On an Arcwise Connected Subgroup of a Lie Group

By Hidehiko YAMABE

It was recently proved that an arcwise connected subgroup of a Lie group is a Lie subgroup 1). In this note a direct proof for it will be given.

Let A be an arcwise connected subgroup of an r-dimensional Lie group with the Lie algebra l, and we denote U_k a system of neighbourhoods of the identity e such that

$$U_1 \supset U_2 \supset \dots$$
$$\bigwedge_{k=1}^{\infty} U_k = e,$$

and by C_k the arcwise connected component of e in $U_k \cap A$.

We consider the directions e, a_x for $a_x \in C_k$, which converge to a limit direction Δ for a suitable sequence $\{a_k\}$. Let us denote by $X(\Delta)$ one of the corresponding infinitesimal transformations to Δ and by \mathfrak{G} the aggregate of $X(\Delta)$'s.

For a one parameter subgroup $H_x = \{x ; x = \exp \tau X, -1 \le \tau \le 1\}$ for $X \in \mathfrak{G}$, there exists a sequence $\{a_k\}$ so that $\overrightarrow{e, a_k}$ converge to the direction corresponding to X. That is for an arbitrarily small neighbourhood V^z) of e, there exist a pair of integers k and m^3) such that

$$(a_k)^j \subset H_x \cdot V,$$
 $(a_k)^m \in (\exp X) \cdot V,$

where $-m \leq j \leq m$. Put $(a_k)^m = b(1)$ and $(a_k)^{-m} = b(-1)$. Now let us denote by γ_k the continuous curve which is drawn from e to a_k in U_k . Then it is possible to join b(1) and b(-1) by $\Gamma_x = \{(a_x)^j \gamma_k, -m \leq j \leq m\}$ in such a way that $\Gamma_x \subset H_x \cdot V$. Moreover we can introduce a parameter τ such that

$$\Gamma_x = \{b(\tau), -1 \leq \tau \leq 1\}, b(\tau) \in (\exp \tau X) \cdot V.$$

¹⁾ This theorm was proved by Iwamura, Hayashida, Minagawa and Homma when the Lie group is a vector group and by Kuranishi when it is semi simple. Kuranishi, using the above results, proved it for the general case, but the author obtained independently the present proof.

²⁾ In this paper V or V' denotes arbitrarily or sufficiently small neighbourhood of the identity.

³) *m* depends upon a_k and X.

Now we find by simple calculations that for X, $Y \in l$,

 $\lim_{n\to\infty} (\exp X/n \exp Y/n)^{p_n} = \exp \rho (X+Y),$

 $\lim_{n\to\infty} (\exp(-X/n) \exp(-Y/n) \exp(X/n) \exp(Y/n))^{\tau_n} = \exp \sigma [X, Y],^4)$ where $\rho_n (\leq n)$ and $\sigma_n (\leq n^2)$ are integers and ρ_n/n , σ_n/n^2 converge to real numbers respectively. When X, $Y \in \mathfrak{G}$ we can take some n, some large k' and a sufficiently small V',

$$a_k \in C_{k'} \cap (\exp X/n) \cdot V', 5)$$

$$b_k \in C_{k'} \cap (\exp Y/n) \cdot V',$$

 $(a_k b_k)^{\rho_n} \in \exp \rho (X+Y) V,$

so that

$$(a_k^{-1} b_k^{-1} a_k b_k)^{\sigma_n} \in \exp \sigma [X, Y] \cdot V,$$

for all $\rho_n \leq n$ and $\sigma_n \leq n^2$. Moreover (a_k, b_k) and $(a_k^{-1} b_k^{-1} a_k b_k)$ belong to C_k , since e and a_k are joined by Γ_x sufficiently near to H_x , e and b_x by Γ_y near to H_y . Therefore

$$(X + Y) \in \mathfrak{G}$$
, $[X, Y] \in \mathfrak{G}$,

whence we conclude that S is a subalgebra of l.

Let the basis of \mathfrak{G} be X_1, \ldots, X_s , and let the basis of l be X_1, \ldots , X_s , X_{s+1}, \ldots, X_r . We denote by G the corresponding Lie subgroup to \mathfrak{G} , and denote for brevity H_{x_i} by H_i , and $\Gamma_{x_i} = \{b_i(\tau_i), -1 \le \tau_i \le 1\}$ by Γ_i for $1 \le i \le s$. Then we have $\Gamma_i \subset H_k \cdot V$.

Now an element $a_k \in C_k$ can be written uniquely as follows:

 $a_k = (\exp \ \tau_1 X_1 \dots \exp \ \tau_s X_s) (\exp \ \tau_{s+1} X_{s+1} \dots \tau_r X_r) \equiv g_k h_k,$

where $g_k = (\exp \tau_1 X_1 \dots \exp \tau_s X_s) \in G$, $h_k = (\exp \tau_{s+1} X_{s+1} \dots \exp \tau_r X_r)$.

If infinitely many h_k are not e, we may take an element $f_k \in A$ so close to g_k that $\overline{e}, \overline{f_k^{-1}}, \overline{a_k}^{e}$ have the same limit direction Δ_0 as that of \overrightarrow{e}, h_k 's. This means that $X(\Delta_0) \in \mathfrak{G}$, which is a contradiction. Therefore $h_k = e$ for a sufficiently large k; $C_k \subset G$. It is clear that C_k generates A, so $A \subset G$. Conversely the continuous mapping φ which maps the cubic neighbourhood $Q = \{x ; x = \exp \tau_1 X_1 \dots \exp \tau_s X_s, -1 : \tau_i \leq 1\}$ into A in such a way that to x corresponds an element $u = b_1(\tau_1) \dots$ $b_s(\tau_s)$ of A, moves the boundary of Q only slightly because $\Gamma_i \subset H_i \cdot V$. So by virtue of the well known theorem of topology a neighbourhood of e with respect to G is contained in $\varphi(Q)^{\tau}$, i.e. in A. As Ais a group, $A \supset G$. Thus we have A = G.

(Received October 20, 1949)

14

⁴⁾ cf. Pontrjagin "Topological groups", p. 236.

⁵⁾ k' taken so large as $(U_k')^4 \subset U_k$ then $(a_k b_k)$ and $(a_k^{-1} b_k^{-1} a_k b_k)$ are both in U_k .

⁶) By simple consideration $f_k^{-1} a_k \in C_k$ for a large k'.

⁷⁾ $\varphi(Q)$ is compact and s-dimensional, so it contains a neighbourhood.