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On Modified Bent-Functions and Phragmen-
Lίndelόf's Principle

By Yoshimi MATSUMUMA

§ 1. Phragmen-Lindelόfs principle is usually stated as follows:
Let /(z) be a function, regular in the right half-plane and bounded

on the imaginary axis, e. g. we assume

(1.1) lim sup I /(z) | < 1, z = x + iy,
z-*iy

and we shall denote by M (r) the least upper bound of the absolute

values | /(z) | on the semi-circle \z\ = r and | θ «~, i. e. M (r) =.1. u. b.

|/(reίθ)|, and put for the sake of simplicity

a — lim inf —^ ^-, β = lim sup

Then, there may happen two cases: Either the absolute value | /(z) [
increases to infinity so that a is positive, or the function /(z) is
bounded so that we have | /(z) <; 1 at every point of the half-plane.
Especially, if <x=— oc, then /(z) is identically zero [2],

Since E. Phragmen and E. Lindelof established this famous prin-
ciple [1], many authors have studied en this subject. E. and R.

&

5 2
log+ |/(Ve*e)|cos θdθ

~-ττ
[2], [3] and proved the monotonousness of m (r)/r. A. Dinghas has
obtained this result by using the Poisson representation [6]. L. Ahl-
fors discussed the same property from a standpoint of a certain diffe-
rential inequality and proposed a question if we have a = β so that

the limit of g.M.^T), for r—> + oo exists Γ5"]. M. Heins has answeredr . L . I
this question, showing that for 0 < a <^ -f oo we have a = β and the
case —co<^α:<^0 does not occur [8].

In this Note, we first introduce Modified Bent-Functions as follows :

JL

(1. 2) μ (?•) = (" log I f(rein~) \ cos θdθ
J - π_
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and we shall prove the montonousness of μ (f)/r, so that we can put

(1. 3) ΎI = lim ~^>r< , η' = lim -^-v-λ...
r-> + oo T r-> + oo r

Next, in § 4, we shall establish the following Fundamental In-
equality :

c\

(1. 4) lOg I /Oeίφ) I < — η p COS φ, \φ\<i ~
7Γ Δ

from which we can deduce the relations between η and η+, as well as
Heins' results containing the Phragmen-Lindelόf principle (Theorem 5):

i) if η — -4- cx>, then a = β = η = + oo.

ii) if 0 < η < + oo , then a = β = — η .
7Γ

iii) if — co<C??fCO, then α = /β = 0.
iv) if η— — oo, then a — β=η— — oo.
Simple examples show that the quantity η may be really negative.
§ 2. We use the following inequality as the starting point of our

study, which can be derived from the theory of harmonic majoration:

cos

The Poisson's kernels — - - - — ̂  ~"^» . - - — and
γ* +p- — 2pr COS (θ — φ}

. are expressible as power series of p/r whichπ

converge uniformly for /o<n<C r That is,

(2. 2) — - 0 Γ8""^ - - _ = 1 + 2 V (ΆVcos w (θ-φ)J r° + p° — 2prcos(θ — φ) ^Λ ?* ^

and

(2. 3) _ — ~~p2 ^ - ,- = 1 + 2 V f-^J r' + pz

Hence we have

2 — 2pr cos (<9 — <τ>) r* +p" + 2pr cos (̂  -f

1) The detailed proof of this inequality is found in [2J, P 5-18.
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which converges uniformly for p < n <C r- Consequently, we can inter-
change the signs ]ΓJ and \ in (2. 1) '

(2. 4) log I /Go β'*) <ς 1 § (f )"sin w ( ζ- *>)
n = \

_π_

x ( * ^ log I /(reίn) I sin ?z (f— <?) dθ .
~2

By multiplying both sides of the inequality by cos φ and integrating

them with respect to φ from — -£ to -J we obtain for /°<>,
'

_ ^

(2. 5) -1- ( 2 log I /Go e<φ) ] cos pd p < — Γ log | f(re*°') \ cos ^d^ ,
P J — π 7" J _ π

~2~ ~Z~

Thus we have
THEOREM 1. μ (r)/r is a non-decreasing function of r.
The monotonousness of m (r)/τ was gi\τen by Nevanlinna, Ahlfors

and Dinghas.
From (2; 5), we have for p <ζ r,

(2 6") μ < ^.P. < 2 -
p — p — r

Let r tend to infinity, then ^I<^LW-<2α.
/3 — p —

Now, as //, (/?)//> increases monotonously, lim // C/°)//° must exist.
Hence we have the following theorem. p^°°

THEOREM 2: For a Φ + cx>, ?/ exists and we have furthermore

(2.7) ^<97 + <2α.

§ 3. Now let 1. u. b. | f(p eίφ) | be attained at a point z =p e'W,

-, that is

then from (2. 4), we have

= 1. ϋ. b. I f(p e*η \
l φ K τ r / 2

1) In case | φj (p) | = π/2, by the hypothesis (1.1), ( f { z ) | ̂  1 for | z \ ^ ?. And then by
the maximal principle, we can proceed our discussion as in $ 5. Hence we obtain

- oo < η ̂  0 and « « β = 0.
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(3. 1) log MO) < 2, £ (f Ysin w (-?— rA 0)
^ « = ι x ' ^ ^ ̂

x Γ log I /(re") I »(£-*) <M
if __ _π_ \ <ύ /

By using the inequality n sin 0 > sin ™0 | , 0 < (9 < TT, we can

estimate ~ f 2 log |/(rβ : f l) |sinnΓ-^-^^ d0 as follows:
?" J _ Jϋ. \ Δ /

_ _

A f 2

 π log I /(re") sin n (f— ̂ )

JL

< -A- J ̂  log I f(re'«) \ sin n (|— ̂

_ _

< JL f * log I /(rβ' ) I cos 6»d6>
' v __ _Jί

2

= ̂  j 2 j s log* /(reίn) | cos βrffl- f * log | f(ret<Γ) \ cos θdθ I .
' ~2 ~y

If a is finite, we can see from (2. 7) that m (r)/r and μ (r)/r are
bounded for r — > -f- oo. Thus, if we let r tend to + oo, p fixed, all -the
terms but the first in the right-hand side of (3.1) vanish. Conse-
quently, we have, if a is finite,

— Ss —?; cos φ\ (P)
y 7Γ

2
If ?/ > 0, then log M (p)/p < — η. Finally, be making p tend to in-

π
finity, we have

(3.2) *
log

From the inequalities (2. 7) and (3. 2), we have
THEOREM 3. // η is not negative and a is finite, then

COROLLARY. Under the same conditions as THEOREM 3,
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7Γ

REMARK. If η is -f-oo, then a and β are also -f oo, and conver-
sely, if a is +00, then η is also -hoc.

§ 4. For a fixed /?, let r tend to infinity in the inequality (2. 4),
then

(1.4) log \f(pe*r)\<*-ypcosφ.
7t

If η is not negative, then we have

(4. 1) log I f(p e<(P) I < — ap cos 99 < A α/0
7Γ 7Γ

by virtue of (2. 6). Consequently, we obtain
THEOREM 4. // η is not negative, then

log MQ) ^ 4
- ^-v. - tt ,

p — 7Γ

/or α7^7/ positive p. Accordingly, if the equality holds identically in the
—y.Z

above inequality, then f(z) must have the form Ce™ , where C is a
constant having absolute valve 1.

From (1. 4), we have the following inequality for any positive p
and φ

(4.2) l/G°e«*)ί<e COSφ

Consequently, if η is not positive, then we have for any positive
and φ

(4.4)

These results prove the famous Phragmen-Lindelόf principle.
REMARK. From (4. 1), we can see that, when a is not positive,

we have also | /(z) | < 1 identically.

§ 5. We are in a position to make the Theorem 3 more precise
and to deduce Reins' results.

We shall express f(z) as follows, that is

(5.1) /(z) = e^0GO.
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By the relation (1.4) and (1.1), 9 (z) is analytic and of modulus
less than 1 in the half-plane ϊlz>>0, and further lim sup |#(z)l<l,

z +iV

that is g (z) is a function of Phragmen-Lindelofs type.
By virtue of (1. 4) and (5/4), we have

(5.2) \g(z)\<l.

Now let Eτ(ff) be the set of angles, θ, of the interval [~ , -J-J ,

for which

(5.3) log |0 (reίθ) |<-£r, (/> fixed) ,

for an arbitrary given positive number £.

log I f(reί6) I = 2- ̂ r cos 0 + log | g (rβίo) | .
7Γ

Multiplying the both side by cos<9 and integrating with θ from

__^ to -ί- , it follows that

. π

= 9 + — f 2 log I g (re"') I cos
¥ J _ 7t

2

= 37 4- — j log I g (re*°) | cos
I J

θdθ

θdθ

r (β)

cos
1 r

+ y log ] g(r

\'-2L JL1-i?/β^
L o * 2 J

< t/ + -ί ί log I flf (reίo) I cos

^ V Γ Θ ^

By (5. 3)

Therefore we have //, (r)/r 4- 6 meas . j&r (θ) < 7;, where we denote
olllv?

by meas .-. A, the measure of A with respect to the mass distribu-
olΠvί

tion d sin θ :

meas gine A = j d sin 0.
A
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Let r tend to infinity, then we have

lim sneas gine £>(0)<0 i.e. lim meas . £>(0) = 0.

Hence, given any positive "number ε f , there exist a positive number δ
and a large J?, for r^>R we have

meas (ί?r (0) A [f «A f) ) < ̂ and

On the other hand,

meas

x cW = c o s - δ meas

Hence we obtain

(5. 4) lim meas #r (έ>) = 0 .
r-+oo

Case A. 0<^?7<i -f-oo. In this case, for arty sufficiently small
positive number s" , there exists an angle θQ(r) such that \θQ(r)\<^βf/

and 00(r)£#r(0) ?) For this angle 00(r),

log AT (r) > log I /(re* Vr j) | = — ^r cos 00(r) + log | ̂  (re*VT0 | .
7t

From (5. 3) and the definition of 00 (r),

f̂ .>l
o

Let r tend to positive infinity, we have α> — T/COSS"— 6. As 6 and
7Γ

2 2£7/ are arbitrary, we have a > — 97 which proves a = β = — ^.
7Γ 7Γ

Case B. — oo <^ 7; < 0. In this case it, is clear that a and β are
not positive. For any sufficiently small positive number δ', there

would exist an angle θ (r) such that ~ > θ (r) > ̂  -δ' and θ (r)ζEr (o}.
£ £

For this angle 0(r),

1) This measure is used in the Lebesgue's sense.

2) ] 0 | means the magnitude of the angle 0.
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9
log M 0) Ξ> — 77?- cos #0) -f log 0 (ref*(ry) \

2
"> _ ηr cos θ(r} — 8 r .

7t

Hence

log M(r) >£ /» y\
r ^ π . \ 2 /

Let r tend to infinitly, then we have, by the definitions of 8 and
δ', o: > 0. Consequenity, a = β = 0.

Case C. η = -f oo. In this case it is clear by the Remark in § 4
that a — β = η = + oo.

Case D. η = — oo. This case cannot occure except if f(z) = 0.
Consequently, a = β = η= — oo.

Hence we have

THEOREM 5. lim _j exists and further
r->+oo r

i) if η = -f oo, then a = β= η = + oo.

ii) i /0<77< + oo, thena = β = ~η.
7t

iii) if — oo <^ η < 0, £/ze^ α = /5 = 0 and \ f(z) \ < 1 for all

9iz > 0.

iv) if η — — oo, ίAe^ a — β— η= — oo and in this case

f(z) must be identically zero.
COROLLARY. For a sufficiently large \ z \ , the functions /(z), which

are of the Phragmen-Lίndelofs type, are expressible as Ce^* except for
'a set of almost measure zero, where C is a constant of modulus 1.

§ 6. Let u (z) b3 a harmonic or a subharmonic function in the
half -plane 3ΐz>0, and further suppose that u(z] is not positive on
the imaginary axis. Then we are able to replace log \f(z)\ by u(z) in
the inequality (2. 1). Consequently, we obtain the following theorems.

π
1 f~2~

THEOREM 7. — u (re':o) cos θdθ is non-decreasing function of r
r j __TL

and the limit exists for r — > -f co.

We denote this limit by K.

THEOREM 8. Let M (r) be maximum of u(re'^ on the semi-circle



On Modified Bent -Functions and Fhragmen-Lindetof's Principle 41

~ . Then lim M (r)/r exists and if K is not negative,

then

2 ΛToo r

THEOREM 9. // K is finite, then

lim -———— = K cos Θ

for almost all θ.
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