## Random Ergodic Theorem with Finite Possible States

By Hirotada Anzai

The purpose of this note is to give a special model of , random ergodic theorem. ${ }^{1)}$

Let $X$ be the infinite direct product measure space :

$$
\begin{aligned}
X & =\mathrm{P}_{k=-\infty}^{\infty} \mathrm{H}_{k}, x \in X, x=\left(\ldots x_{-1}, x_{0}, x_{1}, x_{2}, \ldots\right), x_{k} \in \mathrm{H}_{k} \\
k & =0, \pm 1, \pm 2, \ldots
\end{aligned}
$$

We assume that each component space $\mathrm{H}_{k}$ consists of $p$ points, which are described by $p$ figures; $1,2, \ldots p$, each having the same probability (measure) $1 / p$. We denote the $k$-component $x_{k}$ of a point $x$ of $X$ by $\eta_{k}(x)$. The measure on $X$ is denoted by $m$. Let $\sigma$ be the shift transformation of $X$ :

$$
\eta_{k}(\sigma x)=\eta_{k+1}(x), \quad k=0, \pm 1, \pm 2, \ldots
$$

It is well-known that $\sigma$ is an ergodic transformation of strongly mixing type. Let $\Omega$ be another probability field (i. e. measure space). In this note we restrict ourselves to the case in which $\Omega$ consists of $q$ points; $\Omega=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{q}\right)$, each having the same a priori probability $1 / q$.

Suppose that it is given a family $\Phi$ of permutations $T_{1}, T_{3}, \ldots$, $T_{p}$ of $\Omega$. Starting from any point $\omega_{1}$ of $\Omega$, we take up at random a point from $\mathrm{H}_{1}$, if it is $x_{1}$, we operate $T_{x_{1}}$ to $\omega_{1}$, then $\omega_{1}$ is transferred to $T_{x_{1}} \omega_{1}$, at the second step we take up at random a point from $\mathrm{H}_{3}$, if it is $x_{2}$, we operate $T_{x_{2}}$ to $T_{x_{1}} \omega_{1}$, then we arrive at $T_{x_{2}} T_{x_{1}} \omega_{1}$, and so on.

Continuing this process, the transition probabilty that $\omega_{1}$ is transferred to $\omega_{2}$ after the elapse of $n$ units of time is given by

$$
m\left\{x \mid \omega_{2}=T_{\eta_{n}(x)} T_{\eta_{n-1}(x)} \ldots T_{\eta_{1}(x)} \omega_{1}\right\}
$$

We can represent any permutation $T$ of $\Omega$ in a matrix form of degree $q ; T=\left(\tau_{i j}\right), 1 \leqq i, j \leqq q$. The $i-j$ element $\tau_{i j}$ of $T$ is equal to 1 if $\omega_{i}=T \omega_{j}, \tau_{i j}=0 \quad$ if $\omega_{i} \neq T \omega_{j}$.

[^0] Math. Soc. Vol. 51, No. 9, 1945. p. 660.

Set

$$
T_{0}=1 / p\left(T_{1}+T_{2}+\ldots+T_{p}\right)
$$

$T_{0}$ is a Markoff matrix. It is easy to verify that the $i-j$ element $\tau_{i j}^{(n)}$ of $T_{0}^{n}$ is equal to $m\left\{x \mid T_{\eta_{n}(x)} \ldots T_{\eta_{1}(x)} \omega_{j}=\omega_{i}\right\}$, that is the transition probability that $\omega_{j}$ is transferred to $\omega_{i}$ after the elapse of $n$ units of time. It is a well-known fact that if for some integer $n, \tau_{i j}^{(n)}>0$ for all $i, j$, then $\lim _{n \rightarrow \infty} T_{0}^{n}=Q$ exists and all $i-j$ elements of $Q$ are equal to $1 / q$. In this case the family $\Phi$ is said to be strongly mixing.

Let $\Xi$ be the direct product measure space of $X$ and $\Omega$ :

$$
\Xi=X \times \Omega, \quad \xi \in \Xi, \quad \xi=(x, \omega), \quad x \in X, \quad \omega \in \Omega
$$

Let $\varphi$ be the measure preserving transformation of $\Xi$ defined by

$$
\varphi(x, \omega)=\left(\sigma x, T_{\eta_{1}(x)} \omega\right)
$$

Theorem 1. $\varphi$ is strongly mixing if and only if $\Phi$ is strongly mixing.

Proof: Define the functions $f_{i}(\omega), i=1,2, \ldots q$, as follows.

$$
f_{i}(\omega)=\left\{\begin{array}{lll}
1 & \text { if } & \omega=\omega_{\imath} \\
0 & \text { if } & \omega \neq \omega_{i}
\end{array}\right.
$$

Set

$$
F(x, \omega)=f_{i}(\omega), G(x, \omega)=f_{j}(\omega) .
$$

Then we have $F\left(\mathscr{\varphi}^{n}(x, \omega)\right)=f_{i}\left(T_{\eta_{n}(x)} T_{\eta_{n-1}(x)} \ldots T_{\eta_{1}(x)} \omega\right)$.
Assume that $\rho$ is strongly mixing, then we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int F\left(\varphi^{n} \xi\right) G(\xi) d \xi=\int F(\xi) d \xi \int G(\xi) d \xi \\
& =\int f_{i}(\omega) d \omega \int f_{j}(\omega) d \omega=1 / q \cdot 1 / q=1 / q^{3}
\end{aligned}
$$

The integral of the left hand side of the above equality is

$$
\begin{array}{r}
\int F\left(\mathscr{P}^{n} \xi\right) G(\xi) d \xi=\int\left\{\int f_{i}\left(T_{\eta_{n}(x)} T_{\eta_{n-1}(x)} \ldots T_{\eta_{1}(x)} \omega\right) d x\right\} f_{j}(\omega) d \omega^{v)} \\
=1 / q m\left\{x \mid \omega_{i}=T_{\eta_{n}(x)} T_{\eta_{n-1}(x)} \ldots T_{\eta_{1}(x)} \omega_{j}\right\}=1 / q \tau_{i j}^{(n)}
\end{array}
$$

Therefore we obtain the equality $\lim _{n \rightarrow \infty} 1 / q \tau_{i j}^{(n)}=1 / q^{2}$, that is, $\lim _{n \rightarrow \infty} \tau_{i j}^{(n)}=$ $1 / q$. This shows that $\Phi$ is strongly mixing.

Conversely assume that $\lim _{n \rightarrow \infty} \tau_{i j}^{(n)}=1 / q$ for all $i, j$.

[^1]Set

$$
\xi_{j}(\eta)=\exp (2 \pi i j \eta / p), j=0,1,2, \ldots p-1, \eta \in \mathrm{H}_{k} .
$$

Obviously $\left\{\zeta_{j}(\eta)\right\}, j=0,1,2, \ldots p-1$, are the complete orthonormal system of $L^{2}\left(\mathrm{H}_{k}\right)$ for any $k$.

Hence $\left\{\zeta_{k_{1}}\left(\eta_{i_{1}}(x)\right) \zeta_{k_{2}}\left(\eta_{i_{2}}(x)\right) \ldots \zeta_{k_{s}}\left(\eta_{i_{s}}(x)\right)\right\}, 0 \leqq s<\infty,-\propto<i_{1}, \ldots i_{s}$ $<\infty, 0 \leqq k_{1}, \ldots k_{s} \leq p-1$, are the complete orthonormal system of $L^{2}(X)$. We denote this system by $\Psi$.

In order to prove that $\varphi$ is strongly mixing, it is sufficient to show that

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \iint g\left(\sigma^{n} x\right) f_{i}\left(T_{\eta_{n}(x)} \ldots T_{\eta_{1}(x)} \omega\right) h(x) f_{f}(\omega) d x d \omega  \tag{1}\\
& \quad=1 / q^{2} \int g(x) d x \int h(x) d x
\end{align*}
$$

holds for any $g(x), h(x) \in \Psi$.
If $g(x) \equiv 1$, and $h(x) \equiv 1$, then the integral of the left hand side of (1) is equal to $1 / q \tau_{i j}^{(n)}$, which tends to $1 / q^{2}$ as $n \rightarrow \infty$, therefore the equality (1) holds. In general if

$$
\begin{aligned}
& g(x)=\zeta_{k_{1}}\left(\eta_{i_{2}}(x)\right) \ldots \zeta_{k_{s}}\left(\eta_{i_{s}}(x)\right) \\
& h(x)=\zeta_{i_{1}}\left(\eta_{j_{1}}(x)\right) \ldots \zeta_{i_{r}}\left(\eta_{j_{r}}(x)\right),
\end{aligned}
$$

then the integral of the left hand side of (1) is

$$
\begin{gather*}
1 / q \int \zeta_{k_{1}}\left(\eta_{i_{1}+n}(x)\right) \ldots \zeta_{k_{s}}\left(\eta_{i_{s}+n}(x)\right) f_{i}\left(T_{\eta_{n}(x)} \ldots T_{\eta_{1}(x)} \omega_{j}\right)  \tag{2}\\
\cdot \zeta_{i_{1}}\left(\eta_{j_{1}}(x)\right) \quad \ldots \zeta_{l_{r}}\left(\eta_{j_{r}}(x)\right) d x
\end{gather*}
$$

Suppose $i_{1}>i_{2}>\ldots>i_{s}$ and $j_{1}>j_{2}>\ldots>j_{r}$. There is no loss of generality in assuming that $i_{s}<0, j_{1}>0, j_{r}<0$. We may consider $n$ to be sufficiently large that $i_{s}+n>j_{1}>0$.

Set

$$
\begin{aligned}
& E{ }_{\eta_{j_{1}}, j_{j_{1}}-1, \eta_{j_{1}-1}, \ldots \eta_{j_{r}+1}, \eta_{j_{r}}}^{j_{i}, j_{r}}=\left\{x \mid \eta_{j_{1}}(x)=\eta_{j_{1}}, \eta_{j_{1}-1}(x)=\eta_{j_{1}-1},\right. \\
& \left.\ldots \eta_{j_{r+1}}(x)=\eta_{j_{r+1}}, \eta_{j_{r}}(x)=\eta_{j_{r}}\right\} .
\end{aligned}
$$

Then the sets $E_{\eta_{j_{1}}, \eta_{j_{1}-1}, \ldots, \eta_{j_{r}+1}, \eta_{j_{r}}}^{j_{1}, j_{1}-1, \ldots, j_{r}+1, r_{1}}$ and $E_{\eta_{i_{1}}, \eta_{i_{1}-1},}^{i_{1}+n i_{1}-1+n, \ldots, i_{s}+n} \ldots, \eta_{i_{s}}$ mutually stochastically independent for any

$$
1 \leqq \eta_{J_{1}}, \ldots, \eta_{J_{r}}, \eta_{t_{1}}, \cdots, \eta_{i_{s}} \leqq p .
$$

Therefore we have

$$
\left.\begin{array}{rl} 
& m\left(E_{\eta_{i}}^{i_{1}+n, i_{1}-1+n, \ldots, i_{s}+n} \cap E_{i_{1}-1}, \ldots, \eta_{i_{s}}^{j_{1}}, j_{1}-1, \ldots, j_{r}\right. \\
\eta_{j_{1}}, \eta_{j_{1}-1}, \ldots, \eta_{j_{r}}
\end{array}\right)
$$

The value of the integral (2) on the set

$$
E_{\eta_{i_{1}}, \eta_{i_{1}-1},}^{i_{1}+n, i_{1}-1+n, \ldots, i_{s}+n} \underset{\eta_{i_{s}}}{\ldots}
$$

is

$$
\begin{align*}
& 1 / q m\left(E_{\boldsymbol{\eta}_{i_{1}}, \boldsymbol{\eta}_{i_{1}-1}}^{i_{1}+n, i_{1}-1+n, \ldots, i_{s}+n}, \ldots, \boldsymbol{\eta}_{i_{s}}\right) m\left(E_{\eta_{j_{1}},}^{i_{1}, \boldsymbol{\eta}_{2}-1, \ldots, \boldsymbol{\eta}_{j_{1}-1}, \ldots, \eta_{j_{r}}}\right)  \tag{3}\\
& \text { - } \zeta_{k_{1}}\left(\eta_{i_{1}}\right) \ldots \zeta_{k_{s}}\left(\eta_{i_{s}}\right) \zeta_{i_{1}}\left(\eta_{j_{1}}\right) \ldots \zeta_{i_{r}}\left(\eta_{j_{r}}\right) \\
& \cdot \int f_{i}\left(T_{\eta_{0}} T_{\eta_{-1}} \ldots T_{\eta_{i_{s}}} T_{\eta_{i_{s}-1+n}(x)} \ldots T_{\eta_{j_{1}+1}(x)} T_{\eta_{j_{1}}} \ldots T_{\eta_{1} \omega_{j}}\right) d x
\end{align*}
$$

The value of the integral in (3) indicates the transition probability that the point $T \eta_{j_{1}} \ldots T \eta_{j_{r}} \omega_{j}$ is transferred to the point $T \bar{\eta}_{i_{s}}^{1} \ldots T_{\eta_{0}}^{1} \omega_{i}$ after the elapse of $n-1+i_{s}-j_{1}$ units of time, which tends to $1 / q$ as $n \rightarrow \infty$ by our assumption. Therefore the left hand side of (1) exists and is equal to

$$
\begin{aligned}
& 1 / q^{2} \sum_{i} \sum_{j} m\left(E_{\eta_{i_{1}}, \ldots, \eta_{i_{s}}^{i_{1}+n}, \ldots, i_{s}+n}\right) m\left(E_{\eta_{j_{1}}, \ldots, \eta_{j_{r}}}^{j_{1}}, \ldots, j_{r}\right. \\
& \quad \cdot \zeta_{k_{1}}\left(\eta_{i_{1}}\right) \ldots \zeta_{k_{s}}\left(\eta_{j_{s}}\right) \zeta_{i_{1}}\left(\eta_{j_{1}}\right) \ldots \zeta_{i_{r}}\left(\eta_{j_{r}}\right) \\
& =1 / q^{2} \int g\left(\sigma^{n} x\right) d x \int h(x) d x=1 / q^{2} \int g(x) d x \int h(x) d x .
\end{aligned}
$$

This is the required result.
Theorem 2. $\varphi$ is ergodic if and only if $\Omega$ contains no $\Phi$-invariant subset except $\Omega$ and the empty set.

Proof: If $\Omega$ contains a non-trivial $\Phi$-invariant subset $A$, then $X \times A$ is a non-trivial $\varphi$-invariant subset of $\Xi$, therefore $\mathscr{P}$ is not ergodic.

Conversely assume that $F(x, \omega)$ is a $\varphi$-invariant function, which is not a constant :

$$
\begin{equation*}
F(x, \omega) \equiv F\left(\sigma x, T_{\eta_{1}(x)} \omega\right) \tag{4}
\end{equation*}
$$

In order to conclude the existence of a non-trivial $\Phi$-invariant subset of $\Omega$, it is sufficient to show that $F(x, \omega)$ is a function depending only on the variable $\omega$. If $F(x, \omega)$ depends only on the variable $x$, then we may conclude from (4) immediately that $F(x, \omega)$ is a constant. Let $\delta$ be the least positive value of

$$
\int\left|F\left(x, \omega_{2}\right)-F\left(x, \omega_{j}\right)\right|^{2} d x, \quad 1 \leqq i, j \leqq q
$$

Let $h$ be the order of the permutation group [ $\Phi$ ] of $\Omega$ generated by $\Phi, h$ is at most $q!$. Let $\varepsilon$ be a positive number such that

$$
\begin{equation*}
6 h(1+9 p h) \varepsilon<\delta \tag{5}
\end{equation*}
$$

By the definition of $L^{\prime \prime}(X)$, it is easy to conclude the existence of a function $G(x, \omega)$ and a positive number $n$ such that

$$
\begin{equation*}
\int|F(x, \omega)-G(x, \omega)|^{2} d x<\varepsilon \quad \text { fG̈̈ all } \omega \in \Omega \tag{6}
\end{equation*}
$$

$G(x, \omega)$.does not depend on the value of $\eta_{k}(x)$ for $|k|>n$,

$$
\left\{\begin{array}{l}
\int|F(x, \omega)-F(V x, \omega)|^{2} d x<\varepsilon \quad \text { for all } \omega \in \Omega  \tag{8}\\
\int\left|F\left(\sigma^{2 n+1} x, \omega\right)-F\left(\sigma^{2 n+1} V x, \omega\right)\right|^{2} d x<\varepsilon \quad \text { for all } \omega \in \Omega
\end{array}\right.
$$

where $V$ is any measure preserving transformation of $X$ satisfying the equalities $\eta_{k}(x)=\eta_{k}(V x)$ for all $|k| \leqq n$.
Let $S_{1}$ and $S_{2}$ be elements of [ $\Phi$ ].
Set

$$
\begin{aligned}
A\left(S_{1}\right) & =\left\{x \mid T \eta_{n}(x) T \eta_{n-1}(x) \ldots T \eta_{1}(x)=S_{1}\right\} \\
A^{\prime}\left(S_{2}\right) & =\left\{x \mid T \eta_{2 n+1}(x) T \eta_{2 n}(x) \ldots T \eta_{n+2}(x)=S_{2}\right\}=\sigma^{n+1}\left(A\left(S_{2}\right)\right) \\
A\left(S_{1}, S_{2}\right) & =A\left(S_{1}\right) \cap A^{\prime}\left(S_{2}\right), \quad B_{\eta}=\left\{x \mid \eta_{n+1}(x)=\eta\right\} .
\end{aligned}
$$

Let $\eta^{\prime}$ and $\eta^{\prime \prime}$ be any mutually different integers between 1 and $p$.
Let $V$ be a measure preserving transformation of $X$ such that

$$
\begin{aligned}
& V\left\{x \mid \eta_{n+1}(x)=\eta^{\prime}\right\}=\left\{x \mid \eta_{n+1}(x)=\eta^{\prime \prime}\right\}, \\
& V\left\{x \mid \eta_{n+1}(x)=\eta^{\prime \prime}\right\}=\left\{x \mid \eta_{n+1}(x)=\eta^{\prime}\right\},
\end{aligned}
$$

and

$$
\eta_{k}(x)=\eta_{k}(V x) \text { for all } k \neq n+1
$$

$V x \in A\left(S_{1}, S_{2}\right)$ if and only if $x \in A\left(S_{1}, S_{2}\right)$.
From (4) we obtain
(9) $\quad F(x, \omega) \equiv F\left(\sigma^{2 n+1} x, T \eta_{\eta_{n+1}(x)} \ldots T_{\eta_{n+2}(x)} T \eta_{n+1}(x) T \eta_{\eta_{n}(x)} \ldots T_{\eta_{1}(x)} \omega\right)$.

If $x \in A\left(S_{1}, S_{2}\right)$, then from (9) we have

$$
\begin{equation*}
F(x, \omega)=F\left(\sigma^{2 n+1} x, S_{2} T \eta_{n+1}(x) S_{1} \omega\right) \tag{10}
\end{equation*}
$$

If $x \in A_{\left(S_{1}, S_{2}\right)} \cap B_{\eta^{\prime}}$, then from (10) we have

$$
\left\{\begin{array}{l}
F(x, \omega)=F\left(\sigma^{2 n+1} x, S_{2} T_{\eta^{\prime}} S_{1} \omega\right)  \tag{11}\\
F(V x, \omega)=F\left(\sigma^{2 n+1} V x, S_{2} T_{\eta^{\prime \prime}} S_{1} \omega\right) .
\end{array}\right.
$$

From (11) and (8) we have

$$
\begin{align*}
& \int_{A\left(S_{1}, S_{2}\right) \cap B_{\eta^{\prime}}}\left|F\left(\sigma^{2 n+1} x, S_{2} T \eta^{\prime} S_{1} \omega\right)-F\left(\sigma^{2 n+1} x, S_{2} T_{\eta^{\prime \prime}} S_{1} \omega\right)\right|^{2} d x  \tag{12}\\
& <2 \int_{A\left(S_{1}, S_{2}\right) \cap B_{\eta}}\left|F\left(\sigma^{2 n+1} x, S_{2} T \eta^{\prime} S_{1} \omega\right)-F\left(\sigma^{2 n+1} V x, S_{2} T_{\eta_{1 \prime}} S_{1} \omega\right)\right|^{2} d x
\end{align*}
$$

$$
\begin{aligned}
&+2 \int_{X}\left|F\left(\sigma^{2 n+1} V x, S_{y} T \eta^{\prime \prime} S_{1} \omega\right)-F\left(\sigma^{2 n+1} x, S_{2} T \eta^{\prime \prime} S_{1} \omega\right)\right|^{2} d x \\
&<2 \int_{A\left(S_{1}, S_{2}\right) \cap B_{\eta^{\prime}}}|F(x, \omega)-F(V x, \omega)|^{2} d x+2 \varepsilon<4 \varepsilon
\end{aligned}
$$

From (6) and (12) we have

$$
\begin{align*}
& \int_{A\left(S_{1}, S_{2}\right) \cap B_{\eta^{\prime}}}\left|G\left(\sigma^{2 n+1} x, S_{2} T \eta^{\prime} S_{1} \omega\right)-G\left(\sigma^{2 n+1} x, S_{2} T \eta^{\prime \prime} S_{1} \omega\right)\right|^{2} d x  \tag{13}\\
& <3 \int_{X}\left|G\left(\sigma^{2 n+1} x, S_{2} T \eta^{\prime} S_{1} \omega\right)-F^{\prime}\left(\sigma^{2 n+1} x, S_{2} T \eta^{\prime} S_{1} \omega\right)\right|^{2} d x \\
& \quad+3 \int_{A\left(S_{1}, S_{2}\right) \cap B_{\eta^{\prime}}}\left|F\left(\sigma^{2 n+1} x, S_{2} T \eta_{\prime} S_{1} \omega\right)-F\left(\sigma^{2 n+1} x, S_{2} T \eta^{\prime \prime} S_{1} \omega\right)\right|^{2} d x \\
& \quad+3 \int_{X}\left|F\left(\sigma^{2 n+1} x, S_{2} T \eta_{\prime \prime} S_{1} \omega\right)-G\left(\sigma^{s^{n+1}} x, S_{2} T_{\eta^{\prime \prime}} S_{1} \omega\right)\right|^{2} d x \\
& <3(\varepsilon+4 \varepsilon+\varepsilon)=18 \varepsilon .
\end{align*}
$$

The set $B_{\eta^{\prime}}$ is stochastically independent of the set $A\left(S_{1}, S_{2}\right)$ and of the functions appearing in the left hand side of (13), therefore the left hand side of (13) ie equal to

$$
\begin{align*}
& m\left(B_{\eta^{\prime}}\right) \int_{A\left(S_{1}, S_{2}\right)}\left|G\left(\sigma^{2 n+1} x, S_{2} T \eta^{\prime} S_{1} \omega\right)-G\left(\sigma^{2 n+1} x, S_{2} T \eta^{\prime \prime} S_{1} \omega\right)\right|^{2} d x  \tag{14}\\
& =1 / p \int_{A\left(S_{1}\right) \cap A^{\prime}\left(S_{2}\right)}\left|G\left(\sigma^{2 n+1} x, S_{2} T \eta^{\prime} S_{1} \omega\right)-G\left(\sigma^{2 n+1} x, S_{2} T \eta^{\prime \prime} S_{1} \omega\right)\right|^{2} d x
\end{align*}
$$

The set $A\left(S_{1}\right)$ is stochastically independent of the set $A^{\prime}\left(S_{8}\right)$ and of the functions in (14), therefore (14) is equal to

$$
\begin{equation*}
1 / p m\left(A\left(S_{1}\right)\right) \int_{A^{\prime}\left(S_{2}\right)}\left|G\left(\sigma^{2 n+1} x, S_{2} T \eta^{\prime} S_{1} \omega\right)-G\left(\sigma^{2 n+1} x, S_{2} T \eta^{\prime \prime} S_{1} \cdot \omega\right)\right|^{2} d x \tag{15}
\end{equation*}
$$

Let $S_{1}$ be an element of [ $\Phi$ ] such that $m\left(A\left(S_{1}\right)\right) \geqslant 1 / h$, then we have from the inequality (13) and (15),

$$
\begin{equation*}
\int_{A^{\prime}\left(S_{\mathrm{y}}\right)}\left|G\left(\sigma^{2 n+1} x, S_{2} T \eta_{\prime} S_{1} \omega\right)-G\left(\sigma^{2 n+1} x, S_{2} T \eta^{\prime \prime} S_{1} \omega\right)\right|^{2} d x<18 p h \varepsilon \tag{16}
\end{equation*}
$$

From (6) and (16) we have

$$
\begin{gather*}
\left.\int_{A^{\prime}\left(S_{2}\right)} \mid F\left(\sigma^{2 n+1} x, S_{2} T \eta_{\prime} S_{1} \omega\right)-F\left(\sigma^{2 n+1} x, S_{2} T_{\eta^{\prime \prime}} S_{1} \omega\right)\right)^{2} d x  \tag{17}\\
<3(\varepsilon+18 p h \varepsilon+\varepsilon)=6(1+9 p h) \varepsilon .
\end{gather*}
$$

Summing up (17) over all $S_{\mathrm{e}} \in[\Phi]$, we obtain

$$
\begin{align*}
& \int \mid F\left(\sigma^{2^{n+1}} x, T_{\left.\eta_{\mathrm{En}_{n+1}(x)} \ldots T_{\eta_{n+2}(x)} T \eta^{\prime} S_{1} \omega\right)}\right.  \tag{18}\\
& -\left.F\left(\sigma^{2 n+1} x, T_{\eta_{\Xi_{n+1}(x)}} \ldots T_{\eta_{n+2}(x)} T \eta^{\prime \prime} S_{1} \omega\right)\right|^{2} d x \\
& <6 h(1+9 p h) \varepsilon \text {. } \\
& \text { Since } \quad F\left(\sigma^{2 n+1} x, T_{\eta_{2 n+2}(x)} \ldots T_{\eta_{n+2}(x)} \omega\right) \\
& =F\left(\sigma^{n}\left(\sigma^{n+1} x\right), T_{\left.\eta_{n\left(\sigma^{n+1} x\right)} \ldots T_{\eta_{1}\left(\rho^{n+1} x\right)} \omega\right), ~}\right.
\end{align*}
$$

by replacing the variable $\sigma^{n+1} x$ in the right hand side of (18) by $x$, and by making use of (5), we obtain

$$
\begin{align*}
& \int \mid F\left(\sigma^{n} x, T \eta_{\eta_{n}(x)} T \eta_{\eta_{-1}(x)} \ldots T_{\eta_{1}(x)} T \eta_{\eta} S_{1} \omega\right)  \tag{19}\\
& \quad-\left.F\left(\sigma^{n} x, T \eta_{n}(x) T \eta_{n-1}(x) \ldots T \eta_{1}(x) T \eta_{\eta}^{\prime \prime} S_{1} \omega\right)\right|^{2} d x<\delta .
\end{align*}
$$

Since $F(x, \omega)$ is a $\rho$-invariant function,

$$
F\left(\sigma^{n} x, T \eta_{\eta_{n}(x)} T \eta_{\eta_{n-1}}(x) \ldots T_{\left.\eta_{1}(x) \omega\right)} \equiv F(x, \omega) .\right.
$$

Therefore

$$
\int \mid F\left(x, T_{\eta} S_{1} \omega\right)-F\left(x,\left.T_{\left.\eta^{\prime \prime} S_{1} \omega\right)}\right|^{2} d x<\delta .\right.
$$

By the definition of $\delta$, we have

$$
F\left(x, T_{\eta^{\prime}} S_{1} \omega\right) \equiv F\left(x, T_{\left.\eta^{\prime \prime} S_{1} \omega\right)} .\right.
$$

Since $\eta^{\prime}$ and $\eta^{\prime \prime}$ are arbitrary, we obtain

$$
F\left(x, T_{1} \omega\right) \equiv F\left(x, T_{2} \omega\right) \equiv \ldots \equiv F\left(x, T_{p} \omega\right) .
$$

Therefore

$$
F\left(\sigma x, T_{1} \omega\right) \equiv F\left(\sigma x, T_{2} \omega\right) \equiv \ldots \equiv F\left(\sigma x, T_{p} \omega\right) \equiv F(x, \omega)
$$

Let $r$ be the order of $T_{1}$, then we have

$$
F\left(\sigma^{r} x, T^{r}{ }_{1} \omega\right) \equiv F\left(\sigma^{r} x, \omega\right) \equiv F(x, \omega) .
$$

From the ergodicity of $\sigma^{r}$, we can conclude that $F(x, \omega)$ depende only on the variable $\omega$. This completes the proof of the theorem.

The extension of our results to the general case in which each component space $\mathrm{H}_{t}$ is the continuum of [0, 1]-interval with the usual Lebesgue measure and $\Phi$ is a family of measure preserving transformations of an arbitrary measure space $\Omega$ was made by S. Kakutani.


[^0]:    1.) S. M. Ulam and J. V. Neumann: 165. Random ergodic theorems. Bull. Amer.

[^1]:    2) In $\Omega$, each point has the positive measure $1 / q$, Following the usual custom we should replace the integral notation $\int d^{\prime}(\omega)$ by the summation notation $\sum$. But, for the sake of simplicity, we use the integral notation.
