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Some Combinatorial Tests of Goodness of Fit

By Masashi OKAMOTO

1. Introduction. We have recently [1] consideied a test of good-
ness of fit, i.e., a test whether a random sample has come from the
population with the specified continuous distribution. We now present
a new approach to the same pioblem.

Let X1, ..., XN be random variables distributed independently and
identically according to the d.f. F(x). To simplify the situation it is
assumed that X's range from 0 to 1. The hypothesis H0 to be tested
is that F(x) is identical with the d.f. F0(x} of unifoim distribution
on the interval (0,1]. We divide the interval in n small intervals
((i—l)/w, i/n}9 i = 1,..., n. In the sequel the word " interval" means

if not stated otherwise any of these small intervals. Among ί^ j

fc-tuples (X*19 . . . ,-Xxfc), 1 <#!<••• O fc<Λr, we denote by Mk the
number of those such that X*19... 9 Xχk fall in the same interval. When
we consider one observation, the more uniformly are X19...,XN

(observed values) distributed among the n intervals, the smaller becomes
MI, as shown in section 7. On account of this the following test
(called Mfc-test) of H0 will be useful: we accept H0 when Mk is
sufficiently small.

It is proved in this paper that when the population distribution
satisfies a certain condition Mk is asymptotically normally distributed
as N and n tend to infinity (Theoiems 1, 2,1', 2') Furthermore Mfc-test
is shown to be consistent (Theorem 3) and unbiased (Theorem 4) against
a lather general class of alternatives. The statistics Mk are closely
related with David's test (cf. [1], [2]) and can be considered as a
generalisation of the chi-square test in the case of equal probabitity.

2. Definition of Vk. For real numbers tλ, ... , tk such that
0 <[ *ι < 1, i = 1, ..., k, we define

Θ f c(tj, ..., ίfc) — 1, if tl9 ... ,tk fall in the same interval,
— 0, otherwise,

where the word " interval" means by convention any of intervals
((ί-l)/ro, i/ri], i = l,...,ri). Then
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Throughout this section the sum 2 'ιs extended over all fc-tuples

Denoting by E0 and D0

2 the expectation and the variance, respec-
tively, under H0, we have

Therefore, letting

(2.3) Φ f c(£ι,... 9tk) = n1c~l®k(tl9... ,4)
__ to*"1, if tl9... ,tk fall in the same interval,
~~" (0, otherwise,

we have

Furthermore, defining

(2.5)

i — 1
1, if ί l f ... , ίfc fall in the same interval,

otherwise,
we obtain

(2.6)

and

(2.7)

where

(2.8) Uk =

Formally E7fc is the same as [/-statistics of W. Hoeffding [3], but
substantially they are quite different because the definition of Ψk(tl9

... , 4) here contains n which tends to infinity with the sample size N.
We can not therefore apply Hoeffding's lesults to our case and so we
have to prove once again the asymptotic normality of Uk.

3. Expectation and variance under //0. From (2. 6), (2. 7), (2. 8) we

.#o(tf») = 0,

have

(3.1)

(3.2)

In order to evaluate the variance of Ut it becomes necessary to
prepare several computations. To begin with, by (2.2) we have
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#0[®,(*i xjγ^n-^,
whence by (2.3), (2. 5)

E0lΦt(Xl,...,XJ]* = nk-1,

(3.3) E0[yt(X1,...,Xjr=n*-1-l.

It follows easily that

(3.4) ^0Ψ2(ί1(Z2) = 0,

(3. 5) E0Ψ*(tlt... , tk_lt Xj = ¥»_!&, ..., ί»-ι) , fc > 3 ,

and by induction

(3.6) E0Ψκ(t1,X2,...,Xκ) = Q, k>2,

where the expectation is always with respect to X's.
By means of these equations we can compute DQ

Z(TJ^. That is

°-:ΣΣ
where 2 C) stands for summation over all subscripts such that

and exactly c equations

are satisfied. According this definition c must be greater than or equal
to 2k- N. By (2.6) and (3.6) every term in ΣCO) a^d ΣC1) vanishes.
Therefore 2 ίn (3.7) may be extended from c = c0 ^max(2,2k—N} to

c

c — fc. Furthermore by (3.5) each term in Σ(C)> c ^ c o> is equal to
#o [Ψc(^ι>... ,Xey]z = ne-1—l, and the number of terms in ΣCC) is

ΛΠ _/N\/k\/N-K

^k
Hence

(1 K\ D^(TJ^-(NY1^ (k\(N

(6. 8) D0 (U^ - ^ J £c\c) (k -c

Under the limiting condition

(3.9) t&-»oo and N/n->r (const)

we have

(3.10) ZV(t/fc)~| ^ Σ (JfK< =~*Όl (say).
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From (3. 2), (2. 7), (3. 10) it follows that

(3.11) E0(Mk/n)~r«/kl ,

(3. 12) ZV (*,/») ~ 1 £ Σ (J) r- = |<* (say).

In particular,

(3.13)

4. Asymptotic distribution under //0.

Theorem 1. When n — > oo cmcZ ΛΓ/w -> r (const), Uk and Mk/n are
asymptotically normal (0, n~1σ oΐ) and (Λ!, n~lσ%^, respectively, where the
first term in each parenthesis refers to the asymptotic mean and the
second term variance.

Pi oof. As the proofs are almost similar for various values of k,
we shall deal with only the case k = 2 to avoid the excessive
complication of subscripts. Thus we shall prove that \/nV2 is
asymptotically normally distributed with mean zero and variance 2/r2,
whence the asymptotic distribution of M2/n is readily inferred.

Since E0 (E72) — 0, we have only to show that the ra-th moment
μm (m — 2, 3, ...) of \/~n U2 tends to that of the normal distribution
(0, 2/r2). Now

(4. 1) μm =

where summation is extended over all sets of pahs (ii, Ί),... ,(im,/TO),
1 <i^<^;V<N, g = l,...,m. Denote by d the number of different-
ciphers among

(4.2) i l f ;\; ...;*„,;„.

Classifying them by the equivalency relations ix ^ jl9 ... 9im ̂  jm, let
e be the number of equivalence classes. Then

(4-3) A, = ΣΣ4 M .
β=ι tί=i

where
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(4. 4) AβΛ =

5]cβ<ft) standing for summation over all sets of pairs (i19 /i), ... ,
(im»/m) such that the number of different ciphers is d and the number
of equivalence classes is e.

We shall first evaluate

(4. 5) #0ψt (Xh,Xrf ... ψ , (Xim, XjJ

in AβΛ. Let e equivalence classes consist of m19 ... , me pairs. Obviously

(4. 6) m = ml+ ••- +me .

In order to evaluate (4. 5) we may assume without any loss of generality
that these classes are (to avoid the typographical difficulty we put the
subscripts of ί, fs in the parentheses after them),

(4. 7. 1) icι) , ;C1) ; . . . ;* (mj, j (mj

(4.7.2) i(

(4. 7.e) i(m!+ ••• +me^1 + l), (mx+ •- +mβ-1rfl); ... i(m)f ;(m).

Then, E0 in (4. 5) is distributed to e classes and (4.5) becomes the
product of e expectations

(4.8.1)

(4. 8. 2)

(4.8. e) ^o^2(^(W

Denoting by dg the number of different ciphers in the class (4. 6. g),
g = 1,... ,e, we have

(4.9) d=d^ ••• +d€.

Since from (2.5) ^2(^ ,^2)^^—! or —1 and the probability that v
X's fall in the same interval is O^"^1), the order in n of (4.8. g) is

mg—dg + l.

By (4.6) and (4.9), the Older in n of (4.5) is
€

2 (mg—dg + Y) = m — d + e.
Q = L

Since 2(e>£Z) in (4.4) contains 0(NΛ} terms of this magnitude, we have

(4.10) AβA=nm
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If β>m/2, then from (4.6) there is at least one g such that
mg = I and (4. 8. g) vanishes on account of (3. 4), whence (4. 5) also
vanishes so that AeΛ = 0. After all

(411) A -ί° if *>m/2'
^.nj ^~\0(ne~m/2}9 if e<m/2.

From (4. 3) and (4. 11) it follows that

(4. 12) μm = o (1) for odd m .

As for the case when m is even, we have only to consider AeΛ for
e = m/2 because of (4. 11), i.e.,

(4.13) μn ~%Am/29a = A (say).
d-ij

(In the present case when fc — 2 A=Am/2>m. -In the general case,
however, the definition above of A is necessary.) From the same
reasoning above we may suppose mg = dg = 2, g = 1, ... , m/2 and thus
each class (4. 7 g) is of the form i, / i, /. In order to evaluate A it is
required to consider the classification of m pairs (iτ , Ί), . . . , (ίm , /w) into
m/2 sets, each consisting of two pairs. It is easily seen that there are

ways of such classification. Thus

(4. 15) A = φ(m)nm

the sum extending over all sets of pairs (i(l), /(I)), ... 9(i(m/2\j(m/2)\
where all i, fs are different.

On the other hand we have

(4. 16) φ(m)

where the summation is extended over all subscripts such that 1 <i(0)

<O'(flO < N* 9 = 1* -" > m/2. (i(g) and j ( g ' } , g-Φ gr, may take the same
value.)

As two sums in (4. 15) and (4. 16) are equal in the highest order of
N9 we obtain consequently

~ φ(m

This and (4.12) complete the proof.
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5. Expectation and variance in the general case. In this and the
following section we shall assume that the population d.f. F(x} has the
density function /(#) which is continuous except for a finite number

Γl

of points and such that \ f™(x)dx (m =2, 3, ... ,2k — 1) exist

Putting

- ..... -
we have according to the mean value theorem

(5.1) Pt = n-i

Letting

(5.2)

we obtain from (5.1)

(5.3)

where

(5.4)

Define further

(5.5) α« = P^~»s"1/r1.
Now, denoting by E and Dz the expectation and the variance,

respectively, in the general case, we have

Defining

(5. 6) <ΪV (*!,..., 4) = ffajΘ* (*ι,..., 4) ,

(5 7) Ψ,' (*! ..... 4) = Φ»' (*ι ..... *,)-! ,

we have

(5.8)

(5.9)

The equation (2.1) implies

(5.10) Λf*

where

(5. ii) ϋt' =.(^)"1 Σ ψ*' C^i . . *=*)

Combining (5. 9), (5. 10), (5 11),
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(5.12) #([7*0 = 0,

(5.13) . E(M*°)=pΛ >(

If we define for k, c such that k > 2 and 1 < c < fc ,

Φί?(ίι ..... *e)=PΪ-'9w. if ^r<*ι ..... *'^ί * =/a vt'

= 0 , otherwise,

(5. 14) Ψ^ (tl9 ... , te} = Φ£c) (tlf ... , tβ)-l ,

then it follows that

(5.15) EVt'(tl9te,Xe+l, ... ,**) =Ψie)(*ι. ... ,ίβ),

where expectation are as before with respect to the X's.
It is readily veried that

(5.16)

By the same method as in section 3, putting cl = max(l,2fc
we have

Under the limiting condition (3. 9) it follows from (5. 3), (5. 5) and (5. 17)
that

(5.18) D (IV)~- Σ - = r f (say),

and from (5. 13), (5. 10) that

E(.M*fn)~ι*ftlk\,.
(5.19) 1 » 1 / Λ.2^-1/2fc -1 / f c ~ c λ / f c

6. Asymptotic distribution in the general case and the consistency
of Mfc-test.

Theorem 2. // the population d.f. F(x) has the continuous (except

for a finite number of points') densiity function such as \ /m(α;) dx (m =
« Jo

2, 3Λ ... ,2fc — 1) exist, and if n-*oo , N/n — > r (const), then Uk

r and M*/n
are asymptotically normally distributed (0, w1^2) ami ( r k f k / k \ , n~l σ%),
respectively.

As the theorem can be proved in parallel with Theorem 1, we shall
omit the proof.
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Theorem 3. Mk-test is consistent against every alternative hypothesis
whose d.f. statίsfies the condition stated in Theorem 2.

Proof. From Theorem 1 the asymptotic distribution of Mk/n under
#0 is normal (r^/kl , w1^) and from Theorem 2 it is normal (rYfc/fc! ,
n'^σl} under H. As the difference of means is constant and both
variances are O(n~l\ we have only to show that

(6.1)
Jo

provided that f ( x ) is not identically 1. Foi this purpose we shall
prove more general

Lemma. // #>(£) is convex function of £>0 and satisfies
and if /(#) is a density function ^υhίch is continuous almost everywhere
in the interval (0,1), then

(6.2) (V [/(*)] ̂ >1
Jo

where the equality holds if f(x) is equal to 1 almost everywhere.

Remark. (6.1) is a special case of (6.2), where φ(t} = t* .

Proof. As y=φ(f) is convex, the graph in t, 2/-ρlane is above its
tangent at (1, 1) :

except the point (1,1) itself. Thus

<?(£)><?'(!) (£-!)+!,

where equality holds if and only if t = 1. Hence

] dx
o Jo

where equality holds if and only if /(a?) = 1 almost everywhere.

7. Unbiasedness of Mfc-test. The author has proved in a recent
paper a theorem concerning the Unbiasedness in the test of goodness
of fit. We shall first give some notations.

Denote by Nt the number of -X"'s which fall in the interval (({— ΐ)/n,
i/n\ and by kt the observed value of Ni9 i = 1, ... ,n. Let W be the
set of all (kl9 ... , fcn). The subset S of W will be called symmetric if
it is invariant under all permutations of n coordinates. Finally S will
be called to satisfy the condition 0 provided that, if S contains the
point (kl9 ... ,kn} with fc<<fcfc— 2, then S contains also (kl9 ... ,fc c+l,
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Then the above-mentioned theorem runs as follows :
// the acceptance region of the test for H0 is a symmetric subset of

W and satisfies the condition 0, then the test is unbiased against all
alternatives.

Now, as one of its applications we have

Theorem 4. Mutest is unbiased against all alternatives.

Proof. Putting (C\ = 0, if < fc, we have

(7.1) *' = £(*')•

The acceptance region R of the Mfc-test is determined by the inequality

Mk<Mk",

where Mte° is a constant depending only on the level of significance of
the test.

It is obvious that R is symmetric.

The condition 0 means that if Σ (^)<Mfc° and kt<kj-2, then

Σ (ϊΛ} + (kiΐ1] + (kj^1}<Mk

Q. In" order to verify this, we have
Λ^ί, j \κ / \ fr / \ K I
merely to show that, if fc1<fc2 — 2, then

This follows at once from the relations

/fcι+Γ\ (kλ_( k, \<(k2-l\_(k2\ (k2-l
( k )-(jc)-(k-l)^(k-l)-(kΓ\ k

8. Relation between Mfc-test and David's test. We have divided
the interval (0,1] into n small intervals ((i— l)/w, i/n}9 i = l, ...,n.
Denote by nfc the number of small intervals which contain exactly k X's,
k = 0, 1, ... , N. David's test [2] for H0 uses the statistic n0 (the present
author denoted it by v in [1]), i.e., we shall accept H0 when and only
when n0 is sufficiently small.

Now n0 has a certain relationship with Mk as follows. We have

n0 + nl+n2 + n3+ +nN = n,
n1+2n2 + 3n3+ + NnN = N,

(^nN=Mfr.
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Therefore, putting MQ =n, Mλ = N, we obtain the general relation

Hence

in particular

(8.1) tto = Σ(-
fc = 0

From (8. 1) and (3. 2) we obtain

(8.2) #o

Putting

(8.3) Wϋ*

we have from (2. 7)

(8.4) ^*

(8.5) JE?o(w0*) = 0.

It follows by the same method for obtaining the variance of ϊ/fc in
section 3 that

where c2 = max (2, k + l — N} and c3 = min (fc, Z).
(8. 4) and (8. 6) imply

(8. 7) EQ (17 *̂) - (l-l/7^)^-fc+1-(l-l/^)^ ,

and under the limiting consition (3.9),

(8.8) ^0([7fc^)~7^-1(fc-l)e-^

In particular

(8.9) E0(U2n*)~,n~le-r..

It is proved in the author's paper [1] that

(8. 10) £>0

2 (V) ~ rc-1e-2r(er-l-r) .

(This evaluation can be also obtained easily from (8. 4) and (8. 7)).
Combining (3. 13), (8. 9) and (8. 10), we have the correlation coefficient
of Γ72 and w0*
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Since M2 and nQ are linear functions of Γ72 and nQ*9 respectively, this
is at the same time the correlation coefficient of M2 and nQ9 that is,

p(M Z9

When r is small, p is approximately equal to 1. This is actually
what one would expect since when r is small Mk, fc,>3, are negligible
in comparison with M2 and from (8.1) n0 becomes almost linear in
M2 only.

9. Consideration of the other limiting condition. Thus far we have
concerned ourselves with the limiting condition (3.9), while in this
section the assumption N/n-+r is substituted by N-+SO. (The author
does not know the consequence when n is fixed and N alone tends to
infinity, except the special case k = 2.)

First, let the null hypothesis H0 be true. From (3. 7) we have

(9.1) Z>oH^)

Under the limiting condition

(92) n — > oo and N/n -> oo

we have

(9.3) D

(3. 2), (9. 3) and (2. 7) imply

E0(Mk/ri)
( } Z)0

2(Mfc/^)

Corresponding to Theorem 1, we obtain

Theorem 1'. Under H0 and the limiting condition (9. 2), Uk and Mk/n
are asymptotically normally distributed with the means and variances (3. 1),
(9.3), (9.4).

Proof is omitted since it is almost similar to that of Theorem 1.
To the contrary, under the limiting condition

N — » oo and N/n — > 0 ,

the asymptotic distribution of ί/fc and Mk/n are not necessaiily normal.
Finally, under the alternative hypothesis whose d.f. satisfies the

condition in Theorem 2, (5.17) implies

(9. 5) D* ([/,') ~ c!
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If (9.2) holds, then

(9. 6) D* (t/,0 ~ k* (/^/t2-!) N't .

From (5. 13), (9. 6) and (5. 10) it follows that

( ' V

Consequently we obtain corresponding to Theorems 2 and 3,

Theorem 2 f . Under the limiting condition (9.2) and the alternative
hypothesis whose d.f. satisfies the condition stated in Theorem 2, Uk

r and
Mk/n are asymptotically normally distributed with means and variances
(5. 12), (9. 6) and (9. 7)).

Theorem 3'. Under the limiting condition (9.2) Mfc-test for H0 is
consistent against every alternative whose d.f. satisfies the condition stated
in Theorem 2.

10. Relation between M2- and %2-tests. The statistic used in the
%2-test in the case of equal probability is

v. _
* ~

_ A W-ΛW _ n (* 2 __Λ/Λ
~ & N/n N\£i Ni n) '

where Nί9i = 1, ... , n, are defined in section 7.
On the other hand, as the special case of (7.1), it holds

Combining these two equations, we have

Xz=2nM2/N+n-N,

or, by (2. 7) and (5. 10),

X2 =

Hence by (3. 13) and (5. 19)

(χ2) = 2 (»-l) (N-ΐ)/N ~ 2n ,

(X^ = N(np^-l )+n(l-p(» )

(Λ?) = 2»2 (ΛΓ-1) N-1 [2 (ΛΓ-2) (p^-
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Finally as the corollaries of Theorems 1,1' 2,2'; 3, 3' we obtain
the following

Corollary 1. Under HQ and the limiting condition (3.9) or (9.2) %2

is asymptotically normally distributed with mean n and variance 2n.

Corollary 2. Under the alternative whose d.f. satisfies the condition
stated in Theorem 2 and under the limiting condition (3.9) or (9.2), %2

is asymptotically normally distributed with mean N(f2—l}+n and variance
4ΛΓ(/3 —/22) + 2^/2, where /2 and f3 are defined in (5.4).

Corollary 3. Under the limiting condition (3.9} or (9.2) the X2-test
for H0 is consistent against every alternative whose d.f. satisfies the con-
dition in Theorem 2.

The facts in Corollaries 1 and 2 weie already stated in the papei
of H. B. Mann and A. Wald [5] but were not proved there.

(Received July 10, 1952)
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