A Topological Characterization of Pseudo-Harmonic Functions

By Yukinari Tôki

Introduction. M. Morse and M. Heins ${ }^{1)}$ studied the relations among the zeros, poles and branch points of the "pseudo-harmonic" functions defined as follows:

Let $u(x, y)$ be a function which is harmonic and not identically constant in the neighbourhood N of a point $\left(x_{0}, y_{0}\right)$ in $z(=x+i y)$ plane. Let the points of N be subjected to an arbitrary homeomorphism T in which N corresponds to another neighbourhood N^{\prime} of (x_{0}, y_{0}) and the point (x, y) on N corresponds to a point (x^{\prime}, y^{\prime}) on N^{\prime}.

Under T set

$$
u(x, y)=U\left(x^{\prime}, y^{\prime}\right)
$$

Then the function $U\left(x^{\prime}, y^{\prime}\right)$ is called pseudo-harmonic on N^{\prime}.
A function $U(x, y)$ is called pseudo-harmonic on a domain D, if $U(x, y)$ is pseudo-harmonic in some neighbourhood of each point of D.

We shall slightly extend the definition of the pseudo-harmonic function as follows:

Let F be a surface, i. e., a 2 -dimensional and separable manifold. Let $U(p)$ be a real-valued function in the neighbourhood N of a point p on F, where N corresponds to $x^{2}+y^{2}<1$ in the z-plane by a homeomorphism $T(x, y)$.

Set

$$
U(p)=U[T(x, y)] \equiv u(x, y)
$$

Then $U(p)$ is called pseudo-harmonic in N, if $u(x, y)$ is harmonic and not identically constant. A function $U(p)$ is called pseudo-harmonic on F, if $U(p)$ is pseudo-harmonic in some neighbourhood of each point of F.

[^0]We study in § 1 the topological characterization of the pseudoharmonic functions, in $\S 2$ conjugate pseudo-harmonic functions, together with their relations to interior transformations.

It is convenient to introduce here some notations and terminologies which we use in the following.
$S_{1} \cdot S_{2}, S_{1}+S_{2}$ denote the meet and join of two point sets S_{1} and S_{2} respectively, and $S_{1}-S_{2}$ the meet of S_{1} and the complymentary set of S_{2}. \bar{D} denotes the closure of a point set D and βD its boundary.

We understand by a neighbourhood N_{p} of a point p on F a neighbourhood, whose closure \bar{N}_{p} is homeomorphic to $|z| \leqq 1$ in the $z-$ plane.

If c is a real number, the set of all points with $U=c$ will be called the level c, and denoted by L_{c} :

$$
L_{c}=\{p: U(p)=c\}
$$

Points of F at which $U>c$ or $U<c$ will said the points above c or below c respectevely. Further we call the family of levels

$$
\left\{L_{c}\right\} \quad c: \text { parameter }
$$

equi-locally-conneted at a point $p \in F$, when for any N_{p} on F there exists another $N_{p}^{\prime} \subset N_{p}$, so that any pair of points of each level L_{c} in N_{p}^{\prime} can be joined by a connected subset of L_{c} in the interior of N_{p}. When $\left\{L_{c}\right\}$ is equi-locally-connected at all points of $F,\left\{L_{c}\right\}$ is equi-locally-connected on F.

§ 1. The topological characterization of the pseudo-harmonic functions

From the preceding definition follows directly:

If the family of levels $\left\{L_{c}\right\}$ is equi-locally-connected on F, each level L_{c} is locally connected.

Let $u(p)$ be a one valued real function, satisfying the following conditions:
(1) $u(p)$ is continuous.
(2) $u(p)$ is an open transformation.

Then we obtain the following lemmas.
Lemma 1. $u(p)$ never attains its relative extremum on F.
Lemma 2. Each neighbourhood of p contains both points above $u(p)$ as well as below $u(p)$.

This is evident from the condition (2) and Lemma 1.
Lemma 3. $\quad N_{p}-L_{u(p)}$ and $F-L_{u(p)}$ are open sets.
For $L_{u(p)}$ is a closed set.
Each component of $N_{p}-L_{u(p)}$ or $N_{p}-L_{u(p)}$ is evidently a domain by Lemma 3.

Lemma 4. Each domain Ω of $N_{p}-N_{u(p)}$ and $F-L_{u(p)}$ consists of points above (below) $u(p)$ only.

If $q_{1} \in \Omega$ is above $u(p), q_{2} \in \Omega$ below $u(p)$, we can join these two points with a Jordan $\operatorname{arc} C$ within Ω. Then there must exist at least one point of $L_{u(p)}$ on $C[(1)]$, which contradicts the definition of Ω. Such Ω is called the domain above or below $u(p)$.

Lemma 5. Any component of $F-L_{c}$ is not compact with respect to F.

Let Ω be a component of $F-L_{c}$, then Ω is a domain above or below c [Lemma 4]. If a domain Ω above (below) c is compact with respect to F, there exists at least such a point q on $\bar{\Omega}$ that $u(p)$ attains the maximal (minimal) value there. Since $\beta \Omega \subset L_{c}, q$ must be a point of Ω, which contradicts Lemma 1.

Lemma 6. Any component of the level \boldsymbol{c} is not entirely confined in any neighbourhood N.

If $L_{c} \subset N$ it is possible to enclose L_{c} with a Jordan curve C lying inside N and $C \cdot L_{c}=0$, since each component of $N-L_{c}$ constitutes a domain above and below c [Lemma 4], if a point on C is above (below) c, all the points of C are also above (below) c. But in any neighbourhood of a point on L_{c} there necessarily exist points below (above) c [Lemma 2]. Therefore there must exist a (with respect to F) compact domain below (above) c in the interior of C, which is contrary to Lemma 5.

Now we have the following theorem which plays the most important rôle in this

Fig. 2 paper.

Theorem 1. For a one-valued real function $u(p)$ to be pseudo-harmonic on F, it is necessary and sufficient that
(1) $u(p)$ is continuous,
(2) $u(p)$ is an open transformation,
(3) the family of levels $\left\{L_{c}\right\}$ is equi-locally-connected on F with possible exception of a discontinuum E.
We first derive some properties from the conditions (1), (2) and (3).
i) Each L_{c} is locally connected.

Suppose that L_{c} is not locally connected at $p \in L_{c}$. Then since each component of L_{c} is not entirely contained in any neighhourhood N we can choose a suitable neighbourhood N_{p}. with the following property :

In N_{p} there are at least a countable number of components $\left\{L^{i}\right\}$ ($i=1,2, \ldots$) of $L_{c} \cdot N_{p}$, which do not contain p but possess it as an accumulating point. Since each L^{i} has point in common with βN_{p} [Lemma 6], $\left\{L^{i}\right\}(i=$ $1,2, \ldots$) accumulates to a continuum K containing p and having a point in common with βN_{p}. Consider a point q on K not belonging to E and βN_{p}, then the family of levels $\left\{L_{c}\right\}$ is not equi-locally-connected at q, while the family of levels $\left\{L_{c}\right\}$ is by condition (3) equi-locally-connected at q, which is a contradiction.
ii) Even though $N_{p}-L_{u(p)}$ consists of

Fig. 3 an infinity of its components $\left\{D_{n}\right\}(n=1,2, \ldots)$, any sequence of points $\left\{p_{n}\right\}\left(p_{n} \in D_{n} ; n=1,3, \ldots\right)$ has no accumulating point in N_{p}.

If $p_{0} \in N_{p}$ is an accumulating point of $\left\{p_{n}\right\}$, we can choose a sub. sequence of $\left\{p_{n_{v}}\right\}$ converging to p_{0}, which we will denote again by $\left\{p_{n}\right\}$ for the sake of convenience. Let C be a Jordan arc possessing p_{1} and p_{0} as end points and passing through all $p_{n}(n=2,3, \ldots)$. Since each component of $F-L_{u ; p)}$ intersects βN_{p} [Lemma 5], we can join p_{n} and a point q_{n} suitably chosen on βN_{p} with a Jordan arc C_{n} in the interior of D_{n}, so that $C \cdot C_{n}$ $=p_{n}$. The sequence of points $\left\{q_{n}\right\}$ has at least one accumulating point

q, then there is a certain subsequence $\left\{\boldsymbol{q}_{n_{\nu}}\right\}$ of $\left\{\boldsymbol{q}_{n}\right\}$, so that it converges along βN_{p} in positive or negative sense; we may once more write it by $\left\{q_{n}\right\}$. For fixed n, four kinds of Jordan arcs:
I) subarc $\widehat{p_{n} p_{n+1}}$ of C,
II) C_{n+1},
III) subarc $\overparen{q}_{n} q_{n+1}$ of βN_{p} that excludes the point q_{n+2},
IV) C_{n}
bound a domain Δ_{n}, and we have

$$
\Delta_{2} \cdot \Delta_{j}=O(i, j=1,2, \ldots ; i \neq j)
$$

Then there exists in Δ_{n} a subcontinuum K_{n} of level c which attains a point $q_{n}^{\prime} \in{\overparen{q} q_{n} q_{n+1}}^{\text {from } p_{n}^{\prime} \in \overparen{p}_{n} p_{n+1}}$. $\quad\left\{K_{n}\right\}(n=1,2, \ldots)$ converges, however, to a subcontinuum K of level c containing p_{0} and q. This contradicts i).
iii) $p \in L_{c}$ is, in any neighbourhood N_{p}, a common boundary point of at least one domain above as well as below c, and yet of at most finite number of them.

If p does not belong to the boundary of any domain above c, N_{r} must have the common parts with infinite number of domains Ω_{n} above $c(n=1,2, \ldots)$ [Lemma 2]. Suitable choice of $p_{n} \in \Omega_{n}$ causes $p_{n} \rightarrow p$ for $n \rightarrow \infty$, hence $\left\{p_{n}\right\}$ becomes compact. This is impossible. Therefore p is a boundary point of a certain domain above c. It is the same with the domain below c. While, if p is a common boundary point of an infinite number of domains $\Omega_{n}(n=1,2, \ldots)$ above (below) c, we can choose $p_{n} \in \Omega_{n}$ so that $\left\{p_{n}\right\}$ may converge to p, which is also contrary. to ii).

Definition: In case $p \in L_{c}$ is a common boundary point of the sole domain above c and a domain below c, it will be called an ordinary point, otherwise a saddle point.
iv) Let Ω denote one of the domains above (below) c. Then every point of $\beta \Omega$ is accessible from the interior of Ω.

Suppose that $p \in \beta \Omega$ is an inaccessible boundary point of Ω and the decomposition

$$
\Omega \cdot U_{p}=\sum \Omega_{n}
$$

were possible for any N_{p}. Suitably chosen partial sequence of $\left\{p_{n}\right\}$ ($p_{n} \in \Omega, n=1,2, \ldots$) will converge to p. Join all these points in succession with a Jordan arc C ending at p, and we shall be lead to a contradiction in the same way as in ii).
v) The set S_{c} of all saddle points on

Fig. 5
L_{c} has no accumlating point on L_{c}.
Let $\left\{\Omega_{i}\right\}$ denote the family above and blow c lying inside an arbtrary neighbourhood N_{p} of $p \in L_{c}$ and having p as their boundary point, the number of which must be finite, say n [(iii)]. Let p be a saddle point, $n \geqq 3$ results. Let $\Omega^{\prime}, \Omega^{\prime \prime}, \Omega^{\prime \prime \prime}$ be any triple of members belonging to $\left\{\Omega_{i}\right\}$ ($i=1$, $2, \ldots, n$). Suppose that they have another boundary point p_{1} in common inside N_{p}.
 Then it will be possible to join p, p_{1} with certain Jordan arcs $C^{\prime}, C^{\prime \prime}, C_{!^{\prime \prime}}$ respectively in the interior of $\Omega^{\prime}, \Omega^{\prime \prime}$, $\Omega^{\prime \prime \prime}$ [iv)]. One of these arcs, say C^{\prime}, is enclosed by the others except for both end points. C^{\prime} consists, however, only of the points belonging to Ω except the both ends p, p_{1}, while $C^{\prime \prime}{ }_{2} . C^{\prime \prime \prime}$ contain no points of Ω^{\prime}. Therefore Ω^{\prime} must be compact with respect to F, which is contrary to Lemma 5. This shows that three domains can posses only one common boundary point. Since number m of domains above or below c on F, which intersect the neighbourhood N_{p}, is finite [ii)], the number of the saddle points inside N_{p} does not exceed ${ }_{m} H_{3}$.
vi) Every component of $L_{c}-S_{c}$ is homeomorphic to an open interval or closed Jordian curve.

Let $p \in L_{c}-S_{c}$ be an ordinary paint, p becomes the common boundary point of the sole domain Ω^{+}above c and the sole domain Ω^{-}below c. Then we can properly choose N_{p}, so that $L_{c} \cdot N_{p}$ may contain no boundary points of domains other than Ω^{+}and $\left.\Omega^{-}[\mathrm{v})\right]$. Therefore every point of $L_{c} \cdot N_{p}$ is the accessible
 boundary point of Ω^{-}and ${ }^{+} \Omega$ [iv)]. Thus we know in vertue of Schönflies' theorem that $\overline{L_{c} \cdot N_{p}}$ is a Jordan arc. Owing to Lindelöf's covering theorem $L_{c}-S_{c}$ can be covered by at most a countable number of neighbourhoods, i.e. it is a union of a countable number of open Jordan arcs.

Definition: If every components of $N_{p}-L_{u(p)}$ have the point p as their common boundary point, N_{p} is called a simple neighbourhood of the point p.
vii) There exists a simple neighbourhood N_{p} for any point pon F, and each component of $N_{p}-L_{u ; p}$ is a Jordan domain. Moreover any two domains above (below) $u(p)$ do not neighbour one another.

There exists a neighbourhood N_{p}^{\prime} for the point p such that N_{p}^{\prime} does not contain any saddle point on the level $u(p)$ with possible exception of p itself [v$)]$. Each component of $N_{p}^{\prime} \cdot L_{u(p)}-p$, which we denote by $C_{i}(i=1,2$, \ldots, n), is homeomorphic to an open interval [vi)] and $L_{u(p)}$ is locally connected [i)], so \bar{C}_{i} is a Jordan arc and the number of \bar{C}_{i} having p as its end point is finite, which we denote

Fig. 8 by $\overline{C_{1}}, \overline{C_{2}}, \ldots, \overline{C_{n}}$ in the order of positive sense.

Let p_{i} be a point of C_{i}. Then we can join the points p_{i} and p_{i+1} ($i=1,2, \ldots, n ; p_{n+1}=p_{1}$) with a Jordan $\operatorname{arc} C_{i}^{\prime}$ in the domain above or below $u(p)$. Let the domain enclosed by the Jordan curve $\sum_{i=1}^{n} C_{i t}^{\prime}$ be the neighbourhood N_{p} of p. Then N_{p} is a simple neighbourhood of p.

Next if two domains above (below) c have an arc in common on their boundary, $u(p)$ must take the relative minimum (maximum) on it. This is impossible, i.e., the same kinds of the domains cannot neighbour each other.

Definition. When $N_{p}-L_{u ; p)}$ contains n domains above $u(p)$ holding p in common, ($n-1$) is called the order of the saddle point p.
viii) The set S of all saddle points on F has no accumulating point.

Suppose the set S has a point p on F as an accumulating point, to which a certain sequence $\left\{p_{v}\right\}$ ($\nu=1,2, \ldots$) of saddle points converges. Let N_{p} be any one of neighbourhoods of $p, p_{\nu}(\nu \geqq n)$ are all contained in its interior so far as n is taken sufficiently large. From each point p_{v} issue at least four subarcs of the level $u\left(p_{v}\right)$ arriving at βN_{p}, which we denote by $C_{v_{1}}$, $C_{v_{2}}, C_{v_{3}}, C_{v_{4}}$ respectively, and their
 end points on βN_{p} we denote by $p_{v}^{\imath}, p_{v}^{2}, p_{v}^{2}, p_{v}^{\dot{2}}$ respectively.

The set $\left\{p_{v}^{i}\right\}(\nu=1,2, \ldots ; i=1,2,3,4)$ has at most two accumulating points p^{\prime} and $p^{\prime \prime}$ on βN_{p}. Then we can choose a subsequence $\left\{C_{\nu_{j}}^{i}\right\}$ $j=1,2, \ldots ; i=1,2,3,4$) of $C_{r_{j}}^{i}$, so that at least two arcs among
$C_{v_{j}}^{1}, C_{v_{j}}^{2}, C_{y_{j}}^{3}$ and $C_{v_{j}}^{4}$ converge to the arc C of the level $u(p)$ from p to p^{\prime} or $p^{\prime \prime}$ with $j \rightarrow \infty$. Let q be an inner point on C not belonging to E. It is evident that the family $u\left(p_{v_{y}}\right)(j=1,2, \ldots)$ is not equi-locally-connected at q. This is a contradiction.
ix) The family $\left\{L_{c}\right\}$ of levels is equi-locally-connected on F except for the saddle points.

Let S be the set of all saddle points on F. If $\left\{L_{c}\right\}$ is not equi-locally-connected at $p \in F-S$, there exists a neighbourhood N_{p} of p which has the following property:

It contains two sequences of points $\left\{p_{i}\right\},\left\{p_{i}^{\prime}\right\}$ converging to p and satisfying the relation $u\left(p_{i}\right)=u\left(p_{i}^{\prime}\right)=c_{i}$, while they are not connected by $L_{c_{i}}$ in N_{p}.

Take a simple neighbourhood as N_{p}, and βN_{p} intersects each $L_{c_{i}}$ [Lemma 6], from which $L_{c_{i}}$ is divided into at least two Jordan arcs. Each of them, that contains p_{i}, p_{i}^{\prime}, shall be denoted by K_{i}, K_{i}^{\prime} respectively. Then $\left\{K_{i}\right\}$ accumulates to the subarc K of the level $u(p)$, which contains p and has two end points on βN_{p}. For if the sequences of two end points $p_{i}^{\prime \prime}$ and q_{i} of K_{i} converge to one point on βN_{p}, there exists a point q on $K-E$, with respect to which $\left\{K_{i}\right\}$ is not equi-locally-connected, but this contradicts the condition (3). Hence K must be a cross-cut of N_{p}. It is the same with K^{\prime} derived from $\left\{K_{i}^{\prime}\right\}$, and yet these two have no common point except for p. For if they have a common point $q^{\prime} \neq p, K$ must coinside with K^{\prime} [Lemma 5], this contradicts the condition (3). Hence p must be a saddle point, which is a contradiction.

Definition: Let N_{p} be the neighbourhood of a point p on F. When the neighbourhood A_{p} of p satisfies the following property:

Let q_{1} and q_{2} be any two points of the level $u(p)$ in $\Omega \cdot N_{p}$, where Ω is the domain above or below $u(p)$, then q_{1} can be connected with q_{2} along $L_{u(p)}$ in N_{p}.
A_{p} is then called an admissible neighbourhood of N_{p}.
x) If N_{p} is a neighbourhood of an arbitrary point p on F, there exists an admissible neighbourhood of N_{p}.

When p is an ordinary point, the family of levels is equi-locallyconnected at $p[\mathrm{ix})]$. Therefore there exists an admissible neighbourhood A_{p} of N_{p}.

When p is a saddle point, suppose that there exists no admissible neighbourhood of N_{p}. Then there exist sequences of points $\left\{p_{i}\right\},\left\{q_{i}\right\}$ in the domain of above (below) $u(p)$, where $u\left(p_{i}\right)=u\left(q_{i}\right)(i=1,2, \ldots)$ and p_{i} is not connected with q_{i} along the level $u\left(p_{i}\right)$ in N_{p}. We see easily in the same way as in ix) that this is a contradiction.

Lemma 7. Let F be the Gaussian plane and let q be an arbitrary point of the admissible neighbourhood A_{p} of N_{p}

Fig. 11 different from p. Then there exists a chain

$$
\left(p, p_{1}, p_{2}, \ldots, p_{n}=q\right) \in N_{p}
$$

satisfying the following properties:

$$
\begin{aligned}
& \text { I) } u(p)<u\left(p_{1}\right)<\ldots<u\left(p_{n-1}\right)<u\left(p_{n}\right) \\
& \text { or } u(p)>u\left(p_{1}\right)>\ldots>u\left(p_{n-1}\right)>u\left(p_{n}\right),
\end{aligned}
$$

II) for any given positive number ε

$$
\left|p_{\imath}-p_{i-1}\right| \leqq \varepsilon \quad(i=1,2, \ldots, n)
$$

Proof. Let C be a Jordan arc joining p and q (for example $u(p)<$ $u(q))$:

$$
C: p=p(t)(0 \leqq t \leqq 1), p(0)=p, p(1)=q
$$

Set

$$
\begin{aligned}
t^{\prime} & =\sup \{t: u(p(t))=u(p)\{ \\
p^{\prime} & =p\left(t^{\prime}\right)
\end{aligned}
$$

Then the following four cases are possible:
a) $\quad\left|q-p^{\prime}\right| \leqq \frac{\varepsilon}{2}, \quad p=p^{\prime}$
b) $\quad\left|q-p^{\prime}\right| \leqq \frac{\varepsilon}{2}, \quad p \neq p^{\prime}$
c) $\quad\left|q-p^{\prime}\right|>\frac{\varepsilon}{2}, \quad p \neq p^{\prime}$
d) $\quad\left|q-p^{\prime}\right|>\frac{\varepsilon}{2}, \quad p=p^{\prime}$

In the case a), the chain (p, q) satisfies the conditions I, II.

In the case b), p is connected

Fig. 12
with p^{\prime} along the level $u(p)$ in N_{p}. Let ρ be the distance between βN_{p} and the subarc $\overparen{p p^{\prime}}$ of the level $u(p)$. Arc $\overparen{p p^{\prime}}$ is covered with a finite number of open disks, $K_{1}, K_{2}, \ldots, K_{m}$, whose diameters are less than both $\frac{\varepsilon}{4}$ and ρ, and $K_{i} \cdot K_{\imath+1} \neq 0(i=1,2, \ldots, m-1), p \in K_{1}, p^{\prime} \in K_{m}$, $\widetilde{p p^{\prime}} \cdot K_{i} \neq 0$.

Set

$$
a=\min \left[\max _{p \in K_{2}} u(p), \max _{p \in K_{3}} u(\mathrm{p}), \ldots, \max _{p \in K_{m}} u(p), u(q)\right] .
$$

Then we can choose points $p_{1}, p_{2}, \ldots, p_{m}$, where $p_{i} \in K$ and $u\left(p_{i}\right)=u(p)$ $+\frac{i(a-u(p))}{m}(i=1,2, \ldots, m)$. Therefore the chain $\left(p, p_{1}, \ldots, p_{m}, q\right)$ satisfies the conditions I, II.

In the case c), let $p^{\prime \prime}$ be such a point on C that $\left|p^{\prime \prime}-p^{\prime}\right| \leqq \frac{\varepsilon}{2}$.

$$
\begin{aligned}
& \text { Set } \\
& p^{\prime \prime}=p\left(t^{\prime \prime}\right), \\
& b=\min _{t^{\prime \prime} \leqq t \leqq 1} u(p(t)), \\
& t^{\prime \prime \prime}=\sup \left\{t: u(p(t))=\frac{1}{2}\left(b+u\left(p^{\prime}\right)\right)\right\} .
\end{aligned}
$$

Then $\left|p^{\prime \prime \prime}-p^{\prime}\right|<\frac{\varepsilon}{2}$.

Fig. 13

Therefore we can reduce our case to the case b) for the subarc $\widehat{p p^{\prime \prime \prime}}$ of C and to the case d) or a) for the subarc $\widehat{p^{\prime \prime \prime} p}$ of C.

In the case d), let $p^{\prime \prime}$ be such a point on C that $\left|p^{\prime \prime}-p\right|=\frac{\varepsilon}{2}$. Then the following two cases are possible:
d^{\prime})
$u\left(p^{\prime \prime}\right)=u(q)$,
$\mathrm{d}^{\prime \prime}$)
$u\left(p^{\prime \prime}\right)<u(q)$.
In the case d^{\prime}) we can choose the required chain in the same way as in the case b).

In the case $\mathrm{d}^{\prime \prime}$) repeat the above process about the subarc $\widetilde{p^{\prime \prime} q}$ of C instead of C. After a finite number of

Fig. 14 times we can get the required chain.

Lemma 8. Let q be an arbitrary point of an admissible neighbour-
hood A_{p} of N_{p}^{\prime} different from p and $N_{p}^{\prime} \subset N_{p}$. Then there exists a Jordan arc from p to q which intersects each level at most once in N_{p}.

Proof. Let D_{p}^{r} be the open disk with radius r and centre p, A_{p}^{r} be the maximal open disk which is an admissible neighbourhood of D_{p}^{r}. Without loss of generality we suppose that N_{p} is D_{p}^{1} and N_{p}^{\prime} is $D_{p}^{\frac{1}{2}}$. Therefore by Lemma 7 there exists a chain

$$
\left(p, p_{1}, \ldots, p_{n}=q\right) \in D_{p}^{\frac{1}{2}}
$$

satisfying the following property;

$$
u(p)<u\left(p_{1}\right)<\therefore<u\left(p_{n}\right)
$$

II') $\quad\left|p_{i}-p_{i-1}\right|<\varepsilon\left(\frac{1}{4}\right)$, where $\varepsilon\left(\frac{1}{4}\right)=\inf _{p \in D_{p}^{\frac{1}{2}}}$ (radius of $A_{p}^{\frac{1}{4}}$)
Apply Lemma 7 to the pairs of points p_{i-1} and p_{i}, and we have the chain

$$
\left(p=p^{\prime}, p_{1}^{\prime}, p_{2}^{\prime}, p, \ldots, p_{\alpha}^{\prime}=p_{1}, p_{\alpha+1}^{\prime}, \ldots, p_{\beta}^{\prime}=p_{2}, p_{\beta+1}^{\prime}, \ldots, p_{\mu}^{\prime}=q\right) \in D_{\bar{p}}^{\frac{1}{3}+\frac{1}{4}}
$$

satisfying the following properties;

$$
u\left(p^{\prime}\right)<u\left(p_{1}^{\prime}\right)<\ldots<u(q)
$$

II") $\left|p_{i}^{\prime}-p_{i-1}^{\prime}\right|<\varepsilon\left(\frac{1}{8}\right)$, where $\varepsilon\left(\frac{1}{8}\right)=\inf _{p \in D_{p}^{\frac{1}{2}+\frac{1}{4}}}$ (radius of $A_{p}^{\frac{t}{x}}$).
If we continue this process indefinitely, we have a countable number of points whose closure C is homeomorphic to the interval ($u(p), u(q))$ by the function $u(\mathrm{p})$. Then C is the required Jordan arc.

Lemma 9. Let Ω be one of the domains above (below) c_{0} possessing p_{0} as a boundary point. Then it is possible to choose the subdomain D of Ω satisfying the following conditions:
\bar{D} can be mapped by some homeomorphism onto the rec. tangle \boldsymbol{R} in the z-plane bounded by $x= \pm 1, y=c^{\prime}$, so that each level L_{c} contained in \bar{D} corresponds to the segment $y=c$ cut off by $x= \pm 1$.

Fig. 15

Proof. Let $N_{p_{0}}$ be a simple neighbourhood of p_{0}. Without loss of generality we can suppose that $N_{p_{0}}$ is an open disk in the z-plane. Let p^{\prime} and q^{\prime} be points of $\beta \Omega$ in $N_{p_{0}}$. Two Jordan $\operatorname{arcs} C_{1}, C_{2}\left(C_{1} \cdot C_{2}\right.$ $=0$) can be drawn from p^{\prime} and q^{\prime} so that they intersect each level at most once respectively [Lemma 8]. Let $L_{p_{1}}$ be one of the levels intersecting C_{1} and C_{2}. Then the domain D bounded by $L_{e_{0}}, C_{1}, C_{2}$ and $L_{c_{1}}$ will be the required one. Let $L_{c}^{(D)}=L_{c} \cdot \bar{D}$.

We shall show that $L_{c^{\prime}}^{(n)}$ converges to $L_{c}^{(n)}$ with $c^{\prime} \rightarrow c$ in the sense of Fréchet ${ }^{2)}$.

Let ε be an arbitrary positive number. $L_{c}^{(D)}$ is covered by a finite number of $\left\{A_{p}^{\frac{\varepsilon}{2}}\right\}$, where $p \in L_{c}^{(D)}$.

Set

$$
L_{c}^{(D)}: p=p_{c}(t) \quad 0 \leqq t \leqq 1
$$

Let $A_{p_{i}}^{\frac{\varepsilon}{\tau}}$ be an admissible neighbourhood of $D_{p_{i}}^{\frac{\varepsilon}{3}}(i=1, \ldots, n)$, where $p_{i}=p_{c}\left(t_{c}\right)$, such that $0<t_{1}<\ldots<t_{n}=1$.

There exist points $p_{i}=p_{c}\left(t_{i}\right)$ and admissible neighbourhoods $A_{p_{i}}^{\frac{\varepsilon}{y}}$ of $D_{p_{i}}^{\frac{\varepsilon}{亡}}$ satisfying the following conditions:

$$
\begin{array}{ll}
1 . & 0=t_{1}<t_{2}<\ldots<t_{n}=1 \\
2 . & p_{i} \in A_{p_{i+1}}^{\frac{\varepsilon}{2}} \\
(i=1,2, \ldots, n-1) .
\end{array}
$$

Let C_{1}^{\prime} be the subarc possessing p_{1} of C_{1} in $A_{p_{1}}^{\frac{\varepsilon}{2}}, C_{2}^{\prime}$ the subarc possessing p_{n} of C_{2} in $A_{p_{n}}^{\frac{\varepsilon}{\frac{1}{2}}}$. Let D_{i} be $A_{p_{i}}^{\frac{\varepsilon}{2}} \cdot A_{p_{i+1}}^{\frac{\varepsilon}{2}}(i=2, \ldots, n-1)$.

There exists a positive number δ such that the $\operatorname{arc} L_{c^{\prime}}^{(b)}$ intersects $C_{1}^{\prime}, C_{2}^{\prime}$ and all $D_{i}(i=2, \ldots, n-1)$ for $\left|c-c^{\prime}\right|<\delta$.

Let $p_{2}^{\prime}=p_{c^{\prime}}\left(t_{1}\right), p_{n}^{\prime}=p_{c^{\prime}}\left(t_{n}\right)$ and $p_{i}^{\prime}=p_{c^{\prime}}\left(t_{i}\right)$ be the point on C_{1}^{\prime}, C_{2}^{\prime} and $D_{i}(i=2, \ldots, n-1)$ respectively such that $0=t_{1}<t_{2}<\ldots<t_{n}=1$.

Then there exists a homeomorphism T such that subarcs ${ }_{p_{i} p_{i+1}}$

[^1]$(i=1,2, \ldots, n-1)$ of $L_{c}^{(\eta)}$ correspond to subarcs $\widehat{p_{i}^{\prime} p_{i+1}^{\prime}}(i=1,2, \ldots, n$ $-1)$ of $L_{c^{\prime}}^{(D)}$ respectively.

Since $\overparen{p_{i} p_{i+1}}$ and $\widehat{p_{i}^{\prime} p_{i+1}^{\prime}}$ are contained in $C_{p_{i}}^{\frac{\varepsilon}{i}}$ whose diameter is ε, the Fréchet distance ${ }^{2)}$ between $L_{c}^{(D)}$ and $L_{c^{\prime}}^{(D)}$ is less than ε. Therefore $L_{c^{\prime}}^{(D)}$ converges to $L_{c}^{(D)}$ with $c^{\prime} \rightarrow c$ in the sense of Fréchet.

Let μ be the μ-length ${ }^{3)}$ of subarc $\widetilde{p_{1} q}$ of L_{c} and $q(\mu, c)$ be the function corresponding the point q on F and the point $\mu+i c$ on the z-plane. Then $q(\mu, c)$ is continuous. ${ }^{3)}$

Setting $\mu^{*}=2\left(\frac{\mu}{\mu_{c}}-\frac{1}{2}\right)$, where μ_{c} denote the μ-length of $L_{c}^{(D)}$, $q\left(\mu^{*}, c\right)$ maps \bar{D} onto the rectangle \boldsymbol{R}.

Thus our conclusion has been verified.
Proof of Theorem 1. Since the necessity of the conditions (1), (2) and (3) is evident, we shall show that they are sufficient. First let p be an ordinary point. There exists a simple neighbourhood N_{p} as follows:

$$
\left.\begin{array}{l}
\Omega^{+} \\
\Omega^{-}
\end{array}\right\}, \text {the sole domain of }\left\{\begin{array}{c}
\text { above } \\
\text { below }
\end{array}\right\} u(p)=c \text { in } N_{p}
$$

is mapped topologically onto the rectangle $\left\{\begin{array}{l}\boldsymbol{R}^{+} \\ \boldsymbol{R}^{-}\end{array}\right\}$in the z-plane bounded by $x= \pm 1, y=c$ and $y=\left\{\begin{array}{l}c^{\prime} \\ c^{\prime \prime}\end{array}\right\} \quad\left(c^{\prime \prime}<c<c^{\prime}\right)$, so that the level $\boldsymbol{c}_{0}\left\{\begin{array}{l}\left(c \leqq c_{0} \leqq c^{\prime}\right) \\ \left(c^{\prime \prime} \leqq c_{0} \leqq c\right)\end{array}\right\}$ may correspond to $y=c_{0}$ [Lemma 9].

Furthermore, $\boldsymbol{R}=\boldsymbol{R}^{+}+\boldsymbol{R}^{-}$becomes a topological image of the whole N_{p}.

Let $p=T(z)$ denote this homeomorphism, and we have in N_{p}, i. e. in R

[^2]$$
u(p)=u(T(z))=U(z)=\Im z
$$

Second, let p be a saddle point of order $(n-1), N_{p}$ be a simple neighbourhood of p.

Then

$$
N_{p}-L_{(u) p}=\sum_{i=1}^{n}\left(\Omega_{i}^{+}+\Omega_{i}^{-}\right)
$$

where Ω^{+}and Ω^{-}denote respectively domains above and below c possessing the sole point p as a common boundary point, and situated cyclically in the order $\Omega_{1}^{+}, \Omega_{1}^{-}, \Omega_{2}^{+}, \Omega_{2}^{-}, \ldots, \Omega_{n}^{+}, \Omega_{n}^{-}$. The subdomain $\left\{\begin{array}{l}D_{i}^{+} \\ D_{i}^{-}\end{array}\right\}$of $\left\{\begin{array}{l}\Omega_{i}^{+} \\ \Omega_{i}^{-}\end{array}\right\}$is mapped topologically onto the rectangle $\left\{\begin{array}{l}\boldsymbol{R}^{+} \\ \boldsymbol{R}^{-}\end{array}\right\}$in $\zeta-$ plane $(\zeta=\xi+i \eta)$ bounded by $x= \pm 1, y=c$ and $y=\left\{\begin{array}{l}\boldsymbol{c}^{\prime} \\ c^{\prime \prime}\end{array}\right\} \quad\left(c^{\prime \prime}<\boldsymbol{c}<\boldsymbol{c}^{\prime}\right)$, so that the level $c_{0}\left\{\begin{array}{l}\left(\begin{array}{c}\left(c c_{0} \leqq c^{\prime}\right) \\ \left(c^{\prime \prime} \leqq c_{0} \leqq c\right)\end{array}\right.\end{array}\right.$ may correspond to $y=c_{0}$ [Lemma 9].
$U(x)=\Re z^{n}+c$ is the harmonic function with a saddle point of order $(n-1)$ at $z=0$. The niveau curve $U=c$ divides any circle $|z|<\rho$ (for sufficiently large ρ) into n sectors above c; $\sigma_{1}^{+}, \sigma_{2}^{+}, \ldots, \sigma_{n}^{+}$and n sectors below $c ; \sigma_{1}^{-}, \sigma_{2}^{-}, \ldots, \sigma_{n}^{-}$alternately. The subdomain $\left\{\begin{array}{l}D_{i}^{+} \\ D_{i}^{-}\end{array}\right\}$of $\left\{\begin{array}{c}\sigma_{i}^{+} \\ \sigma_{i}^{-}\end{array}\right\}$topologically onto the rectangle $\left\{\begin{array}{l}\boldsymbol{R}^{+} \\ \boldsymbol{R}^{-}\end{array}\right\}$in the ζ-plane bounded by $x= \pm 1, y=c$ and $y=\left\{\begin{array}{c}c^{\prime} \\ c^{\prime \prime}\end{array}\right\}\left(c^{\prime \prime}<c<c^{\prime}\right)$, so that the level $c_{0}\left\{\begin{array}{l}\left(c \leqq c_{0} \leqq c^{\prime}\right) \\ \left(c^{\prime \prime} \leqq c_{0} \leqq c\right)\end{array}\right\}$ may correspond to $y=c_{0}$ [Lemma 9].

Hence there exists a topological transformation $p=T(z)$ from the subdomain $|z|<\rho^{\prime}\left(\rho^{\prime}<\rho\right)$ of $|z|<\rho$ to the subdomain N_{p}^{\prime} of N_{p}, so that the level c_{0} with respect to $U(z)$ in $|z|<\rho^{\prime}$ may correspond to the level c_{0} with respect to $u(p)$ in N_{p}^{\prime}. Then $u(p)=u(T(z))=U(z)$. Thus the proof is completed.

We see that we can replace the condition (3) in Theorem 1 by the following weaker condition (3)':
(3) $)^{\prime}$ There is no pair of sequences of continua $\left\{C_{i}\right\}$ and $\left\{C_{i}^{\prime}\right\}$ converging to a continuum, where C_{i} and C_{i}^{\prime} are subcontinua of the same level c_{i} having common point each other.
Theorem 1'. In order that a real function $u(p)$ on F is pseudo-harmonic it is necessary and sufficient that $u(p)$ satisfies the conditions (1), (2) and (3)'.
§ 2. The conjugate pseudo-harmonic functions and its applications.
Let $u(p)$ be a pseudo-harmonic function on F and $v(p)$ be a real valued function on F. When, for a neighbourhood of any point on F, there exists a homeomorphism T by which N corresponds to $x^{2}+y^{2}<1$ in the z-plane, and $V(z) \equiv v(T(z))$ is the conjugate harmonic function of $U(z) \equiv u(T(z))$, the function $v(p)$ is called the conjugate pseudoharmonic function of $u(p)$.

Theorem 2. Let $u(p)$ be a pseudo-harmonic function on F. For a real valued function $v(p)$ to be a conjugate pseudo-harmonic function of $u(p)$ on F it is necessary and sufficient that
a) $v(p)$ is continuous,
b) $v(p)$ is an open transformation,
c) any continuum on each level of $u(p)$ does not correspond to one value by $v(p)$.
Proof. Since the conditions a), b) and c) are evidently necessary, we shall show that they are sufficient.

Let us denote by $L_{c}^{u c}$ and L_{c}^{v} the levels c of $u(p)$ and $v(p)$ respectively.
i) Let p be a point on F and N_{p} be a neighbourhood of p. Each component of L_{c}^{v} in the domain above (below) $u(p)$ in N_{p} intersects every component of $\left\{L_{c}^{u}\right\}$ at most once.

Suppose that a component of L_{c}^{v} intersects a component of $L_{c^{\prime}}^{u}$ at two points p and q. There exists at least an open arc C on the subarc $\stackrel{\curvearrowright}{p q}$ of $L_{c^{\prime}}^{u}$ such that any point on C is not on $\left.L_{c}^{v}[\mathrm{c})\right]$. Then there
 exists a domain D bounded by C and L_{c}^{v}.

Put

$$
w(p)=u(p)+i v(p)
$$

Then $w(p)$ is a continuous function on \bar{D}, therefore $w(p)$ is bounded in D. On the other hand D must be mapped onto the domain bounded by $u=c^{\prime}$ and $v=c$ by $w(p)$, so that $w(p)$ is not bounded in D, which is impossible.
ii) Any component C of L_{c}^{v} in a suitable neighbourhood $N_{\dot{p}}$ of an ordinary point p of $u(p)$ consists of a Jordan arc with its two end points on βN_{p}.

We may suppose that $\left\{L_{c^{\prime}}^{u}\right\}$ are parallel lines in N_{p} [Lemma 9]. C is distinct from a point [Lemma 6]. Then owing to i) \bar{C} is a Jor-
dan arc. Moreover C separates at least two domain above c and below c [Lemma 2], so that two end points of C is on βN_{p}.
iii) Any component C_{\perp}^{u} of $L_{c^{\prime}}^{u}$ in a simple neighbourhood N_{p} of an ordinary point p with respect to $u(p)$ intersects at most one component of L_{c}^{v}.

Suppose that C_{1}^{u} intersects two components C_{1}^{v} and C_{2}^{v} of L_{c}^{v}. Since there is no saddle point of $u(p)$ in N_{p}, there exists such a subarc C_{2}^{u} of $L_{c^{\prime}}^{u}$ near C_{1}^{u} that C_{2}^{u} intersects C_{1}^{v} and C_{2}^{v}.

Put $w(p)=u(p)+i v(p)$.

Let D be the domain bounded by $C_{1}^{u}, C_{2}^{u}, C_{1}^{v}$ and $C_{2}^{v} . W(p)$ is continuous on \bar{D}. On the other hand D is mapped by $w(p)$ onto the domain bounded by $u=c^{\prime}, u=c^{\prime \prime}$, and $v=c$, so that $w(\dot{p})$ is not bounded in D, which is impossible.
iv) The family of levels $\left\{L_{c}^{v}\right\}$ is equi-locally-connected at an ordinary point p of $u(p)$.

Suppose that the family of levels $\left\{L_{c}^{v}\right\}$ is not equi-locally-connected at an ordinary poinl p of $u(p)$. If we choose a suitable neighbourhood N_{p} of p, there exist two sequences of points $\left\{p_{n}\right\}$ and $\left\{p_{n}^{\prime}\right\} \quad(n=1,2$, \ldots..., such that $v\left(p_{n}\right)=v\left(p_{n}^{\prime}\right), C_{n} \cdot C_{n}^{\prime}=0$ where C_{n} and C_{n}^{\prime} are the subarcs of $L_{\boldsymbol{u}\left(p_{n}\right)}^{\boldsymbol{v}}$ and $L_{\boldsymbol{u}\left(p_{n}^{\prime}\right)}^{v}$ containing p_{n} and p_{n}^{\prime} respectively, and $\left\{C_{n}\right\}$ and $\left\{C_{n}^{\prime}\right\}$ converge to the subarc of the level $v(p)$ containing p. Let q be an inner point of C. Then the Jordan arc of $L_{u(q)}^{u}$ containing q must intersects C_{n} and C_{n}^{\prime} for sufficiently large number n. This contradicts iii).
v) $v(p)$ is pseudo-harmonic on F.

The family of levels $\left\{L_{c}^{v}\right\}$ is equi-locally-connected on F except for the saddle points of $u(p)$ on F [iv)]. Therefore $v(p)$ is pseudoharmonic on F [Theorem 1]. Then we can see easily that a compact domain D, bounded by levels $u=c_{1}, u=c_{2}, v=c_{1}^{\prime}$ and $v=c_{2}^{\prime}$ and containing no saddle point of $u(p)$ and $v(p)$, are mapped topologically onto the rectangle \boldsymbol{R} on the z-plane bounded by $x=c_{1}, x=c_{2}, y=c_{1}^{\prime}$ and $y=c_{2}^{\prime}$, such that the levels $u=c$ and $v=c^{\prime}$ correspond to $x=c$ and $y=\boldsymbol{c}^{\prime}$ respectively. Let p be an arbitrary point on F. As in Theorem 1 there exists such a homeomorphism $p=T(z)$ in a certain N_{p} that $v(T(z))$ is a conjugate harmonic function of $u(T(z))$ in N_{p}. Thus the proof is completed.

Definition: Let p_{1} and p_{2} be two points on F and let $N_{p_{1}}$ and $N_{p_{2}}$ be neighbourhoods with $N_{p_{1}} \cdot N_{p_{2}} \neq 0$. Let $u_{1}(p)$ and $u_{2}(p)$ be pseudoharmonic in $N_{p_{1}}$ and in $N_{p_{2}}$ respectively. When $u_{1}(p)=u_{2}(p)$ in $N_{p_{1}}$, $N_{p_{2}}, u_{2}(p)$ will be called a direct pseudo-harmonic continuation of $u_{1}(p)$.

Let $p_{1}, p_{2}, \ldots, p_{n}$ be the points on F and $N_{p_{1}}, N_{p_{2}}, \ldots, N_{p_{n}}$ be such neighbourhoods that $N_{p_{i}} \cdot N_{p_{i+1}} \neq 0(i=1,2, \ldots, n-1)$. Let $u_{\imath}(p)$ be pseudo-harmonic in $N_{p_{i}}(i=1,2, \ldots, n)$ respectively and let $u_{t+1}(p)$ be a direct pseudo-harmonic continuation of $u_{i}(p)$.

Set

$$
U(z)=\left\{\begin{array}{cc}
u_{1}(p) & \text { in } N_{p_{1}} \\
u_{2}(p) & \text { in } N_{p_{2}} \\
\cdot & \cdot \\
\cdot & \cdot \\
u_{n}(p) & \text { in } N_{p_{n}}
\end{array}\right.
$$

($U(z)$ is pseudo-harmonic in $\sum_{i=1}^{n} N_{p_{i}}$, but not always one valued.) Then $U(z)$ will be called a pseudo-harmonic continuation of $u_{1}(p)$.

Theorem 3. Let $u(p)$ be pseudo-harmonic on F. Then there exists always a conjugate pseudo-harmonic function.

Proof.
I) There exists a family of curves $\{C\}$ satisfying the following conditions:
a) On the ordinary point of $u(p)$ they do not intersect each other, and on the saddle point of $u(p)$ with order $n-1$ just n curves of them intersect each ether.
b) Each of them is not compact with respect to F and intersects each level of $u(p)$ at most once.
c) They cover every points on F.

Let a countable number of points $p_{1}, p_{2}, \ldots, p_{n}, \ldots$ be dense on F. There exist a countable number of neighbourhoods $\left\{N q_{2}\right\}(i=1,2, \ldots)$ such that the levels of $u(p)$ in $N q_{i}$ correspond to the levels of $\mathfrak{R} z^{m}$ $(1 \leqq m<\infty)$ in $|z|<1$ by homeomorphism T_{i} [Proof of Theorem 1], and $\sum_{i=1}^{\infty} N q_{i}=F$, but $\sum_{i=1}^{k} N q_{i} \neq F(k<\infty)$. Let $p_{1} \in N q_{i_{1}}$. We can draw from p_{1} a Jordan arc with two end points on $\beta N q_{i_{1}}$ such that it intersects
each level of $u(p)$ at most once. Let one of end points be contained in $N q_{i_{2}}$. Then we can extend its Jordan arc as far as a point of $\beta N q_{i_{2}}$

If we continue this process indefinitely, we can get a curve C_{1} satisfying the condition b).

Let $C_{1}, C_{2}, \ldots, C_{n}$ be curves satisfying the conditions a) and b). Let $p_{1}, p_{2}, \ldots, p_{j}$ be points on $\sum_{i=1}^{n} C_{i}$ and p_{i+1} be not on $\sum_{i=1}^{n} C_{i}$.

We can draw such a Jordan arc that it intersects each level of $u(p)$ at most once and does not intersect $C_{\imath}(1 \leqq i \leqq n)$. Therefore we can get the curve C_{n+1} containing p_{j+1} such that it satisfies the condition b) and does not intersect $C_{\imath}(1 \leqq i \leqq n)$. Then we can draw a coun table number of curves $\left\{C_{i}\right\}(i=1,2, \ldots)$ such that they are dense on F and satisfy the conditions a) and b).

There exist consequently a family of curves satisfying the conditions a), b) and c).
II) There exists a continuous real function $v(p)$ on F such that its levels coincide with the family of curves $\{C\}$ and $v(p)$ is monotone on each level of $u(p)$.

When we can not draw any closed curve intersecting the family of levels of $u(p)$ at most once, let L^{0} be a component of one of the levels of $u(p)$. We can define a continuous and monotone real bounded function $v(p)$ on L^{0}. Let us extend $v(p)$ to the curves of $\{C\}$ intersecting L^{0} such that each value $v(p)$ on C is the same value of $v(p)$ on the point of intersection $L^{0} \cdot C$. Let D be the domain on which $v(p)$ was defined. Let C_{1}, C_{2}, \ldots be all boundary curves of D and let L^{1}, L^{2}, \ldots components of levels of $u(p)$ intersecting C_{1}, C_{2}, \ldots respectively. Then be the we can extend a continuous and monotone real bounded function $v(p)$ to the parts L^{i} contained in the complementary set of D. Let us extend $v(p)$ to the curves of $\{C\}$ intersecting L^{i} such that each value $v(p)$ on C is the same as $v(p)$ on the point of intersection $L^{i} \cdot C$.

If we continue this process indefinitely, we can define $v(p)$ on every point of F.

When we can draw a closed curve intersecting the family of levels of $u(p)$ at most once, let F^{\prime} be the universal covering surface of F. If we define $U\left(p^{\prime}\right)$ on F^{\prime} at p^{\prime} covering $p \in F$ by $U\left(p^{\prime}\right)=u(p)$, we can not draw any closed curves on F^{\prime} intersecting the family of levels of $U\left(p^{\prime}\right)$ at most once.

We can define a continuous monotone real function $V\left(p^{\prime}\right)$ on F^{\prime} such that, if $N_{p_{1}^{\prime}}$ and $N_{p_{2}^{\prime}}$ are the neighbourhoods on F^{\prime} covering the
neighbourhood of N_{p} of a point p on F and have no branch point, $V\left(q_{1}^{\prime}\right)-V\left(q_{2}^{\prime}\right)=$ const., where $q_{1}^{\prime} \in N_{p_{1}^{\prime}}, \quad q_{2}^{\prime} \in N_{p_{2}^{\prime}}$ and they cover $q \in N_{p}$. Then we can define the required function $v(p)$, which is many valued on F.
III) $v(p)$ is the conjugate pseudo-harmonic function of $u(p)$ on F.

Since $v(p)$ is evidently an open transformation, $v(p)$ satisfies the conditions a), b) and c). Therefore $v(p)$ is the conjugate pseudoharmonic function of $u(p)$ [Theorem 2.].

Remark: When the function $v(p)$ is a many valued function, let $v_{1}(p)$ and $v_{2}(p)$ be two branchs of $v(p)$. We can always choose $v(p)$ such that $v_{1}(p)-v_{2}(p)=$ const., so in this paper the conjugate pseudoharmonic function of $u(p)$ means such a function $v(p)$.

Theorem 4. When $u(p)$ is a pseudo-harmonic function on F, we can choose local parameters such that F becomes a Riemann surface and such that $u(p)$ is harmonic on F.

Proof. Let $v(p)$ be the conjugate pseudo-harmonic function of $u(p)$ on F. Then there exists a homeomorphism T_{p} between N_{p} of each point p on F and $|z|<1$ on the z-plane such that $u\left(T_{p}(z)\right)$ and $v\left(T_{p}(z)\right)$ are conjugate harmonic function in $|z|<1$.

Set

$$
W_{p}(z)=u\left(T_{p}(z)\right)+i v\left(T_{p}(z)\right) .
$$

Then $W(z)$ is analytic in $|z|<1$.
Let $N_{p_{1}}$ and $N_{p_{2}}$ be neighbourhoods of p_{1} and p_{2} respectively such that $N_{p_{1}} \cdot N_{p_{2}} \neq 0$.

Fig. 18

Then $W_{p_{1}}(z)+$ const. $=W_{p_{2}}(z)$ [Remark], if $v(p)$ is one valued function the const. $=0$. Let $T_{p_{2}}^{-1}$ and $W_{p_{2}}^{-1}(\zeta)$ be the inverse functions $T_{p_{2}}$ and $W_{p_{2}}(z)$ respectively, where $\zeta=u+i v$.

Then $T_{p_{2}}^{-1}\left(T_{p_{1}}(z)\right)=W_{p_{2}}^{-1}\left(W_{p_{1}}(z)+\right.$ const. $)$ and $W_{p_{2}}^{-1}\left(W_{p_{1}}(z)+\right.$ const. $)$ is analytic. Hence if we choose $\left\{T_{p}\right\}$ as the local parameters on F, F becomes a Riemann surface, and $u(p)$ is harmonic on the Riemann surface F.

Now we shall study the relations between the pseudo-harmonic functions and the interior transformations defined as follows:

The transformation $I(p)$ from the surface F to the surface F^{\prime} is called an interior transformation, when $I(p)$ satisfies the following conditions:

1. $I(p)$ is continuous on F.
2. $I(p)$ is an open transformation.
3. $I(p)$ does not transform any continuum on F to one point on F^{\prime}.

Theorem 5. In order that the complex valued function $I(p)$ is an interior transformation it is necessary and sufficient that $\Re I(p)$ and $\Im I(p)$ are the conjugate pseudo-harmonic functions of each other.

Proof. Since the sufficiency of the condition is evident, we shall show that it is necessary. It is evident the $\mathfrak{R I}(p)$ and $\Im I(p)$ satisfy the conditions (1) and (2) in Theorem 1.

Suppose that $\Re I(p)$ does not satisfy the condition (3)' in Theorem 1^{\prime}.

Then there exist a pair of sequences of continua $\left\{C_{i}\right\}$ and $\left\{C_{i}^{\prime}\right\}$ converging to a continuum C_{0} where C_{i} and C_{i}^{\prime} are subcontinua of of the level c_{i} of $\Re I(p)$ having no common point each other and C_{0} is a subcontinuum of the level c_{0} of $\Re I(p)$.

Let p_{0} and q_{0} be points on C_{0} in a neighbourhood of $p \in C_{0}$ such that $\Im I(p) \neq \Im I(q)$. We may suppose for the sake of convenience that

Fig. 19
$\left\{C_{i}\right\}$ and $\left\{C_{i}^{\prime}\right\}$ are in N_{p}. Let $\left\{\begin{array}{l}p_{i} \\ p_{i}^{\prime}\end{array}\right\}$ and $\left\{\begin{array}{l}q_{i} \\ q_{i}^{\prime}\end{array}\right\}$ be points on $\left\{\begin{array}{l}C_{i} \\ C_{i}^{\prime}\end{array}\right\}$ respectively such that $\left\{\begin{array}{l}p_{i} \\ p_{i}^{\prime}\end{array}\right\} \rightarrow p_{0}$ and $\left\{\begin{array}{l}q_{i} \\ q_{i}^{\prime}\end{array}\right\} \rightarrow q_{0}$ with $i \rightarrow \infty$.

Let C be a Jordan arc such that C passes through all points p_{t} and p_{i}^{\prime}, and that any subarc $\overparen{p_{i} p_{i}^{\prime}}$ of C has a point p_{0} on it. Let C^{\prime} be a Jordan are such that it passes through all points q_{\imath} and q_{i}^{\prime} and that any subarc $\overparen{p_{i} p_{i}^{\prime}}$ of it has a point q_{0}.

We can choose the neighbourhoods $N_{p_{0}}$ and $N_{4_{0}}$ such that

$$
\begin{array}{ll}
\left|I(p)-I\left(p_{0}\right)\right|<\frac{1}{3}\left|I\left(p_{0}\right)-I\left(q_{0}\right)\right| & p \in N_{p_{0}} \\
\left|I(q)-I\left(q_{0}\right)\right|<\frac{1}{3}\left|I\left(p_{0}\right)-I\left(q_{0}\right)\right| & q \in N q_{0} .
\end{array}
$$

For sufficiently large number n the images of arc $\widehat{p_{n} p_{n}^{\prime}}$ and arc $\overparen{q_{n} q_{n}^{\prime}}$ by $I(p)$ are in the circles

$$
\left|w-I\left(p_{0}\right)\right|<\frac{1}{3}\left|I\left(p_{0}\right)-I\left(q_{0}\right)\right|
$$

and

$$
\left|w-I\left(q_{0}\right)\right|<\frac{1}{3}\left|I\left(p_{0}\right)--I\left(q_{0}\right)\right|
$$

respectively. Therefore $I(p)$ are unbounded in the compact domain bounded by the subcontinua of C_{n} and C_{n}^{\prime}, arc $\widetilde{p_{n} p_{n}^{\prime}}$ and arc $\widetilde{q_{n}{q_{n}^{\prime}}^{\prime}}$, which contradicts the condition 1. Since $\Re I(p)$ satisfies the condition (3^{\prime}), it is a pseudo-harmonic function. By the condition $3 \Im I(p)$ satisfies the condition (c) in Theorem 2. Therefore $\Im I(p)$ is a conjugate pseudoharmonic function of $\mathfrak{R} I(p)$.

Then we can easily proof the following Stoïlow's theorems.")
Theorem I. Let $I(p)$ be an interior transformation from F to F_{0}, and let q be a point on F_{0} such that $q=I\left(p_{0}\right)$. There exist neighbourhoods $N_{p_{0}}$ and N_{q} such that $N_{p_{0}}$ corresponds by $I(p)$ topologically to N_{q} or the island (Insel) on N_{q} consisting of a finite number of sheets with only one branch point.

For we can apply Theorem, 5, if we map topologically $N q$ to $|z|<1$ in the z-plane.

Theorem II. Let $I(p)$ be an interior transformation from F to the Gaussian plane. Then there exists a transformation T from F to a Riemann surface R^{\prime} such that $I\left(T\left(p^{\prime}\right)\right), p^{\prime} \in F$, is analytic.

This is evident from Theorem 5 and Theorem 4.
(Received January 26, 1951)

[^3]
[^0]: 1) M. Morse, The topology of pseudo-harmonic functions, Duke Math. Jour. 13 (1947) pp. 21-42. M. Morse and M. Heins, Topological methods in the theory of functions of a single complex variable, Annals of Math. 46 (1945), pp. 600-666, 47 (1946), pp. 233-274.
[^1]: 2) It means that Fréchet distance between $L_{c^{\prime}}^{(D)}$ and $L_{c}^{(D)}$ tends to zero with $\boldsymbol{c}^{\prime} \rightarrow \boldsymbol{c}$, where the Fréchet distance is defined as follow: Let T be a homeomorphism between $L_{c}^{(p)}$ and $L_{c}^{(D)}$. Then $\inf _{T}\left[\max _{p \in r_{c}^{(D)}}\left(\right.\right.$ distance between $p^{\prime}=T(p)$ and $\left.\left.p\right)\right]$ is called the Fréchet distance between $L_{c^{\prime}}^{(D)}$ and $L_{c}^{(D)}$.
 M. Morse, A special parametrization of curves, Bull. Amer. Math. Soc. 42 (1936), 915-922,
[^2]: 3) Let a curve C have a representation $p(t),(0 \leqq t \leqq 1)$. Let $\tau ; 0 \leqq t_{1} \leqq t_{2} \leqq \cdots \leqq t_{n} \leqq 1$ be a set of values of t on the interval (0,1). We introduce the number

 $$
 m_{n}=\max _{\tau}\left[\min _{1 \leqq i \leqq n-1}\left(\text { dist. } p\left(t_{i}\right) p\left(t_{i}+1\right)\right)\right] .
 $$

 Set

 $$
 u=\frac{m_{2}}{2}+\frac{m_{3}}{4}+\frac{m_{4}}{8}+\ldots \ldots
 $$

 We call μ the μ-length of the curve C.
 H. Whitney, Regular families of curves, Annals of Math. 34 (1933), pp. 244-270.
 M. Morse, A special parameterization of curves, 1.c.

[^3]: 4) S. Stoïlow, Leçons sur les principes topologiques de la théorie des fonctions analytiques, Paris, Gauthier-Villars, 1938.
