On Modified Bent-Functions and Phragmén-
 Lindelöf's Principle

By Yoshimi Matsumuma

§ 1. Phragmén-Lindelöf's principle is usually stated as follows: Let $f(z)$ be a function, regular in the right half-plane and bounded on the imaginary axis, e.g. we assume

$$
\begin{equation*}
\lim _{z \rightarrow i y} \sup |f(z)| \leq 1, \quad z=x+i y \tag{1.1}
\end{equation*}
$$

and we shall denote by $M(r)$ the least upper bound of the absolute values $|f(z)|$ on the semi-circle $|z|=r$ and $|\theta|<\frac{\pi}{2}$, i. e. $M(r)=1$. u. b. $\left|f\left(r e^{i \theta}\right)\right|$, and put for the sake of simplicity

$$
\alpha=\liminf _{r \rightarrow+\infty} \frac{\log M(r)}{r}, \quad \beta=\lim _{r \rightarrow+\infty} \sup \frac{\log M(r)}{r} .
$$

Then, there may happen two cases: Either the absolute value $|f(z)|$ increases to infinity so that α is positive, or the function $f(z)$ is bounded so that we have $|f(z)| \leqq 1$ at every point of the half-plane. Especially, if $\alpha=-\infty$, then $f(z)$ is identically zero [2].

Since E. Phragmén and E. Lindelöf established this famous principle [1], many authors have studied on this subject. E. and R. Nevanlinna introduced the bentfunction $m(r)=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| \cos \theta d \theta$ [2], [3] and proved the monotonousness of $m(r) / r$. A. Dinghas has obtained this result by using the Poisson representation [6]. L. Ahlfors discussed the same property from a standpoint of a certain differential inequality and proposed a question if we have $\alpha=\beta$ so that the limit of $\underset{r}{\log M(r)}$ for $r \rightarrow+\infty$ exists [5]. M. Heins has answered this question, showing that for $0 \leq \alpha<+\infty$ we have $\alpha=\beta$ and the case $-\infty<\alpha<0$ does not occur [8].

In this Note, we first introduce Modified Bent-Functions as follows :

$$
\begin{equation*}
\mu(r)=\int_{-\pi}^{\frac{\pi}{2}} \log \left|f\left(r e^{i \theta}\right)\right| \cos \theta d \theta \tag{1.2}
\end{equation*}
$$

and we shall prove the montonousness of $\mu(r) / r$, so that we can put

$$
\begin{equation*}
\eta=\lim _{r \rightarrow+\infty} \frac{\mu(r)}{r}, \quad \eta^{+}=\lim _{r \rightarrow+\infty} \frac{m(r)}{r} \tag{1.3}
\end{equation*}
$$

Next, in §4, we shall establish the following Fundamental Inequality :

$$
\begin{equation*}
\log \left|f\left(\rho e^{i \epsilon}\right)\right| \leqq \frac{2}{\pi} \eta \cdot \rho \cos \varphi, \quad|\varphi|<\frac{\pi}{2} \tag{1.4}
\end{equation*}
$$

from which we can deduce the relations between η and η^{+}, as well as Heins' results containing the Phragmén-Lindelöf principle (Theorem 5) :
i) if $\eta=+\infty$,
ii) if $0<\eta<+\infty$,
then $\alpha=\beta=\eta=+\infty$.
then $\alpha=\beta=\frac{2}{\pi} \eta$.
iii) if $-\infty<\eta \leq 0$,
then $\alpha=\beta=0$.
iv) if $\eta=-\infty$,
then $\alpha=\beta=\eta=-\infty$.
Simple examples show that the quantity η may be really negative.
$\S 2$. We use the following inequality as the starting point of our study, which can be derived from the theory of harmonic majoration:

$$
\begin{align*}
& \log \left|f\left(\rho e^{i \varphi}\right)\right| \leq \frac{1}{2 \pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log \left|f\left(r e^{i \theta}\right)\right|\left\{\frac{r^{2}-\rho^{2}}{r^{2}+\rho^{2}-2 \rho r \cos (\rho-\theta)}\right. \tag{2.1}\\
& \left.\quad-\frac{r^{2}-\rho^{2}}{r^{2}+\rho^{2}+2 \rho r \cos (\theta+\varphi)}\right\} d \theta .^{\prime \prime}
\end{align*}
$$

The Poisson's kernels $\frac{r^{2}-\rho^{2}}{r^{2}+\rho^{2}-2 \rho r \cos (\theta-\rho)}$ and $\frac{r^{2}-\rho^{2}}{r^{2}+\rho^{2}+2 \rho r \cos (\theta+\varphi)}$ are expressible as power series of ρ / r which converge uniformly for $\rho \leq r_{1}<r$. That is,

$$
\begin{equation*}
\frac{r^{2}-\rho^{2}}{r^{2}+\rho^{3}-2 \rho r \cos (\theta-\varphi)}=1+2 \sum_{n=1}^{\infty}\left(\frac{\rho}{r}\right)^{n} \cos n(\theta-\rho) \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{r^{2}-\rho^{2}}{r^{2}+\rho^{2}+2 \rho r \cos (\theta+\mathscr{P})}=1+2 \sum_{n=1}^{\infty}\left(\frac{\rho}{r}\right)^{n} \cos n(\theta+\rho-\pi) . \tag{2.3}
\end{equation*}
$$

Hence we have

$$
\frac{r^{2}-\rho^{2}}{r^{2}+\rho^{2}-2 \rho r \cos (\theta-\rho)}-\frac{r^{2}-\rho^{2}}{r^{2}+\rho^{2}+2 \rho r \cos (\theta+\varphi)}
$$

1) The detailed proof of this inequality is found in [2], p. 5-18.

$$
=4 \sum_{n=1}^{\infty}\left(\frac{\rho}{r}\right)^{n} \sin n\left(\frac{\pi}{2}-\varphi\right) \sin n\left(\frac{\pi}{2}-\theta\right),
$$

which converges uniformly for $\rho \leq r_{1}<r$. Consequently, we can interchange the signs \sum and \int in (2.1):

$$
\begin{align*}
& \log \left|f\left(\rho e^{i \varphi}\right)\right| \leqq \frac{2}{\pi} \sum_{n=1}^{\infty}\left(\frac{\rho}{r}\right)^{n} \sin n\left(\frac{\pi}{2}-\mathscr{P}\right) \tag{2.4}\\
& \quad \times \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log \left|f\left(r e^{i \theta}\right)\right| \sin n\left(\frac{\pi}{2}-\theta\right) d \theta
\end{align*}
$$

By multiplying both sides of the inequality by $\cos \mathscr{\rho}$ and integrating them with respect to ρ from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$, we obtain for $\rho<r$,
(2.5) $\quad \frac{1}{\rho} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log \left|f\left(\rho e^{i \varphi}\right)\right| \cos \varphi d \rho \leq \frac{1}{r} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log \left|f\left(r e^{i \theta}\right)\right| \cos \theta d \theta$,

Thus we have
Theorem 1. $\mu(r) / r$ is a non-decreasing function of r.
The monotonousness of $m(r) / r$ was given by Nevanlinna, Ahlfors and Dinghas.

From (2.5), we have for $\rho<r$,

$$
\begin{equation*}
\frac{\mu(\rho)}{\rho} \leq \frac{m(\rho)}{\rho} \leq 2 \frac{\log M(r)}{r} \tag{2.6}
\end{equation*}
$$

Let r tend to infinity, then $\frac{\mu(\rho)}{\rho} \leq \frac{m(\rho)}{\rho} \leq 2 \alpha$.
Now, as $\mu(\rho) / \rho$ increases monotonously, $\lim _{\rho \rightarrow+\infty} \mu(\rho) / \rho$ must exist. Hence we have the following theorem.

Theorem 2. For $\alpha \neq+\infty, \eta$ exists and we have furthermore

$$
\begin{equation*}
\eta \leq \eta^{+} \leq 2 \alpha \tag{2.7}
\end{equation*}
$$

§3. Now let $\underset{\substack{\text { l. u. b. } \\|\varphi|<\pi / 2}}{ }\left|f\left(\rho e^{i \varphi}\right)\right|$ be attained at a point $z=\rho e^{i \varphi_{1}(\rho)}$, $\rho<r,\left|\mathscr{\rho}_{1}(\rho)\right|<\frac{\pi}{2}$, that is

$$
\left.M(\rho)=\left|f\left(\rho e^{i \varphi_{1}(\rho)}\right)\right|=\underset{|\varphi|<\pi / 2}{\text { l. u. b. }}\left|f\left(\rho e^{i \varphi}\right)\right|, 1\right)
$$

then from (2.4), we have

[^0]\[

$$
\begin{align*}
& \log M(\rho) \leq \frac{2}{\pi} \sum_{n=1}^{\infty}\left(\frac{\rho}{r}\right)^{n} \sin n\left(\frac{\pi}{2}-\wp_{1}(\rho)\right) \tag{3.1}\\
& \times \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log \left|f\left(r e^{i \theta}\right)\right| n\left(\frac{\pi}{2}-\theta\right) d \theta
\end{align*}
$$
\]

By using the inequality $n \sin \theta \geq|\sin n \theta|, 0 \leq \theta \leq \pi$, we can estimate $\frac{1}{r^{n 3}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log \left|f\left(r e^{i \theta}\right)\right| \sin n\left(\frac{\pi}{2}-\theta j d \theta\right.$ as follows :

$$
\begin{aligned}
& \left|\frac{1}{r^{n}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log \right| f\left(r e^{i \theta}\right)\left|\sin n\left(\frac{\pi}{2}-\theta\right) d \theta\right| \\
\leq & \frac{1}{r^{n}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log \left|f\left(r e^{i \theta}\right)\right| \sin n\left(\frac{\pi}{2}-\theta\right) d \theta \\
\leq & \frac{n}{r^{n}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log \left|f\left(r e^{i \theta}\right)\right| \cos \theta d \theta \\
= & n \\
r^{n} & \left\{2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log \left|f\left(r e^{i n}\right)\right| \cos \theta d \theta-\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log \left|f\left(r e^{i \theta}\right)\right| \cos \theta d \theta\right\} .
\end{aligned}
$$

If α is finite, we can see from (2.7) that $m(r) / r$ and $\mu(r) / r$ are bounded for $r \rightarrow+\infty$. Thus, if we let r tend to $+\infty, \rho$ fixed, all the terms but the first in the right-hand side of (3.1) vanish. Consequently, we have, if α is finite,

$$
\frac{\log M(\rho)}{\rho} \leq \frac{2}{\pi} \eta \cos \rho_{1}(\rho) .
$$

If $\eta \geq 0$, then $\log M(\rho) / \rho \leq \frac{2}{\pi} \eta$. Finally, be making ρ tend to infinity, we have

$$
\begin{equation*}
\frac{\pi}{2} \lim _{\rho \rightarrow+\infty} \sup \frac{\log M(\rho)}{\rho} \leq \eta \tag{3.2}
\end{equation*}
$$

From the inequalities (2.7) and (3.2), we have
Theorem 3. If η is not negative and α is finite, then

$$
\frac{\pi}{2} \beta \leq \eta \leq 2 \alpha .
$$

Corollary. Under the same conditions as Theorem 3,

$$
0 \leq \beta \leq \frac{4}{\pi} \alpha
$$

Remark. If η is $+\infty$, then α and β are also $+\infty$, and conversely, if α is $+\infty$, then η is also $+\infty$.
\S 4. For a fixed ρ, let r tend to infinity in the inequality (2.4), then

$$
\begin{equation*}
\log \left|f\left(\rho e^{i \varphi}\right)\right| \leq \frac{2}{\pi} \eta \rho \cos \varphi \tag{1.4}
\end{equation*}
$$

If η is not negative, then we have

$$
\begin{equation*}
\log \left|f\left(\rho e^{i \varphi}\right)\right| \leq \frac{4}{\pi} \alpha \rho \cos \varphi \leq \frac{4}{\pi} \alpha \rho \tag{4.1}
\end{equation*}
$$

by virtue of (2.6). Consequently, we obtain
Theorem 4. If η is not negative, then

$$
\frac{\log M(\rho)}{\rho} \leq \frac{4}{\pi} \alpha
$$

for any positive ρ. Accordingly, if the equality holds identically in the above inequality, then $f(z)$ must have the form $C e^{\frac{4}{\pi} \alpha z}$, where C is a constant having absolute valve 1.

From (1.4), we have the following inequality for any positive ρ and φ

$$
\begin{equation*}
\left|f\left(\rho e^{i \varphi}\right)\right| \leq e^{\frac{2}{\pi} n_{\rho} \cos \varphi}, \quad\left(|\varphi|<\frac{\pi}{2}\right) \tag{4.2}
\end{equation*}
$$

Consequently, if η is not positive, then we have for any positive ρ and ρ

$$
\begin{equation*}
\left|f\left(\rho e^{i \varphi}\right)\right| \leq 1, \quad\left(|\varphi|<\frac{\pi}{2}\right) \tag{4.4}
\end{equation*}
$$

These results prove the famous Phragmén-Lindelöf principle.
Remark. From (4. 1), we can see that, when α is not positive, we have also $|f(z)| \leq 1$ identically.
$\S 5$. We are in a position to make the Theorem 3 more precise and to deduce Heins' results.

We shall express $f(z)$ as follows, that is

$$
\begin{equation*}
f(z) \equiv e^{\frac{2}{\pi} \cdot n z} g(z) \tag{5.1}
\end{equation*}
$$

By the relation (1.4) and (1.1), $g(z)$ is analytic and of modulus less than 1 in the half-plane $\mathfrak{R z > 0}$, and further $\lim _{z \rightarrow i y}|g(z)| \leq 1$, that is $g(z)$ is a function of Phragmén-Lindelöf's type.

By virtue of (1.4) and (5.4), we have

$$
\begin{equation*}
|g(z)| \leq 1 \tag{5.2}
\end{equation*}
$$

Now let $E_{r}(\theta)$ be the set of angles, θ, of the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, for which

$$
\begin{equation*}
\log \left|g\left(r e^{i \theta}\right)\right| \leq-\varepsilon r, \quad(\rho \text { fixed }), \tag{5.3}
\end{equation*}
$$

for an arbitrary given positive number ε.

$$
\log \left|f\left(r e^{i \theta}\right)\right|=\frac{2}{\pi} \eta r \cos \theta+\log \left|g\left(r e^{i \theta}\right)\right|
$$

Multiplying the both side by $\cos \theta$ and integrating with θ from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$, it follows that

$$
\begin{aligned}
\frac{\mu(r)}{r} & =\eta+\frac{1}{r} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log \left|g\left(r e^{i \theta}\right)\right| \cos \theta d \theta \\
& =\eta+\frac{1}{r} \int_{E_{r}(\theta)} \log \left|g\left(r e^{i \theta}\right)\right| \cos \theta d \theta \\
& +\frac{1}{r} \int_{\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-E_{r}(\theta)} \log \left|g\left(r e^{i \theta}\right)\right| \cos \theta d \theta \\
& \leq \eta+\frac{1}{r_{E_{r}}} \int_{r} \log \left|g\left(r e^{i \theta}\right)\right| \cos \theta d \theta
\end{aligned}
$$

By (5.3)

$$
\frac{\mu(r)}{r} \leq \eta-\frac{\varepsilon r}{r} \int_{E_{r}(\theta)} d \sin \theta
$$

Therefore we have $\mu(r) / r+\varepsilon$ meas sine $E_{r}(\theta) \leq \eta$, where we denote by meas sine A, the measure of A with respect to the mass distribution $d \sin \theta$:

$$
{ }_{\text {meas }}^{\text {sine }} A=\int_{\Delta} d \sin \theta
$$

Let r tend to infinity, then we have

$$
\lim _{r+\rightarrow \infty} \text { meas sine } E_{r}(\theta) \leq 0 \text { i. e. } \lim _{r \rightarrow+\infty} \text { meas sine } E_{r}(\theta)=0
$$

Hence, given any positive number ε^{\prime}, there exist a positive number δ and a large R, for $r>R$ we have

$$
\begin{aligned}
& \text { meas }\left(E_{r}(\theta) \cap\left[\frac{\pi}{2}-\delta, \frac{\pi}{2}\right]\right)<\frac{\varepsilon^{\prime}}{4} \text { and } \\
& \operatorname{meas}\left(E_{r}(\theta) \cap\left[-\frac{\pi}{2},-\frac{\pi}{2}+\delta\right]\right) \cdot{ }^{1}
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \text { meas } \quad \operatorname{sine}\left(E_{r}(\theta) \cap\left[-\frac{\pi}{2}+\delta, \frac{\pi}{2}-\delta\right]\right)=\int_{{ }_{r}(\theta) \cap\left[-\frac{\pi}{2}+\delta, \frac{\pi}{2}-\delta\right]} d \sin \theta \geq \cos \left(\frac{\pi}{2}-\delta\right) \\
& \quad \times \int d \theta=\cos \left(\frac{\pi}{2}-\delta\right) \text { meas }\left(E_{r}(\theta) \cap\left[-\frac{\pi}{2}+\delta, \frac{\pi}{2}-\delta\right]\right) . \\
& { }_{E_{r}(\theta)}\left(-\frac{\pi}{2}+\delta, \frac{\pi}{2}-\hat{\delta}\right]
\end{aligned}
$$

Hence we obtain

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \operatorname{meas} E_{r}(\theta)=0 \tag{5.4}
\end{equation*}
$$

Case A. $0<\eta<+\infty$. In this case, for any sufficiently small positive number $\varepsilon^{\prime \prime}$, there exists an angle $\theta_{0}(r)$ such that $\left|\theta_{0}(r)\right|<\varepsilon^{\prime \prime}$ and $\theta_{0}(r) \bar{\in} E_{r}(\theta) .{ }^{?} \quad$ For this angle $\theta_{0}(r)$,

$$
\log M(r) \geq \log \left|f\left(r e^{i \theta_{0}^{(r)}}\right)\right|=\frac{2}{\pi} \eta r \cos \theta_{0}(r)+\log \left|g\left(r e^{i \theta_{0}^{(r)}}\right)\right| .
$$

From (5.3) and the definition of $\theta_{0}(r)$,

$$
\frac{\log M(r)}{r}>\frac{2}{\pi} \eta \cos \varepsilon^{\prime \prime}-\varepsilon
$$

Let r tend to positive infinity, we have $\alpha \geq \frac{2}{\pi} \eta \cos \varepsilon^{\prime \prime}-\varepsilon$. As ε and $\varepsilon^{\prime \prime}$ are arbitrary, we have $\alpha \geq \frac{2}{\pi} \eta$ which proves $\alpha=\beta=\frac{2}{\pi} \eta$.

Case B. $-\infty<\eta \leq 0$. In this case it is clear that α and β are not positive. For any sufficiently small positive number δ^{\prime}, there would exist an angle $\theta(r)$ such that $\frac{\pi}{2}>\theta(r)>\frac{\pi}{2}-\delta^{\prime}$ and $\theta(r) \in E_{r}(\theta)$.

For this angle $\theta(r)$,

[^1]\[

$$
\begin{aligned}
\log M(r) & \geq \frac{2}{\pi} \eta r \cos \theta(r)+\log \left|g\left(r e^{i \theta(r)}\right)\right| \\
& >\frac{2}{\pi} \eta r \cos \theta(r)-\varepsilon r .
\end{aligned}
$$
\]

Hence

$$
\frac{\log M(r)}{r}>\frac{2}{\pi} \eta \cos \left(\frac{\pi}{2}-\delta^{\prime}\right)-\varepsilon
$$

Let r tend to infinitly, then we have, by the definitions of ε and $\delta^{\prime}, \alpha \geq 0$. Consequenity, $\alpha=\beta=0$.

Case C. $\quad \eta=+\infty$. In this case it is clear by the Remark in $\S 4$ that $\alpha=\beta=\eta=+\infty$ 。

Case D. $\quad \eta=-\infty$. This case cannot occure except if $f(z) \equiv 0$. Consequently, $\alpha=\beta=\eta=-\infty$.

Hence we have
TheOREM 5. $\lim _{r \rightarrow+\infty} \frac{\log M(r)}{r}$ exists and further
i) if $\eta=+\infty$, then $\alpha=\beta=\eta=+\infty$.
ii) if $0<\eta<+\infty$, then $\alpha=\beta=\frac{2}{\pi} \eta$.
iii) if $-\infty<\eta \leq 0$, then $\alpha=\beta=0$ and $|f(z)| \leq 1$ for all $\mathfrak{R} z>0$.
iv) if $\eta=-\infty$, then $\alpha=\beta=\eta=-\infty$ and in this case $f(z)$ must be identically zero.

Corollary. For a sufficiently large $|\boldsymbol{z}|$, the functions $f(z)$, which are of the Phragmén-Lindelöf's type, are expressible as Ce $e^{\frac{2}{\pi-n z}}$ except for a set of almost measure zero, where C is a constant of modulus 1.
$\S 6$. Let $u(z)$ be a harmonic or a subharmonic function in the half-plane $\Re z>0$, and further suppose that $u(z)$ is not positive on the imaginary axis. Then we are able to replace $\log |f(z)|$ by $u(z)$ in the inequality (2.1). Consequently, we obtain the following theorems.

ThEOREM 7. $\frac{1}{r} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} u\left(r e^{i \theta}\right) \cos \theta d \theta$ is non-decreasing function of r and the limit exists for $r \rightarrow+\infty$.

We denote this limit by K.
Theorem 8. Let $M(r)$ be maximum of $u\left(r e^{\prime \theta}\right)$ on the semi-circle
$|\boldsymbol{z}|=r,|\theta|<\frac{\pi}{2}$. Then $\lim _{r \rightarrow+\infty} M(r) / r$ exists and if K is not negative, then

$$
\frac{\pi}{2} \lim _{r \rightarrow+\infty} \frac{M(r)}{r}=K
$$

Theorem 9. If K is finite, then

$$
\lim _{r \rightarrow+\infty} \frac{u\left(r e^{i \theta}\right)}{r}=K \cos \theta
$$

for almost all θ.

References

〔1〕 E. Phragmén and E. Lindelöf: Sur un extension d'un principe classique de l'analyse et sur quelque propriétés des fonctions monogènes dans le voisinage d'un point singulier, Acta Math. 31 (1908), 381-406.
[2] F. and R. Nevanlinna: Über die Eigenschaften analytischer Funktionen in der Ungebung einer singulären Stelle oder Linie, Acta Soc. Sci. Fenn. 50 (1922), No. 5.
[3] R. Nevanlinna: Über die Eigenschaften meromorpher Funktionen in einem Winkelraum, Acta Soc. Sci. Fenn. 50 (1922), No. 12.
[4] R. Nevanlinna: Eindeutige Analytische Funktionen, Berlin (1935)
[5] L. Ahlfors: On Phragmén-Lindelöf's principle, Trans. Amer. Math. Soc. 41 (1937), pp. 1-8.
[6] A. Dinghas: Zur Theorie der meromorphen Funktionen in einem Winkelraum, Sitzungsber. Preuss. Akad. Wiss. (1935), 576-596.
[7] A. Dinghas: Über das Phragmén-Lindelöfsche Prinzip und der Julia-Carathéodorysche Satz, Sitzungsber. Preuss. Akad. Wiss. (1938), 32-48.
[8] M. Heins: On the Phragmén-Lindölof principle, Trans. Amer. Math. Soc. 60 (1946), 238-244.
(Received' November 30, 1949)

[^0]: 1.) In case $\left|\varphi_{1}(\rho)\right|=\pi / 2$, by the hypothesis (1.1), $|f(z)| \leqslant 1$ for $|z|=\rho$. And then by the maximal principle, we can proceed our discussion as in $\% 5$. Hence we obtain $-\infty<\eta \leqslant 0$ and $\alpha=\beta=0$.

[^1]: 1) This measure is used in the Lebesgue's sense.
 2) $|0|$ means the magnitude of the angle 0 .
