On the Continuous Function Defined on a Sphere

By Hidehiko Yamabe and Zuiman Yujobo (Tokyo)

1. Prof. S. Kakutani proposed the following problems ${ }^{1}$): Given a bounded convex body in an ($n+1$)-dimensional Euclidean space R^{n+1}, is it always possible to find a circumscribing cube around it ? Or more generally if $f(x)$ is a real-valued continuous function on an n dimensional sphere S^{n} with the centor o, then is possible to find $(n+1)$ points $x_{0}, x_{1}, \ldots, x_{n}$ on S^{n} perpendicular to one another (which means that the vectors $o x_{0}, o x_{1}, \ldots, o x_{n}$ are perpendicular to one another), such that

$$
\begin{equation*}
f\left(x_{0}\right)=f\left(x_{1}\right)=\ldots=f\left(x_{n}\right) ? \tag{1}
\end{equation*}
$$

The purpose of this paper is to answer these questions in the affirmative.
2. Let R^{m+1} be an ($m+1$)-dimensional Euclidean space with the origin o and with the rectangular co-ordinate axes $o e_{1}, o e_{2}, \ldots, o e_{m+1}$. The cartesian co-orninates of a point p will be denoted by (p^{1}, p^{2}, \ldots, $p^{m_{+1}}$) and the distance from o by $\|p\|$. Let us consider the concentric spheres whose common center coincides with o and whose radius runs over the interval $[1,2]$. We denote the aggregate of these concentric spheres by C.

Now we shall prove the following
Lemma A'. Let S_{0} and S_{1} be the set $\{p ;\|p\|=1\}$ and $\{p ;\|p\|$ $=2\}$ respectively. If L is a closed set in C which intersects any continuous curve joining S_{0} and S_{1}, then L contains $(m+1)$ points $q_{0}, q_{1}, \ldots, q_{m}$ such that

$$
\begin{equation*}
\left\|q_{0}\right\|=\left\|q_{1}\right\|=\ldots=\left\|\boldsymbol{q}_{m}\right\| \tag{2}
\end{equation*}
$$

and $o q_{0}, o q_{1}, \ldots, o q_{m}$ are perpendicular to one another.
Proof. If $m=0$, the lemma is evidently true. Let us assume that this lemma is true when the dimension of the space $<m+1$. We can easily find in an ε-neighbourhood ${ }^{2}$) of L an closed m-dimension manifold $L_{\varepsilon}{ }^{3}$) which also intersects any continuous curve joining

[^0]S_{0} and S_{1}. Clearly there are two points $p(1), p(0)$ in L such that
\[

$$
\begin{align*}
& \sup _{p \in L_{\varepsilon}}\|p\|=\|p(1)\| \\
& \inf _{p \in L_{\varepsilon}}\|p\| \doteq\|p(0)\| . \tag{3}
\end{align*}
$$
\]

Now we join $p(1)$ and $p(0)$ by a curve $p(\tau)(0 \leqq \tau \leqq 1)$ on L_{ε}. For every $p(\tau)$ we can easily determine a rotation of axes ρ_{τ} such that

$$
\left.\rho_{\tau} p(\tau) \in \overrightarrow{o e_{m+1}},{ }^{4}\right)
$$

and such that ρ_{τ} is a continuous function of τ. Let π be the hyperplane $\left\{p ; p^{n+1}=0\right\}$, and let $H^{m-1}(p)$ be the aggregate of q such that

$$
\|q\|=\|p\|
$$

and such that $o q$ is perpendicular to $o p$. Then $\rho_{\tau} H^{m-1}(p(\tau))$ are all in π. Let C^{\prime} be the intersection of π and C, and let S_{0}^{\prime} and S_{1}^{\prime} be $S_{0} \cap \pi$ and $S_{1} \cap \pi$ respectively. To a point $y \in C^{\prime}$ corresponds a point $x \in C$ in such a way that

$$
\begin{aligned}
x & =\rho_{\tau}^{-1}\left\{\overrightarrow{o y} \cap \rho_{\tau} H^{m-1}(x(t))\right\} \\
& \equiv \rho(y), \\
\text { where } \quad \tau & =\|y\|-1 .
\end{aligned}
$$

This mapping $\mathscr{\rho}(y)$ is continuous; moreover if $\|y\|=\|z\|$, then $\|\mathscr{\rho}(y)\|=\|\mathscr{\rho}(z)\|$; and if $o y$ is perpendicular to $o z$, then so is $o \mathscr{p}(y)$ to $o \rho(z)$.

The closed set $\rho^{-1}\left(L_{\varepsilon}\right)$ intersects any continuous curve γ joining S_{0}^{\prime} and S_{1}^{\prime} in C^{\prime} because $\varphi\left(S_{0}^{\prime}\right)$ and $\left(S_{1}^{\prime}\right)$ are joined by $\rho(\gamma)$, the former of them being inside or on L_{ε}, the latter being outside or on L_{ε}. Therefore by the assumption $\mathscr{\rho}^{-1}\left(L_{\mathrm{z}}\right)$ contains m points $r_{1}^{\prime}, r_{2}^{\prime}, \ldots, r_{m}^{\prime}$ such that

$$
\left\|r_{1}^{\prime}\right\|=\left\|r_{2}^{\prime}\right\|=\ldots=\left\|r_{m}^{\prime}\right\|=\tau_{0}+1
$$

and $o r_{1}^{\prime}$, $o r_{2}^{\prime}, \ldots, o r_{m}^{\prime}$ are perpendicular to one another. Hence

[^1]$$
\left\|p\left(\tau_{0}\right)\right\|=\left\|\rho\left(r_{1}^{\prime}\right)\right\|=\ldots=\left\|\varphi\left(r_{m}^{\prime}\right)\right\|
$$
and $o p\left(\tau_{0}\right), o \varphi\left(r_{1}^{\prime}\right), \ldots, o \varphi\left(r_{m}^{\prime}\right)$ are also percendicular to one another.
Let us put $p\left(\tau_{0}\right)=q_{0}[\varepsilon], \varphi\left(r_{1}^{\prime}\right)=q_{1}[\varepsilon], \ldots, \varphi\left(r_{m}^{\prime}\right)=q_{m}[\varepsilon]$. It is easy to take a sequence ε_{n} converging to zero so that $q_{0}\left[\varepsilon_{n}\right], q_{1}\left[\varepsilon_{n}\right]$, $\ldots, q_{m}\left[\varepsilon_{n}\right]$ may converge to limit points $q_{0}, q_{1}, \ldots, q_{m}$ respectively. Clearly every $q_{i} \in L$,
$$
\left\|q_{0}\right\|=\left\|q_{1}\right\|=\ldots=\left\|q_{m}\right\|
$$
and $o q_{i}$'s are percendicular to cne another. Thus the lemma is proved.
3. A point P of a cylindrical space (I, S^{m}.) which is a topological product of the interval $I=[0,1]$ and the m-dimensional sphere S^{m}, is represented by a pair of co-ordinates (t, s) for $t \in I$ and $s \in S^{m}$, both $t=t(P)$ and $s=s(P)$ being continuous functicns of P. Then we have another lemma which will be obtained without difficulty from the Lemma A'.

Lemma A. Let S_{0}^{m} and S_{1}^{m} be the set $\{P ; t(P)=0\}$ and $S_{1}\{P$; $t(P)=1\}$ respectively. If L is a closed set on ($I, S^{n i}$) which intersects any continuous curve that joints S_{0} and. S_{1}, then L contains $(m+1)$ points $Q_{0}, Q_{1}, \ldots, Q_{m}$ such that

$$
\begin{equation*}
t\left(Q_{0}\right)=t\left(Q_{1}\right)=\ldots=t\left(Q_{m}\right) \tag{2}
\end{equation*}
$$

and such that $s\left(Q_{i}\right)$'s $(0 \leqq i \leqq m)$ are perpendicular to one another.
4. For a real-valued function $f(x) \mathrm{cn} S^{n}$, there exist two points $x(1)$ and $x(0)$ with

$$
\begin{align*}
& \sup _{t \in S^{n}} f(x)=f(x(1)) \\
& \inf _{t \in S^{n}} f(x)=f(x(0)) \tag{4}
\end{align*}
$$

We join $x(0)$ and $x(1)$ by a curve $x(t)(0 \leq 1)$ on S^{n}. We may consider the S^{n} as the unit sphere in an ($n+1$)-dimensional space R^{n+1} with the origin 0 . For a point p in this R^{n+1} the co-ordinates p^{i} 's and $\|p\|$ are similarly defined as in $\S 2 . \pi$ denotes the hyperplane $\left\{p ; p^{n+1}=0\right\}$, and $e_{i}(0 \leqq i \leqq n)$ denotes the point whose i-th co-ordinate is equal to 1 and other co-ordinates are zero.

We take again the rotations of axes ρ_{t} such that

$$
\rho_{t} x(t)=e_{n+1},
$$

ρ_{t} being continuous. Then $\rho_{i} H^{n-1}(x(t))$ are all contained in π. Let
S^{n-1} be $S^{n} \cap \pi$. Let us consider the topological product (I, S^{n-1}) of I and S^{n-1}, whose point P is represented by $t \in I$ and $u \in S^{n-1}$. We define S_{0}^{n-1} and S_{1}^{n-1} in a similar way as in \S 4. Put

$$
\begin{align*}
& \rho_{t}^{-1} u(P)=\Psi(P), \\
& F(P)=f(x(t))-f(\Psi(P)), \tag{5}
\end{align*}
$$

and let the set of zero points of $F(P)$ be K. Then any curve which is drawn from S_{0}^{n-1} to S_{1}^{n-1} intersects K because $F(P) \leqq 0$ for $P \in S_{0}^{n-1}$ and $F(P) \geqq 0$ for $P \in S_{1}^{n-1}$; therefore K contains n points P_{1}, P_{2}, \ldots, P_{n} such that

$$
t\left(P_{1}\right)=t\left(P_{2}\right)=\ldots=t\left(P_{n}\right)=t_{0}
$$

and such that $u\left(P_{i}\right)$'s are perpendicular to one another. On the other hand

$$
f\left(x\left(t_{0}\right)\right)=f\left(\Psi\left(P_{1}\right)\right)=\ldots=f\left(\Psi\left(P_{n}\right)\right),
$$

and $x\left(t_{0}\right), \Psi\left(P_{1}\right), \ldots, \Psi\left(P_{n}\right)$ are clearly perpendicular to one another. Thus we have the theorem:

Theorem. For a continuous function $f(x)$ on S^{n}, there exist $(n+1)$ points $x_{0}, x_{1}, \ldots, x_{n}$ perpendicular to one another on S^{n} such that

$$
f\left(x_{0}\right)=f\left(x_{1}\right)=\ldots=f\left(x_{n}\right) .
$$

From the above theorem we can obtain by the same argument as Kakutani ${ }^{1}$) the following

Theorem. For a bounded convex body in an ($n+1$)-dimensional Euclidean space there exists a circumscribing cube around it.

[^0]: 1) S. Kakutani: "Circumscribing cube around convex bcdy". Annals of Math. vol. 43.
 2) ε-neighbourhood is the set of points whose distances from L are $<\varepsilon$.
 ${ }^{3}$) If such a L_{ε} does not exist we can draw a curve from S_{0} to S_{1} which does not intersect L.
[^1]: a) $\overrightarrow{o e_{m+1}}$ and $\overrightarrow{o y}$ denote half lines beginning at o.

