On Modified Bent-Functions and Phragmen-Lindelöf's Principle

By Yoshimi Matsumuma

§ 1. Phragmén-Lindelöf's principle is usually stated as follows: Let f(z) be a function, regular in the right half-plane and bounded on the imaginary axis, e.g. we assume

(1.1)
$$\limsup_{z \to iy} |f(z)| \leq 1, \quad z = x + iy,$$

and we shall denote by M(r) the least upper bound of the absolute values |f(z)| on the semi-circle |z|=r and $|\theta|<\frac{\pi}{2}$, i.e. M(r)=1. u.b. $|f(re^{i\theta})|$, and put for the sake of simplicity

$$\alpha = \liminf_{r \to +\infty} \frac{\log M(r)}{r}$$
, $\beta = \limsup_{r \to +\infty} \frac{\log M(r)}{r}$.

Then, there may happen two cases: Either the absolute value |f(z)| increases to infinity so that α is positive, or the function f(z) is bounded so that we have $|f(z)| \leq 1$ at every point of the half-plane. Especially, if $\alpha = -\infty$, then f(z) is identically zero [2].

Since E. Phragmén and E. Lindelöf established this famous principle [1], many authors have studied on this subject. E. and R.

Nevanlinna introduced the bentfunction $m\left(r\right) = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log^{+}|f(re^{i\theta})|\cos\theta d\theta$

[2], [3] and proved the monotonousness of m(r)/r. A. Dinghas has obtained this result by using the Poisson representation [6]. L. Ahlfors discussed the same property from a standpoint of a certain differential inequality and proposed a question if we have $\alpha = \beta$ so that the limit of $\frac{\log M(r)}{r}$ for $r \to +\infty$ exists [5]. M. Heins has answered this question, showing that for $0 \le \alpha < +\infty$ we have $\alpha = \beta$ and the case $-\infty < \alpha < 0$ does not occur [8].

In this Note, we first introduce Modified Bent-Functions as follows:

(1.2)
$$\mu(r) = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log |f(re^{i\theta})| \cos \theta d\theta$$

and we shall prove the montonousness of $\mu(r)/r$, so that we can put

(1.3)
$$\eta = \lim_{r \to +\infty} \frac{\mu(r)}{r} , \quad \eta^+ = \lim_{r \to +\infty} \frac{m(r)}{r} .$$

Next, in § 4, we shall establish the following Fundamental Inequality:

(1.4)
$$\log |f(\rho e^{i\varphi})| \leq \frac{2}{\pi} \eta \cdot \rho \cos \varphi, \quad |\varphi| < \frac{\pi}{2}$$

from which we can deduce the relations between η and η^+ , as well as Heins' results containing the Phragmén-Lindelöf principle (Theorem 5):

i) if
$$\eta = +\infty$$
, then $\alpha = \beta = \eta = +\infty$.

ii) if
$$0 < \eta < +\infty$$
, then $\alpha = \beta = \frac{2}{\pi} \eta$.

iii) if
$$-\infty < \eta \le 0$$
, then $\alpha = \beta = 0$.

iv) if
$$\eta = -\infty$$
, then $\alpha = \beta = \eta = -\infty$.

Simple examples show that the quantity η may be really negative.

§ 2. We use the following inequality as the starting point of our study, which can be derived from the theory of harmonic majoration:

$$(2.1) \quad \log |f(\rho e^{i\varphi})| \leq \frac{1}{2\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log |f(re^{i\theta})| \left\{ \frac{r^2 - \rho^2}{r^2 + \rho^2 - 2\rho r \cos(\varphi - \theta)} - \frac{r^2 - \rho^2}{r^2 + \rho^2 + 2\rho r \cos(\theta + \varphi)} \right\} d\theta.$$

The Poisson's kernels $\frac{r^2ho^2}{r^2+
ho^2-2
ho r\cos{(heta-arphi)}}$ and

 $\frac{r^2-\rho^2}{r^2+\rho^2+2\rho r\cos{(\theta+\varphi)}}$ are expressible as power series of ρ/r which converge uniformly for $\rho \leq r_1 < r$. That is,

$$(2.2) \qquad \frac{r^2 - \rho^2}{r^2 + \rho^2 - 2\rho r \cos(\theta - \varphi)} = 1 + 2 \sum_{n=1}^{\infty} \left(\frac{\rho}{r}\right)^n \cos n \left(\theta - \varphi\right)$$

and

(2.3)
$$\frac{r^2 - \rho^2}{r^2 + \rho^2 + 2\rho r \cos(\theta + \varphi)} = 1 + 2\sum_{n=1}^{\infty} \left(\frac{\rho}{r}\right)^n \cos n (\theta + \varphi - \pi).$$

Hence we have

$$\frac{r^2-\rho^2}{r^2+\rho^2-2\rho r\cos\left(\theta-\varphi\right)}-\frac{r^2-\rho^2}{r^2+\rho^2+2\rho r\cos\left(\theta+\varphi\right)}.$$

¹⁾ The detailed proof of this inequality is found in (2), p. 5-18.

$$=4\sum_{n=1}^{\infty}\left(\frac{\rho}{r}\right)^n\sin n\left(\frac{\pi}{2}-\varphi\right)\sin n\left(\frac{\pi}{2}-\theta\right),$$

which converges uniformly for $\rho \leq r_1 < r$. Consequently, we can interchange the signs \sum and \int in (2,1):

$$\begin{aligned} (2.4) \quad & \log |f(\rho \, e^{i\varphi})| \leq \frac{2}{\pi} \sum_{n=1}^{\infty} \left(\frac{\rho}{r}\right)^n \sin n \left(\frac{\pi}{2} - \varphi\right) \\ & \times \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log |f(re^{i\theta})| \sin n \left(\frac{\pi}{2} - \theta\right) \, d\theta \, . \end{aligned}$$

By multiplying both sides of the inequality by $\cos \varphi$ and integrating them with respect to φ from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$, we obtain for $\rho < r$,

$$(2.5) \qquad \frac{1}{\rho} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log |f(\rho e^{i\varphi})| \cos \varphi d\varphi \leq \frac{1}{r} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log |f(re^{i\theta})| \cos \theta d\theta ,$$

Thus we have

THEOREM 1. $\mu(r)/r$ is a non-decreasing function of r.

The monotonousness of m(r)/r was given by Nevanlinna, Ahlfors and Dinghas.

From (2.5), we have for $\rho < r$,

$$(2.6) \qquad \frac{\mu(\rho)}{\rho} \leq \frac{m(\rho)}{\rho} \leq 2 \frac{\log M(r)}{r}.$$

Let r tend to infinity, then $\frac{\mu(\rho)}{\rho} \leq \frac{m(\rho)}{\rho} \leq 2\alpha$.

Now, as $\mu(\rho)/\rho$ increases monotonously, $\lim_{\rho\to +\infty} \mu(\rho)/\rho$ must exist. Hence we have the following theorem.

THEOREM 2. For $\alpha + + \infty$, η exists and we have furthermore

$$(2.7) \eta < \eta^+ < 2 \alpha.$$

§ 3. Now let l. u. b. $|f(\rho e^{i\varphi})|$ be attained at a point $z = \rho e^{i\varphi_1(\rho)}$,

$$\rho < r, |\varphi_1(\rho)| < \frac{\pi}{2}, \text{ that is}$$

$$M\left(
ho
ight)=\left|f\left(
ho\;e^{i\,arphi_{1}\left(
ho
ight)}
ight)
ight|=$$
l. u. b. $\left|f\left(
ho\;e^{i\,arphi}
ight)
ight|$, 1)

then from (2.4), we have

¹⁾ In case $|\varphi_1(\rho)| = \pi/2$, by the hypothesis (1.1), $|f(z)| \le 1$ for $|z| = \rho$. And then by the maximal principle, we can proceed our discussion as in §5. Hence we obtain $-\infty < \eta \le 0$ and $\alpha = \beta = 0$.

$$(3.1) \qquad \log M(\rho) \leq \frac{2}{\pi} \sum_{n=1}^{\infty} \left(\frac{\rho}{r}\right)^n \sin n \left(\frac{\pi}{2} - \varphi_1(\rho)\right) \\ \times \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log |f(re^{i\theta})| n \left(\frac{\pi}{2} - \theta\right) d\theta.$$

By using the inequality $n\sin\theta \ge |\sin n\theta|$, $0 \le \theta \le \pi$, we can estimate $\frac{1}{r^n} \int_{-\pi}^{\frac{\pi}{2}} \log |f(re^{i\theta})| \sin n \left(\frac{\pi}{2} - \theta\right) d\theta$ as follows:

$$\begin{split} &\left|\frac{1}{r^n}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\log|f(re^{i\theta})|\sin n\left(\frac{\pi}{2}-\theta\right)d\theta\right| \\ &\leq \frac{1}{r^n}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\log|f(re^{i\theta})|\sin n\left(\frac{\pi}{2}-\theta\right)d\theta \\ &\leq \frac{n}{r^n}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\log|f(re^{i\theta})|\cos \theta d\theta \\ &= \frac{n}{r^n}\left\{2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\log^+|f(re^{i\theta})|\cos \theta d\theta - \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\log|f(re^{i\theta})|\cos \theta d\theta\right\}. \end{split}$$

If α is finite, we can see from (2.7) that m(r)/r and $\mu(r)/r$ are bounded for $r \to +\infty$. Thus, if we let r tend to $+\infty$, ρ fixed, all the terms but the first in the right-hand side of (3.1) vanish. Consequently, we have, if α is finite,

$$\frac{\log M(\rho)}{\rho} \leq \frac{2}{\pi} \eta \cos \varphi_1(\rho)$$
.

If $\eta \ge 0$, then $\log M(\rho)/\rho \le \frac{2}{\pi} \eta$. Finally, be making ρ tend to infinity, we have

$$(3.2) \frac{\pi}{2} \limsup_{\rho \to +\infty} \frac{\log M(\rho)}{\rho} \leq \eta.$$

From the inequalities (2.7) and (3.2), we have

Theorem 3. If η is not negative and α is finite, then

$$\frac{\pi}{2}\beta \leq \eta \leq 2\alpha$$
.

COROLLARY. Under the same conditions as THEOREM 3,

$$0 \le \beta \le \frac{4}{\pi} \alpha$$
.

REMARK. If η is $+\infty$, then α and β are also $+\infty$, and conversely, if α is $+\infty$, then η is also $+\infty$.

§ 4. For a fixed ρ , let r tend to infinity in the inequality (2.4), then

(1.4)
$$\log |f(\rho e^{i\varphi})| \leq \frac{2}{\pi} \eta \rho \cos \varphi.$$

If η is not negative, then we have

$$(4.1) \log |f(\rho e^{i\varphi})| \leq \frac{4}{\pi} \alpha \rho \cos \varphi \leq \frac{4}{\pi} \alpha \rho,$$

by virtue of (2.6). Consequently, we obtain

THEOREM 4. If η is not negative, then

$$\frac{\log M(\rho)}{
ho} \leq \frac{4}{\pi} \alpha$$
 ,

for any positive ρ . Accordingly, if the equality holds identically in the above inequality, then f(z) must have the form $Ce^{\frac{4}{\pi}xz}$, where C is a constant having absolute valve 1.

From (1.4), we have the following inequality for any positive ρ and φ

$$(4.2) |f(\rho e^{i\varphi})| \leq e^{\frac{2}{\pi}\eta\rho\cos\varphi}, (|\varphi| \leq \frac{\pi}{2}).$$

Consequently, if η is not positive, then we have for any positive ρ and φ

$$(4.4) |f(\rho e^{i\varphi})| \leq 1, (|\varphi| < \frac{\pi}{2}).$$

These results prove the famous Phragmén-Lindelöf principle.

REMARK. From (4.1), we can see that, when α is not positive, we have also $|f(z)| \le 1$ identically.

§ 5. We are in a position to make the Theorem 3 more precise and to deduce Heins' results.

We shall express f(z) as follows, that is

$$(5.1) f(z) \equiv e^{\frac{2}{\pi}\eta z} g(z).$$

By the relation (1.4) and (1.1), g(z) is analytic and of modulus less than 1 in the half-plane $\Re z > 0$, and further $\limsup_{z \to iy} |g(z)| \le 1$, that is g(z) is a function of Phragmén-Lindelöf's type.

By virtue of (1.4) and (5.4), we have

$$|g(z)| \le 1.$$

Now let $E_r(\theta)$ be the set of angles, θ , of the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, for which

(5.3)
$$\log |g(re^{i\theta})| \leq -\varepsilon r$$
, $(\rho \text{ fixed})$,

for an arbitrary given positive number ε .

$$\log |f(re^{i\theta})| = \frac{2}{\pi} \eta r \cos \theta + \log |g(re^{i\theta})|.$$

Multiplying the both side by $\cos\theta$ and integrating with θ from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$, it follows that

$$egin{aligned} rac{\mu\left(r
ight)}{r} &= \eta + rac{1}{r} \int_{-rac{\pi}{2}}^{rac{\pi}{2}} \log |g\left(re^{i\theta}
ight)| \cos heta d heta \ &= \eta + rac{1}{r} \int_{E_r(\theta)} \log |g\left(re^{i\theta}
ight)| \cos heta d heta \ &+ rac{1}{r} \int \log |g(re^{i\theta})| \cos heta d heta \ &- rac{\pi}{2}, rac{\pi}{2}
brace^{-E_r(\theta)} \ &\leq \eta + rac{1}{r} \int_{E_r(\theta)} \log |g\left(re^{i\theta}
ight)| \cos heta d heta \,. \end{aligned}$$

By (5. 3)

$$\frac{\mu(r)}{r} \leq \eta - \frac{\varepsilon r}{r} \int_{B_r(\theta)} d \sin \theta.$$

Therefore we have $\mu(r)/r + \varepsilon$ meas $\lim_{n \to \infty} E_r(\theta) \leq \eta$, where we denote by meas $\lim_{n \to \infty} A$, the measure of A with respect to the mass distribution $d \sin \theta$:

meas sine
$$A = \int_{A} d \sin \theta$$
.

Let r tend to infinity, then we have

$$\lim_{r \to \infty}$$
 meas sine $E_r(\theta) \le 0$ i.e. $\lim_{r \to +\infty}$ meas sine $E_r(\theta) = 0$.

Hence, given any positive number ε' , there exist a positive number δ and a large R, for r > R we have

$$\begin{split} & \operatorname{meas}\left(E_r(\theta) \bigcap \left(\frac{\pi}{2} - \delta, \; \frac{\pi}{2}\right)\right) < \frac{\mathcal{E}'}{4} \; \text{ and} \\ & \operatorname{meas}\left(E_r(\theta) \bigcap \left(-\frac{\pi}{2} \; , \; -\frac{\pi}{2} + \delta\right)\right). \end{split}$$

On the other hand,

$$\operatorname{meas} \ \operatorname{sine} \Bigl(E_r(\theta) \cap \bigl[-\frac{\pi}{2} + \delta, \ \frac{\pi}{2} - \delta \bigr] \Bigr) = \int d \sin \theta \ge \cos \left(\frac{\pi}{2} - \delta \right)$$

$$\stackrel{E_r(\theta)}{\cap} \bigl[-\frac{\pi}{2} + \delta, \frac{\pi}{2} - \delta \bigr]$$

$$\times \int d\theta = \cos\left(\frac{\pi}{2} - \delta\right) \text{ meas } \left(E_r(\theta) \cap \left(-\frac{\pi}{2} + \delta, \frac{\pi}{2} - \delta\right)\right).$$

$$E_r(\theta) \cap \left[-\frac{\pi}{2} + \delta, \frac{\pi}{2} - \delta\right]$$

Hence we obtain

(5.4)
$$\lim_{r\to\infty} \text{ meas } E_r(\theta) = 0.$$

Case A. $0 < \eta < +\infty$. In this case, for any sufficiently small positive number ε'' , there exists an angle $\theta_0(r)$ such that $|\theta_0(r)| < \varepsilon''$ and $\theta_0(r) \in E_r(\theta)$. For this angle $\theta_0(r)$,

$$\log |M(r) \ge \log |f(re^{i heta_0(r)})| = rac{2}{\pi} |\eta r \cos heta_0(r)| + \log |g(re^{i heta_0(r)})|.$$

From (5.3) and the definition of $\theta_0(r)$,

$$\frac{\log M(r)}{r} > \frac{2}{\pi} \eta \cos \varepsilon'' - \varepsilon$$
.

Let r tend to positive infinity, we have $\alpha \geq \frac{2}{\pi} \eta \cos \varepsilon'' - \varepsilon$. As ε and ε'' are arbitrary, we have $\alpha \geq \frac{2}{\pi} \eta$ which proves $\alpha = \beta = \frac{2}{\pi} \eta$.

Case B. $-\infty < \eta \le 0$. In this case it is clear that α and β are not positive. For any sufficiently small positive number δ' , there would exist an angle $\theta(r)$ such that $\frac{\pi}{2} > \theta(r) > \frac{\pi}{2} - \delta'$ and $\theta(r) \in E_r(\theta)$.

For this angle $\theta(r)$,

¹⁾ This measure is used in the Lebesgue's sense.

²⁾ $|\theta|$ means the magnitude of the angle θ .

$$\begin{split} \log \ M \left(r \right) & \geq \frac{2}{\pi} \ \eta r \cos \theta(r) + \log \ | \ g \left(r e^{i \theta(r)} \right) | \\ & > \frac{2}{\pi} \ \eta r \cos \theta(r) - \varepsilon \ r \ . \end{split}$$

Hence

$$\frac{\log M(r)}{r} > \frac{2}{\pi} \eta \cos\left(\frac{\pi}{2} - \delta'\right) - \varepsilon$$
.

Let r tend to infinity, then we have, by the definitions of ε and δ' , $\alpha > 0$. Consequentty, $\alpha = \beta = 0$.

Case C. $\eta = +\infty$. In this case it is clear by the Remark in § 4 that $\alpha = \beta = \eta = +\infty$.

Case D. $\eta = -\infty$. This case cannot occur except if $f(z) \equiv 0$. Consequently, $\alpha = \beta = \eta = -\infty$.

Hence we have

THEOREM 5. $\lim_{r\to +\infty} \frac{\log M(r)}{r}$ exists and further

- i) if $\eta=+\infty$, then $\alpha=\beta=\eta=+\infty$. ii) if $0<\eta<+\infty$, then $\alpha=\beta=\frac{2}{\pi}\eta$. iii) if $-\infty<\eta\leq 0$, then $\alpha=\beta=0$ and $|f(z)|\leq 1$ for all $\Re z > 0$.
- iv) if $\eta = -\infty$, then $\alpha = \beta = \eta = -\infty$ and in this case f(z) must be identically zero.

COROLLARY. For a sufficiently large |z|, the functions f(z), which are of the Phragmén-Lindelöf's type, are expressible as $Ce^{\frac{2}{n}\eta z}$ except for a set of almost measure zero, where C is a constant of modulus 1.

§ 6. Let u(z) be a harmonic or a subharmonic function in the half-plane $\Re z > 0$, and further suppose that u(z) is not positive on the imaginary axis. Then we are able to replace $\log |f(z)|$ by u(z) in the inequality (2.1). Consequently, we obtain the following theorems.

THEOREM 7. $\frac{1}{r} \int_{-\pi}^{\frac{\pi}{2}} u(re^{i\theta}) \cos\theta d\theta$ is non-decreasing function of r and the limit exists for $r \to +\infty$.

We denote this limit by K.

THEOREM 8. Let M(r) be maximum of $u(re^{i\theta})$ on the semi-circle

 $|z|=r, |\theta|<rac{\pi}{2}$. Then $\lim_{r o +\infty} M(r)/r$ exists and if K is not negative, then

$$\frac{\pi}{2} \lim_{r \to +\infty} \frac{M(r)}{r} = K$$
.

THEOREM 9. If K is finite, then

$$\lim_{r \to +\infty} \frac{u(re^{i\theta})}{r} = K \cos \theta$$

for almost all θ .

References

- [1] E. Phragmén and E. Lindelöf: Sur un extension d'un principe classique de l'analyse et sur quelque propriétés des fonctions monogènes dans le voisinage d'un point singulier, Acta Math. 31 (1908), 381-406.
- (2) F. and R. Nevanlinna: Über die Eigenschaften analytischer Funktionen in der Umgebung einer singulären Stelle oder Linie, Acta Soc. Sci. Fenn. 50 (1922), No. 5.
- (3) R. Nevanlinna: Über die Eigenschaften meromorpher Funktionen in einem Winkelraum, Acta Soc. Sci. Fenn. 50 (1922), No. 12.
 - (4) R. Nevanlinna: Eindeutige Analytische Funktionen, Berlin (1935)
- [5] L. Ahlfors: On Phragmén-Lindelöf's principle, Trans. Amer. Math. Soc. 41 (1937), pp. 1-8.
- [6] A. Dinghas: Zur Theorie der meromorphen Funktionen in einem Winkelraum, Sitzungsber. Preuss. Akad. Wiss. (1935), 576-596.
- (7) A. Dinghas: Über das Phragmén-Lindelöfsche Prinzip und der Julia-Carathéodorysche Satz, Sitzungsber. Preuss. Akad. Wiss. (1938), 32-48.
- (8) M. Heins: On the Phragmén-Lindölof principle, Trans. Amer. Math. Soc. 60 (1946), 238-244.

(Received November 30, 1949)