Osaka Mathematical Journal, Vol. 2, No. 1, March, 1950

On a Local Property of Absolute Neighbourhood Retracts

By Takeshi YAJIMA

1. In this note we shall prove the following theorem and derive from it several corollaries.

THEOREM. In order that a separable metric space Y is an absolute neighbourhood retract¹) it is necessary and sufficient that Y is compact and has the following property (L):

 $(L) \begin{cases} For each point <math>p \in Y \text{ and its neighbourhood } U \text{ there exists a} \\ neighbourhood V \subset U \text{ of } p \text{ such that every continuous mapping } f \text{ of} \\ a \text{ closed subset } A \text{ of a given metric space } X \text{ into } V \text{ can be extended} \\ over X \text{ with respect to } U. \end{cases}$

This theorem is an extension of the C. Kuratowski's characterization^{\circ}) of absolute neighbourhood *n*-retracts and gives a local property of absolute neighbourhood retracts.

2. First of all let us prove³) the necessity of the condition. Suppose Y is an absolute neighbourhood retract. Y may be considered⁴) as a neighbourhood retract of Hilbert parallelotope Q. Let r be the retraction. Then $r^{-1}(U)$ is an open set of Q containing p. Let ε be a positive number and

$$K_{\varepsilon} = \mathop{E}_{x \in q} \left[\rho \left(x, p \right) < \varepsilon \right].$$

Take $\varepsilon > 0$ sufficiently small such that $\overline{K}_{\varepsilon} \subset r^{-1}(U)$ and put $V = K_{\varepsilon} Y$. Each mapping $f \in V^A$ has an extension $f_1 \in Q^{X_5}$. Let π be the projection of Q onto $\overline{K}_{\varepsilon}$ such that

¹⁾ In the sense of K. Borsuk. See, K. Borsuk: Über eine Klasse von lokal zusammenhängenden Räumen. Fund. Math. 19 (1932), pp. 220-242.

²⁾ C. Kuratowski: Sur les espaces localement connexes et péaniens de dimension n. Fund. Math. 24 (1935), p. 273, Théorème 1.

³) The proof of C. Kuratowski also holds in the case $n = \infty$ without the assumption of compactness of Y. But if Y is compact we can prove it more simply as in the text.

⁴⁾ K. Borsuk, loc. cit. p. 223, Section 3.

⁵) W. Hurewicz and H. Wallman: Dimension Theory, p. 82, Cor. 1.

 $\pi(x)$ = the intersection of the segment \overline{px} with the boundary of K_{ε}

for $x \notin \overline{K}_{\varepsilon}$, = x for $x \in \overline{K}_{\varepsilon}$.

The continuous mapping

$$f^*(x) = r \pi f_1(x)$$

maps X into U and we have $f^*(x) = f(x)$ for $x \in A$. Hence $f^* \in U^X$ is the required extension of $f \in V^A$.

3. To prove the sufficiency of the condition we need the following Definition and Lemma.

DEFINITION. Let U, V be two open sets of Y such that $V \subset U$. If for every continuous mapping $f \in V^A$, where A is an arbitrary closed subset of X, there exists an open set E containing A such that f has an extension $f^* \in U^E$, then we say that V is an associated neighbourhood of U.

LEMMA. Let V_1 and V_2 be associated neighbourhoods of U_1 , U_2 respectively and let W_2 be an open set such that $\overline{W}_2 \subset V_2$. Then $V_1 + W_2$ is an associated neighbourhood of $U_1 + U_2$.

Proof. Put $A_1 = f^{-1}(V_1)$, $A_2 = f^{-1}(W_2)$ and $F_1 = A - A_2$, $F_2 = A - A_1$. Then F_1 and F_2 are mutually disjoint closed subsets of X. Therefore there exist an closed set F and two open sets G_1 , G_2 such that

$$X-F=G_1+G_2$$
, $G_1G_2=0$, $F_1\subset G_1$, $F_2\subset G_2$.

Let f_1 be the partial mapping $f \mid (A-G_2)$. Since f_1 maps the closed subset $(A-G_2)$ of X into V_1 , there exists an open set $E_1 \supset A-G_2$ such that f_1 can be extended to $f_1^* \in U_1^{E_1}$. Take an open set E_0 containing FA sufficiently small such that $E_0 \subset E_1$ and $f_1^* (\overline{E_0} \subset V_2)$. The existence of such an open set E_0 is guaranteed since $\overline{W_2} \subset V_2$ and $f_1^* (FA) =$ $f(FA) \subset V_1 W_2$. Consider the continuous mapping f_2 defined as follows:

$$f_2(x) = f_1^*(x)$$
 for $x \in \overline{E}_0 F$,
= $f(x)$ for $x \in A - G_1 - F$

Then f_2 maps the closed subset $(A-G_1)+\overline{E}_0F$ into V_2 . Therefore there exists an open set $E_2 \subset \overline{E}_0F + (A-G_1)$ such that f_2 can be extended to $f_2^* \in U_2^{E_2}$.

Define the mapping f^* as follows:

$$f^*(x) = f_1^*(x)$$
 for $x \in G_1 E_1 + F E_0$,
= $f_2^*(x)$ for $x \in G_2 E_2$.

60

It is obvious that f^* is continuous over $G_1 E_1 + F E_0 + G_2 E_2$, and $G_1 E_1 + F E_0 + G_2 E_2$ is an open subset of X containing A. Moreover if $x \in A$ then $f^*(x) = f(x)$. Hence $V_1 + W_2$ is an associated neighbourhood of $U_1 + U_2$.

4. Now we prove the sufficiency of the condition. Let p be an arbitrary point of Y. There exists by supposition an associated neighbourhood V_p of the open set Y. Let W_p be an open set such that $\overline{W}_p \subset V_p$. Since Y is compact, there exist a finite number of points p_1 , p_2 , ..., p_k such that

$$Y \subset \sum_{i=1}^k W_{p_i}$$
.

By virtue of Lemma $V_{p_1} + W_{p_2}$ is an associated neighbourhood of Y + Y = Y; in general $V_{p_1} + W_{p_2} + \ldots + W_{p_j}$ is an associated neighbourhood of Y. Consequently $V_{p_1} + W_{p_2} + \ldots + W_{p_k} = Y$ is an associated neighbourhood of Y.

5. From our Theorem follows directly the following

COROLLARY. If every point of a compact metric space Y has a neighbourhood homeomorphic with an open set of an absolute neighbourhood retract, then Y is also an absolute neighbourhood retract.

6. If X is a compact metric space, then its closed subset A is also compact and so is f(A). Therefore f(A) may be covered with a finite number of W's of section 4. Hence we have the following theorem by virtue of Lemma.

THEOREM. Let X be a compact metric space and let Y be a separable metric space of the property (L). Then every continuous mapping f of a closed subset A of X into Y can be extended over some neighbourhood of A with respect to Y.

This theorem and the remark of ³) shows that under the restriction of the space X in the class of compact metric spaces, absolute neighbourhood retracts in the sense of C. Kuratowski⁽⁶⁾) and separable metric space of the property (L) are equivalent.

7. The local contractibleness is characterized as follows.

In order that a separable metric space Y is locally contractible it is necessary and sufficient that for every point $p \in Y$ and for every neighbourhood $U_p \ni p$ there exists an associated neighbourhood $V_p \ni p$ of U_p of the following property:

Let X be an arbitrary metric space and let f_{c} , f_{1} be two continuous

6) C. Kuratowski, loc. cit. p. 276, Remarques,

Takeshi YAJIMA

mappings which map X into V_p . Then the mapping $\varphi(x, t)$ defined on the closed subset $X \times (0) + X \times (1)$ of $X \times < 0, 1 >$ such that

 $\varphi(x, 0) = f_0(x), \qquad \varphi(x, 1) = f_1(x)$

can be extended to $\varphi * \in U_p^{X \times < 0,1>}$.

By virtue of this characterization and Theorem of Section 1, the following well known theorem is an immediate consequence.

THEOREM. If Y is an absolute neighbourhood retract then it is locally contractible $(Borsuk)^{\tau}$.

(Received December 23 (1949)

⁷⁾ K. Borsuk, loc. cit. p. 237, Section 27.