$. Put

$$\Lambda(r) = \max_{1 \leq i \leq m(r)} \int_{\gamma_r^i} dv \, .$$

Then the following was proved by Pfluger [7].

If the integral

(3)
$$\int_0^R e^{4\pi \int_0^r \frac{dr}{A(r)}} dr$$

is divergent, there exists no non-constant single-valued bounded analytic function on F.

Hence we can see that if the integral

$$\int_{0}^{R} e^{2\pi \int_{0}^{r} \frac{dr}{A(r)}} dr$$

is divergent, there exists no non-constant single-valued bounded analytic function on $F \in O_{AB}$. Further we can prove the following which was found by Z. Kuramochi.

Theorem 5. If the integral (3) is divergent, Φ has the Iversen property.

Proof. As mentioned above, there exists no non-constant single-

valued bounded analytic function on F. Hence the set of values taken by w=f(p) is everywhere dense in the w-plane. Therefore, for any disc (c_p) , there exists at least a connected piece of Φ lying over (c_p) . We choose such an arbitrary piece Φ_d and denote by Δ the domain on F corresponding to Φ_d by the mapping $p \leftrightarrow q$. It is easily seen that, by the mapping $p \leftrightarrow q$, the relative boundary of Δ corresponds to that of Φ_d lying over the circumference of (c_p) .

If Δ is compact in F, it is easy to see that there exists a point p_0 such that $f(p_0) = w^*$, where the point w^* is the centre of (c_p) . Hence we suppose that Δ is non-compact. Then Δ is a non-compact region on F.

Let (c) be any concentric circular disc of (c_{ρ}) contained in (c_{ρ}) and let E be the set of points which lie in the closure (c) of (c) and are not covered by $\Phi_{\mathcal{A}}$. As is easily seen, for our purpose it is sufficient to prove that E is the set of class $N_{\mathfrak{B}}$ in the sense of Ahlfors-Beurling [1]. Since $\Phi_{\mathcal{A}}$ is connected, the complementary set of E with respect to the whole *w*-plane is connected.

Let δ be the domain in the *w*-plane which is a complementary domain of *E* with respect to the whole *w*-plane and contains the circumference of (c_{ρ}) . Suppose that *E* is not the set on the class $N_{\mathfrak{B}}$. Then, by Sario's theorem [8], [9], there exists a non-constant single-valued bounded regular function g(w) in $\delta \cap (c_{\rho})$ whose real part equals zero on the circumference of (c_{ρ}) . Noticing the fact that the complementary domain of *E* with respect to the whole *w*-plane is connected and putting $\psi(p) = g(f(p))$, we can see that $\psi(p)$ is a nonconstant single-valued bounded regular function in Δ and the real part of $\psi(p)$ is equal to zero on the relative boundary of Δ . Denote by θ_r^i $(i=1, \cdots, n=n(r))$ the components of the common part of γ_r and Δ . Putting $\Theta(r) = \max_{1 \leq i \leq n(r)} \int_{\theta_r^i} dv$ and denoting by $M^*(r)$ the maximum of the absolute values of the real part of $\psi(p)$ on $\bigcup_{i=1}^{n(r)} \theta_r^i$, we have from Theorem 4

$$\lim_{r\to R} \frac{(M^*(r))^2}{\int_{r_0}^r e^{2\pi \int_{r_0}^r \frac{dr}{\Theta(r)}} dr} > 0.$$

On the other hand, since $\psi(p)$ and so $M^*(r)$ is bounded, we see by our assumption that

$$\lim_{r\to R}\frac{(M^*(r))^2}{\int_{r_0}^r e^{2\pi\int_{r_0}^r \frac{dr}{\theta(r)}} dr} \leq \lim_{r\to R}\frac{(M^*(r))^2}{\int_{r_0}^r e^{2\pi\int_{r_0}^r \frac{dr}{A(r)}} dr} = 0,$$

which is a contradiction.

Hence the set E belongs to the class $N_{\mathfrak{B}}$. Thus our theorem is proved.

Remark. This implies Stoilow's theorem stated above. For, if F has a null boundary, then we can choose a graph such that $R = \infty$ and we can see by Theorem 1 that for such a graph the integral

$$\int^{\infty} \frac{dr}{\Lambda(r)}$$

is divergent.

Mathematical Institute, Nagoya University.

(Received September 27, 1954)

References

- L. Ahlfors-A. Beurling: Conformal invariants and function-theoretic null sets, Acta Math. 83 (1950), 101–129.
- [2] Z. Kuramochi: On covering surfaces, Osaka Math. J. 5 (1953), 155-201.
- [3] Z. Kuramochi-T. Kuroda: Note on the set of logarithmic capacity zero, Proc. Jap. Acad. 30 (1954), 566-569.
- [4] Y. Kusunoki: Maximum principle for analytic functions on open Riemann surfaces, Mem. College of Sci., Univ. Kyoto, 38 (1953), 61-66.
- [5] A. Mori: On Riemann surfaces on which no bounded harmonic function exists, Journ. Jap. Math. Soc. 3 (1951), 285-289.
- [6] K. Noshiro: Open Riemann surface with null boundary, Nagoya Math. J. 3 (1951), 73-79.
- [7] A. Pfluger: Über das Anwachsen eindeutiger analytischer Funktionen auf offenen Riemannschen Flächen, Ann. Acad. Sci. Fenn., A. I. 64 (1949).
- [8] L. Sario: Über Riemannsche Flächen mit hebbarem Rand, Ann. Acad. Sci. Fenn., A. I. 50 (1948).
- [9] L. Sario: Sur la classification des surfaces de Riemann, Congr. Math. Scand., Trondheim 1949, 229–238.
- [10] S. Stoïlow: Sur les singularités des fonctions analytiques multiformes dont la surface de Riemann a sa frontière de mesure harmonique nulle, Mathematica, Timisoara, 19 (1943), 126-138.