
Osaka Mathematical Journal
Vol. 4, No, 2, December, 1952

On the Lattice Πomomorphίsms of Infinite Groups I

By Shoji SATO

1. Introduction. By a lattice homomorphism of a group G onto a
group G' we mean a single-valued mapping φ of the lattice Z/(G) of
subgroups of G onto the lattice L(G') of subgroups of G', which is
subject to the conditions

2. ΌSιnS2)Φ = SιΦAS2Φ

for every pair of subgroups S^Sg of G.
We call proper any lattice homomorphism which is neither a lattice

isomorphism nor a trivial lattice homomorphism.
D. G. Higman investigated those infinite groups that admit proper

lattice homomorphisms which satisfy the stronger conditions :

1'. (vA)Φ-^v(SvΦ),
2'. (A v S v )φ- Av(Svψ)

for every (finite or infinite) set of subgroups Sv of G.υ

In the case of finite groups this problem was studied by M. Suzuki,
G. Zappa and other authors. Our purpose is to study, under the
definition 1, 2 of lattice homomorphism, the theory of lattice homomor-
phisms of groups mainly in the case of infinite groups.

The first difficulty we meet in our case is that there are generally
neither upper kernel2' nor lower kernel3'. But we can prove for
instance that, if the lower kernel exists, it is a normal subgroup, more-
over, the ideal of I/(G) that is mapped to the least element of L(G')
has the upper bound which is normal in G. These facts will give the
basis of our studies. Detailed study of this general theory will be
made in the forthcoming part II.

In this part I we generalize Higman's results, that is, our problem
is to investigate the conditions under which the mapping of L(G) onto
ί/(G') induced by a group homomorphism of G onto G' is a lattice
homomorphism which satisfies conditions 1, 2. Because every such

1) Cf. Higman [1].
2), 3) Cf. Suzuki [2].
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mapping preserves unions, we need only be concerned with the condi-
tions under which it preserves intersections. Let N be the kernel of
the group homomorphism ω. Without loss in generality, we may
indentify G/N with G', ω with the natural homomorphism of G onto
G/N. But here we shall start with a more general mapping of L(G)
in itself: S-*S^>M for subgroups S of G, where M is a subgroup
of G. And we shall show that M is normal and this mapping is a
lattice homomorphism induced by the natural group homomorphism of
G onto G/Λf, if the mapping is a lattice homomorphism.

Definition. A group G has property (Y) for N if there is a normal
subgroup N of G such that the natural homomorphism ω of G onto
G/N induces a proper lattice homomorphism of G onto G/N that
satisfies the conditions 1 and 2. We shall also say that the pair G, N
has property (Y). While we say that, after D. G. Higman, G has
property (Z) for N if the lattice homomorphism of G onto G/N induced
by ω satisfies the stronger conditions 1' and 2'.

If N = 1, ω induces a lattice isomorphism and if N = G, ω induces
a trivial lattice homomorphism. In the definition of property (Y) these
cases are naturally omitted. We assume throughout our discussion
that ΛΓΦ1, G.

Notation, {a} is the cyclic group generated by a.

2. We begin with the following lemma 1 which shows that a direct
generalization of our problem is impossible.

Lemma 1. Let M be a subgroup of a (finite or infinite} group G, and
Ί/Λ the mapping: S-^S^M for subgroups S of G. If ψ» is a lattice
homomorphism of L(G) in itself, then M is normal and hence G, M has
property (Y).

Proof. Let a be an element of G which is not contained in M.
If an element 6 is contained in the subgroup \at M\ which is generated
by a and M, and is not contained in M, then { c & j A fδ jc^M. For, if
{ α } A { 6 } C A f » . then ([a] A {6})^Af = M. But as S^M is a lattice
homomorphism, we have (\a\ A [b\^M =(\a] ^JIί)A({6} WM).= {6} u

M Φ M, which is a contradiction. Hence, if x e M and cw1 £ M, then
j α j A {(MWJΓ^cJ^Λf and we have aj =axia~1£M for some integers and
i. But this implies α * = #* G M, which is a contradiction. Thus we
know that, for any a£M and xeM, holds axa~leM, which shows that
M is normal in G, q.e.d.

The following lemma 2 corresponds to the lemma (2,1) in Higman's
paper and plays an essential role throughout this note. The proof
is also given quite analogously.
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Lemma 2. A group G has property (Y) for N if and only if

%r\ \a\ A {&} is iwt empty

for every coset X in G/N and every pair of elements a, b of X.

Proof. Let G, N be a pair having property (Y), and let φ be the
lattice homomorphism of G onto G/N. If ZA {α j A {6 j is empty for
some coset X and for a, beX, we have X Φ ([a] A {6})Φ On the
other hand, ( { α } A { & } ) Φ = { α } Φ A { 6 } φ = {-Y} A {X} = {-Y}. This is a
contradiction.

Assume conversely that a normal subgroup N of G satisfies the
condition of the lemma. Let φ be the mapping of L(G) onto L(G/N}
induced by the natural homomorphism G~G/ΛΓ. For any pair S,Re
L(G), (S^R^φ^Sφ^Rφ is trivial. But, for any coset XeSφ^Rφ we
can find naturally such elements s,r that s^X^S, r^X^R, then, the
elements in X A { s } A f r } belong to S^R. This shows (SAβ)φ3-Y,
which proves (SAβ)φ^ Sφ^Rφ. Hence φ is a lattice homomorphism,
q.e.d.

Lemma 3. // G has property (Y) for N, then every element in G/N
has finite order.

Proof. Let J£(Φ ΛΓ)e G/N and α, beX. We can assume α Φ &
because N Φ l . {α] A {6 j A -X" is not empty and contains α*(Φl) for
some integer ί. If i = l, then {α}C{&}. This implies 6s = α, and hence
bl~s = ba~l€N for some integer sφl . If i Φ l , then α1"^ =aa~*eN.
In either case the order of X must be finite, q.e.d.

Theorem 1. Let G, N be a pair having property (Y). If G has an
element a of finite order that is not contained in N, then every element
in G has finite order, and the pair G9 N has property (J2Γ).

Proof. Let α e X (φ AT) e G/ΛΓ and let a have finite order. Let s be
such integers that a8 e X. In the set of these (finite number of) sub-
groups {a*} there is the least one, since f\{as}^X is not empty. Let

this least one be {α*}, then {α} A l&^jα'} for every element b in X,
because [α} A {6} A J? is not empty. This shows c&* e/^{δ} AZ. Put

a* = r. Then we have [nr]^r for any element n in N. Hence r is
commutative with n, and (nry=niri=r for some integer i. Thus we
have n'= rl~\ which implies that every element n in N has finite
order. Then we can conclude that, according to lemma 3, every element
of G has finite order.

Now we can apply the above discussion to every coset Y in G/N
and see that f\\b] A Y is not empty, which is equivalent to the condition
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that the pair G, N has property (Z) as Higman proved.
Remark. Theorem 1 shows the relation between Higman's result

and our case. Higman proved that, if a pair G, N has property (Z),
every element in G has finite order, hence those and only those groups
that satisfies the conditions in our theorem have the property (Z).

Lemma 4. Let G, N have property (Y), and let G have elements of
infinite order.

Then f α j AZ(X)AJY' is not empty for every element X in G/N and
a in X, and for every element n of N, where Z(n) means the centralizer
of n in G. If n is of finite order, then the order of n is prime to those
of elements in G/N.

Proof. Let X = aN be an element of G/N and a£N. If aj €
[an] A \a\ AJ£, then aj is commutative with an, and so with n. This
implies the first part of the lemma.

Now let n G N be of finite order, and let X = aN(ΦN) be an element
in G/N. We can assume that a is commutative with n. Then, if
\a] A \an} = [af}9 we have n' = l. For, if (any = a'9 then nJ = a*~J.
But a is of infinite order (cf. th. 1), so i = j and n* = 1. According to
the condition (Y), {α*}AJΓ is not empty, so {X*\ = \X\, which implies
that i is prime to the order of X, q.e.d.

Lemma 5. Let G, N have property (Y), and let n, m G N be of infinite
order, then \m\ A j w j φ 1.

Proof. Let X = aN(ψ N} be an element of G/N. As can easily be
seen from the proof of lemma 4, we can assume that a is commutative
with both n and m. Then { α } A { m } Φ l . For, from {αw} A {α}Φl, we
have (cwy = α* for some integers if;(Φθ), whence nj = aί"J and nJΦl.
Similarly { α } A { w } Φ l . Hence { τ & } A { w } Φ l , because α is of infinite
order, q.e.d.

Theorem 2. Let G be a group containing elements of infinite order.
A pair G, N has property (Y) if and only if

1) the elements of G/N are of finite order,
2) N contains all the elements of finite order in G9 and their orders

are prime to those of the elements of G/N,
3) {%} A {wι}Φl for every pair of elements m, n of N of infinite

order, and
4) \a\ AZ(n)A^ is. not empty for every elements X in G/N and a in

X, and for every element n in N, (for the definition of Z(n) cf. lemma 4.)

Proof. The necessity is proved in lemma 3, th. 1, lemmas 4 and 5.
To prove the sufficiency, choose an element n from N and an
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element a£N from an X in G/N. According to 4), some power aj of
a is contained in Z(n). From 1), 2) and 3), we have {cw&} A [aj\ Φ 1.
Put (any* = OOW, then (w, v) — s is the order of an element in N (cf. an
is commutative with α j) if w is chosen positive and as small as possible.
But the order ί of X is prime to u. For, Xu = XΌ implies u = v mod i,
so (w, ί) divides both ί and s. This means (u, ϊ) = 1, according to 2).

Now j(αw)M} A X = \(ajy\ r\x *s not empty. This means that
\a}r\Wr\X '1S not empty for every X and its elements a, 6, which is
equivalent to (Y), q.e.d.

Corollary. // a group G has property (Y) /or cm abelian normal
subgroup N and if G contains elements of infinite order, then the rank
of N is 1.

Lemma 6. Let N be a locally cyclic normal subgroup of a group G.
If G/N has no element of infinite order and G has no element of finite
order other than 1, then N is contained in the center of G.

Proof. Let a£Ntb£G,b£N and 6* = a for some integer i. If c e N
and cs = a for an integer s, then (ftcZr1)* = a, this implies bcb~l = c
because N is a torsion free abelian group. But N is generated by all
these c, so is contained in the center of G, q.e.d.

Theorem 3. Let M be the set of all elements of finite order in a
group G and G φ M . Then, G has property (Γ) for an abelian normal
subgroup N if and only if

1) G/N has no element of infinite order,
2) M is contained both in N and in the center of G, and the orders

of elements in M are prime to the orders of elements in G/N,
3) N/M is a torsion free locally cyclic group.

Proof. The necessity of our conditions are obvious from th. 2 and
corollary to it.

To prove the sufficiency, we are only to show that our conditions
imply the condition 4) in theorem 2.

G/M is torsion free and N/M is locally cyclic, and so the latter
is contained in the center of G/M, according to lemma 6. Hence
N^X/M is abelian for every element X in G/N, but, as N^X/N is
a finite cyclic group, N^X/M is necessarily an abelian group of rank
1 and so is locally cyclic. But this implies N^X is itself an abelian
group because M is contained in its center. Thus we see that N is
contained in the center of G, hence condition 4) holds, q.e.d.

As a direct consequence of theorem 3, we have

Theorem 4. // G is a (locally) free group and has property (Γ) for
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some normal subgroup ΛΓ(Φ1, G), then G is a (locally') cyclic group.
Conversely, if G is a torsion free locally cyclic group, then G has property
(Y) for every subgroup N.

Remark. As can easily be seen, if G/N is of finite order in lemma

6 (or th. 3) then G is itself a locally cyclic group (or abelian group of
rank 1). I could not find those non-abelian groups that satisfy the

conditions in lemma 6 or in theorem 3.

(Received June 30, 1952)
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