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Abstract
We study hermitian structures, with respect to the standardneutral metric on the

cotangent bundleT�G of a 2n-dimensional Lie groupG, which are left invariant
with respect to the Lie group structure onT�G induced by the coadjoint action.
These are in one-to-one correspondence with left invariantgeneralized complex
structures onG. Using this correspondence and results of [8] and [10], it turns
out that whenG is nilpotent and four or six dimensional, the cotangent bundle T�G
always has a hermitian structure. However, we prove that ifG is a four dimensional
solvable Lie group admitting neither complex nor symplectic structures, thenT�G
has no hermitian structure or, equivalently,G has no left invariant generalized
complex structure.

1. Introduction

The cotangent bundleT�G of a Lie groupG with Lie algebrag has a canonical
Lie group structure induced by the coadjoint action ofG on g� and also a canonical
bi-invariant neutral metric. With respect to this data, hermitian structures onT�G such
that left translations are holomorphic isometries are given by endomorphismsJ of g�
g� satisfying J2 = � Id which are orthogonal with respect to

(1) h(x, �), (y, �)i =
1

2
(�(x) + �(y)),

and satisfyNJ � 0, whereNJ is defined in (3), with respect to the Lie bracket:

(2) [(x, �), (y, �)] = ([x, y], �� Æ ad(x) + � Æ ad(y)) for x, y 2 g, �, � 2 g�.
On the other hand,g� g� is the fiber at the identitye of the bundleT G� T�G over
G and one may extendJ above to the wholeT G � T�G using the standard lift of
left multiplication in G. The Courant bracket (see (12) below), when restricted to left
invariant vector fields and left invariant 1-forms is given by the equation above thus
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establishing a correspondence, in the invariant case, between invariant hermitian struc-
tures onT�G and left invariant generalized complex structures onG (Proposition 3.1).
It follows that any such structure gives rise to a Poisson Liegroup structure onT�G
such that the dual Poisson Lie group (T�G)� is a complex Lie group (Corollary 3.2).

The concept ofgeneralized complex structurewas introduced by Hitchin [12] and
developed by Gualtieri [11]. Symplectic and complex geometry are extremal special
cases of generalized complex geometry. In [8] Cavalcanti and Gualtieri show that the
34 classes of 6-dimensional nilpotent Lie groups (see [14, 20] for the classification)
have a left invariant generalized complex structure; but, five of these classes of nilpotent
Lie groups admit neither symplectic nor complex left invariant geometries (see [20]). It
is proved in [10] that every four dimensional nilpotent Lie group has left invariant sym-
plectic structures and hence generalized complex structures. So, it seems interesting to
understand the way this property occurs on non-nilpotent solvable Lie groups.

In this paper we deal with left invariant generalized complex structures on solv-
able Lie groups of dimension 4. To this end, in Proposition 3.1 of §3, we show that
there is a one-to-one correspondence between left invariant generalized complex struc-
tures on a Lie groupG and invariant hermitian structures (J, g) on T�G, where g
is the standard neutral metric onT�G. In §4 we prove Theorem 4.7 which asserts
that a four dimensional solvable Lie group G has neither left invariant symplectic nor
complex structures if and only if G does not admit generalized complex structures. In
the proof, we use the classification of 4-dimensional solvable Lie groups with left in-
variant complex (resp. symplectic) structures carried outin [23] and [17] (resp. [15];
see also [18]).

On the other hand, in§5 we distinguish the solvable Lie groups of dimension
4 admitting a non-extremal left invariant generalized complex structure (§5.1) and the
Lie groups carrying a left invariant complex or symplectic structure but without a non-
extremal left invariant generalized complex structure (§5.2).

Finally, in §6 we show that Theorem 4.7 does not work in dimension 6. In fact,
we construct an example of a six dimensional (non-nilpotent) solvable Lie group ad-
mitting neither left invariant symplectic nor complex structures but having non-extremal
generalized complex structures.

2. Hermitian structures on cotangent Lie groups

A left invariant complex structureon a real Lie groupG is a complex structure
on the underlying manifold such that left multiplication byelements of the group are
holomorphic. Equivalently, there exists an endomorphismJ of g, the Lie algebra of
G, such that: J2 = � Id and NJ � 0, where

(3) NJ(x, y) = [x, y] + J[ J x, y] + J[x, J y] � [ J x, J y], 8 x, y 2 g.

The conditionNJ � 0 is called theintegrability conditionof J.
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The action ofG on itself given by left multiplicationLg : G ! G can be lifted
to an action ofG on T G given by dLg : T G ! T G. Thus, a left invariant com-
plex structure is an equivariant endomorphism ofT G with respect to the lifted action
of G given by left multiplication. Similarly, a left invariant symplectic structure on
G is an equivariant isomorphism! : T G ! T�G where the action ofG on T�G is
L�

g�1 : T�G ! T�G.
A left invariant hermitian structureon G is a pair (J, g) of a left invariant com-

plex structureJ together with a left invariant hermitian metricg (not necessarily pos-
itive definite). If J denotes the corresponding endomorphism ong and h � , � i the non
degenerate symmetric bilinear form ong induced byg, we say that (J, h � , � i) is a
hermitian structure ong. A non degenerate symmetric bilinear formh � , � i on g is
said to be ad-invariant when it satisfies:

(4) h[x, y], zi + hy, [x, z]i = 0 for any x, y, z 2 g.

If G is a Lie group with Lie algebrag and g is a bi-invariant metric onG, that is,
g is both left and right invariant, then the bilinear formh � , � i on g induced byg is
ad-invariant.

Let gC = g
R C be the complexification of the real Lie algebrag and let� denote
the conjugation ingC with respect to the real formg, that is, � (x + iy) = x � iy,
x, y 2 g. Starting with a hermitian structure (J, h � , � i) on g, let JC (resp.h � , � iC)
denote the complex linear (resp. complex bilinear) extension of J (resp.h � , � i) to gC.
We obtain a splitting

gC = q� � (q),

where q, the i -eigenspace ofJC, is a complex subalgebra ofgC which is maximal
isotropic with respect toh � , � iC.

We prove the above statement in the following proposition, where it is shown that,
conversely, ifB is a symmetric bilinear form ongC satisfying certain conditions, then
any splittinggC = q� � (q), whereq is a maximalB-isotropic complex subalgebra of
gC, gives rise to a hermitian structure (J, h � , � i) on g such that thei -eigenspace of
JC in gC is q and hx, yi = B(x, y) for x, y 2 g.

Proposition 2.1. Let G be a Lie group with Lie algebrag and denote bygC

the complexification ofg. There is a one-to-one correspondence between left invariant
hermitian structures(J, g) on G and pairs(q, B), where B is a symmetric bilinear
form on gC and q is a maximal B-isotropic complex subalgebra ofgC satisfying the
following conditions:

gC = q� � (q),(5)

B(�z, �w) = B(z, w), z, w 2 gC,(6)
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where� denotes the complex conjugate of� 2 C and � is the conjugation ingC with
respect tog.

Proof. Given a left invariant hermitian structure (J, g) on G, let (J, h � , � i) be
the corresponding hermitian structure ong. gC decomposes into a direct sum of sub-
spacesgC = g1,0� g0,1, the eigenspaces ofJC of eigenvaluei and�i , respectively. It
follows that

g1,0 = fx � i J x : x 2 gg, g0,1 = fx + i J x : x 2 gg,
hence,g0,1 = � (g1,0). Equation NJ � 0 is equivalent to the fact that these subspaces
are subalgebras. Moreover, using thatJ is orthogonal, it is easy to check that both
g1,0 and g0,1 are isotropic with respect toh � , � iC. Since h � , � i is non degenerate,
these subalgebras are maximal isotropic. Hence, (g0,1, h � , � iC) satisfies the required
conditions. Note that equation (6) holds if and only ifB takes real values ong, andh � , � iC clearly satisfies this property.

Conversely, given a pair (q, B) as in the statement, we wish to show that it gives
rise to a hermitian structure (J, h � , � i) on g. Let J be the almost complex structure
defined ongC by

Jz = i z, J Æ � (z) = �i� (z), z 2 q.

Since J Æ � = � Æ J, then J leavesg stable. The fact thatq is a subalgebra implies
that J satisfiesNJ � 0. Since equation (6) holds,B takes real values ong. Let h � , � i
be the restriction ofB to g. It follows from (5) and the fact thatq is B-isotropic that
J is orthogonal with respect toh � , � i. Sinceq is maximal isotropic thenh � , � i is non
degenerate, that is, (J, h � , � i) is a hermitian structure ong. Therefore, it induces, by
left translations, a left invariant hermitian structure onG and the proposition follows.

We will be studying a special class of left invariant hermitian structures. The Lie
groups that come into the picture are the cotangent bundles of Lie groups with a stan-
dard bi-invariant metric.

Let g be a Lie algebra andv a g-module, that is, there exists a Lie algebra homo-
morphism� : g ! gl(v). Let g Ë� v denote the semidirect product ofg by v, where
we look uponv as an abelian Lie algebra. The bracket ong Ë� v is given as follows:

(7) [(x, u), (y, v)] = ([x, y], �(x)v � �(y)u) for x, y 2 g, u, v 2 v.

Complex structures on Lie algebras of the above type were studied in [4]. In the
present article we will restrict our attention to the particular case whenv = g� and� = ad� is the coadjoint representation:

ad�(x)(�) = �� Æ ad(x), � 2 g�, x 2 g.
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We will denoteg Ëad� g� by (T�g, ad�), the Lie bracket being given by (2). The co-
tangent algebra (T�g, ad�) has a standard non degenerate symmetric ad-invariant
bilinear form h � , � i (see (1)). We notice that the subalgebrag and the idealg� are
maximal isotropic in (T�g, h � , � i).

Left invariant hermitian structures on the cotangent Lie group T�G are given by
endomorphismsJ of T�g whose matrix form with respect to the decompositiong �
g� is

J =

�
J1 J2

J3 J4

�
,

and satisfy

(8)

(i) J4 = �J�1 , J2 = �J�2 , J3 = �J�3 ,

(ii) J2
1 + J2J3 = � Id , J1J2 = �(J1J2)�, J3J1 = �(J3J1)�,

(iii) J is integrable.

EXAMPLE 2.2. Let | be a complex structure ong, dimg = 2n, and defineJ| on
T�g by

(9) J| (x, �) = (| (x), �|�(�)), x 2 g, � 2 g�,
where |� is the adjoint of| , that is, |�(�) = � Æ | . It follows that J| is orthogonal
with respect to the standard bilinear formh � , � i on T�g. Moreover, it was shown in
[4] (Proposition 3.2) that the integrability of| implies that J| is a complex structure
on (T�g, ad�). Therefore, (J| , h � , � i) is a hermitian structure on (T�g, ad�).

EXAMPLE 2.3. Let! : g ! g� be a linear isomorphism and define

(10) J!(x, �) = (�!�1(�), !(x)),

(compare with§4 in [4]). It follows that J! is orthogonal with respect to the standard
bilinear form onT�g if and only if ! is skew-symmetric. The integrability ofJ! is
equivalent to the following condition

(11) !([x, y]) = !(x) Æ ad(y)� !(y) Æ ad(x).

Therefore, if! satisfies (11)J! defines a hermitian structure on (T�g, ad�). We ob-
serve that in this case,! is a symplectic structure ong.

3. Left invariant generalized complex structures on Lie groups

We recall that a generalized complex structure on a manifoldM is an endomorphism
J of T M�T�M satisfyingJ 2 =� Id which is orthogonal with respect to the standard
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inner producth � , � i on T M� T�M defined in (1) and such that thei eigenbundle of
J in (T M� T�M)
C is involutive with respect to the Courant bracket. This bracket
is defined as follows:

(12) [(X, � ), (Y, �)] =

�
[X, Y], LX� � LY� � 1

2
d(i X� � iY� )

�
,

where (X, � ), (Y, �) are smooth sections ofT M � T�M.
When M is a Lie groupG, consider the left action ofG on T G� T�G induced

by left multiplication of G on itself, that is,

(13)
� : G� (T G� T�G) ! T G� T�G,

(g, (x, �)) 7! (dLg)hx, (L�
g�1)gh�), x 2 ThG, � 2 T�

h G, g, h 2 G

where �
L�

g�1

�
gh�(y) = �((dLg�1)ghy), 8y 2 TghG.

A generalized complex structureJ on G is said to be left invariant (orG-invariant) if

J : T G� T�G ! T G� T�G
is equivariant with respect to the induced left action ofG on T G�T�G given in (13).
It follows that, for anyg 2 G, the following diagram is commutative:

where

�g�1(x, �) = �(g�1, (x, �)), x 2 TgG, � 2 T�
g G.

In other words,J is left invariant if and only if, for anyg 2 G, Jg is given in terms
of Je as follows:

(14) Jg = �g Æ Je Æ �g�1 =

�
(dLg)e �

L�
g�1

�
g

� Æ Je Æ
�

(dLg�1)g �
L�

g

�
e

�
.

If we identify the space of left invariant sections ofT G� T�G with g� g�, then the
restriction of the Courant bracket (12) tog� g� is precisely the Lie bracket (2) on the
cotangent algebra (T�g, ad�). Therefore, the Courant integrability condition of a left
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invariant generalized complex structureJ on G is equivalent to the integrability ofJe

on the cotangent algebra (T�g, ad�). Moreover, since�g, g 2 G, are isometries of the
standard bilinear formh � , � i on T G � T�G, it follows that J is orthogonal with
respect toh � , � i if and only if Je is compatible withh � , � i. Therefore, ifJ is a left
invariant generalized complex structure onG, (Je, h � , � i) is a hermitian structure on
T�g. Conversely, given a hermitian structure (J, h � , � i) on (T�g, ad�), whereh � , � i
is the standard neutral metric onT�g, it can be extended, by means of (14), to a left
invariant generalized complex structureJ on G such thatJe = J.

The preceding arguments yield the following result:

Proposition 3.1. There is a one-to-one correspondence between left invariant gen-
eralized complex structures on G and invariant hermitian structures (J, g) on T�G,
where g is the standard neutral metric on T�G.

When a Lie groupG has a left invariant complex or symplectic structure, then any
of these structures induces a natural left invariant generalized complex structure onG,
as shown in Examples 2.2 and 2.3.

In view of Proposition 3.1, a hermitian structure on (T�g, ad�) with respect to the
standard bilinear form will be called a generalized complexstructure ong and denoted
by (J , h � , � i). WhenJ satisfies only conditions (i) and (ii) in (8), it will be called
an almost generalized complex structure. Note that ifT�g is a generalized complex
vector space, dimg = 2n (see [11, 6]).

REMARK 1. It was proved in [10] that every four dimensional nilpotent Lie group
has either left invariant complex or symplectic structures(maybe both; see also [14] for
the classification of these groups). Hence, such a Lie group has a left invariant gener-
alized complex structure. In [8] (see also [7]) it was shown that every six dimensional
nilpotent Lie group admits a left invariant generalized complex structure. In other words,
the cotangent algebra (T�g, ad�) of any four or six dimensional nilpotent Lie algebra
g admits a hermitian structure (J, h � , � i), whereh � , � i is the standard bilinear form
on T�g.

It was proved in [1] that when (J, g) is a left invariant hermitian structure on a
Lie group H such thatg is bi-invariant then bothH and H� are Poisson Lie groups.
Moreover, sinceJ is a complex structure,H� is a complex Lie group (see [3]). The
Poisson structure onH is given by5(h) = (d Rh)eJ � (dLh)eJ, h 2 H , where J is
viewed as an element ofh ^ h by identifying the Lie algebrah of H with its dual h�
via the metricg. As a corollary of this result and Proposition 3.1, we therefore obtain:

Corollary 3.2. If G is a Lie group with a left invariant generalized complex struc-
ture, then T�G and (T�G)� are Poisson Lie groups such that(T�G)� is a complex Lie
group.
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We end this section by determining the generalized complex structures on the two
dimensional non-abelian Lie algebrag = aff(R).

EXAMPLE 3.3. Generalized complex structures onaff(R). Let g = aff(R) be the
two dimensional non-abelian Lie algebra andT�aff(R) the corresponding cotangent Lie
algebra. Letfe0, e1g be a basis ofg such that [e0, e1] = e1, and f�0, �1g the dual basis
of g�. Set

Xi = (ei�1, 0), Xi +2 = (0, �i�1), i = 1, 2,

then:

[X1, X2] = X2, [X1, X4] = �X4, [X2, X4] = X3.

A generalized complex structureJ on aff(R) takes the following form in the ordered
basisfX1, : : : , X4g:

J =

0
BB�

a11 a12 0 a14

a21 a22 �a14 0
0 �a41 �a11 �a21

a41 0 �a12 �a22

1
CCA,

with J 2 = � Id and NJ � 0.
In casea14 6= 0, the conditionJ 2 = � Id implies a41 6= 0, a2

11 + a14a41 = �1, a11 =
a22 and a12 = 0 = a21. Hence,

(15) J =

0
BB�

a11 0 0 a14

0 a11 �a14 0
0 �a41 �a11 0

a41 0 0 �a11

1
CCA, a14a41 6= 0, a2

11 + a14a41 = �1.

It follows that J as above satisfiesNJ � 0. In particular, if a11 = 0, J arises from
a symplectic structure onaff(R) as in Example 2.3, but fora11 6= 0 J is not induced
by a symplectic or complex structure onaff(R). However, sinceJ is of type 0 (see
the paragraph next to (20) in§4) it follows from Theorem 4.1 that it is equivalent to
a symplectic structure via aB-field transformation.

In casea14 = 0, the conditionJ 2 = � Id implies

a41 = 0, a2
11 + a12a21 = �1, a12a21 6= 0, a11 = �a22.

Therefore,

(16) J =

0
BB�

a11 a12 0 0
a21 �a11 0 0
0 0 �a11 �a21

0 0 �a12 a11

1
CCA, a12a21 6= 0, a2

11 + a12a21 = �1,
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andJ satisfiesNJ � 0. Note that every generalized complex structure in this family
arises from a complex structure onaff(R) as in Example 2.2.

We observe thatT�aff(R) is isomorphic to the Lie algebrad4 (see [2]). This is the
unique four dimensional solvable Lie algebra admitting a structure of a Manin triple.
The above calculations together with Corollary 3.2 imply that the Lie groupD4 with
Lie algebraT�aff(R) is a Poisson Lie group such that the Poisson Lie groupD4

� is a
complex Lie group.

Fix two generalized complex structuresJ1, J2 on g = aff(R) as follows:

J1 =

0
BB�

a 0 0 b
0 a �b 0
0 �c �a 0
c 0 0 �a

1
CCA, a2 + bc = �1, J2 =

0
BB�

x y 0 0
z �x 0 0
0 0 �x �z
0 0 �y x

1
CCA, x2 + yz = �1,

and considerG = �J1J2. Observe thatJ1 andJ2 commute, thereforeG2 = Id. It fol-
lows that G defines a positive definite metric ong� g� if and only if cz< 0. There-
fore, when this condition is satisfied, we obtain generalized Kähler structures onaff(R)
(see [7, 11]).

4. Solvable Lie groups without generalized complex structures

In this section we prove that a four dimensional (non-nilpotent) solvable Lie group
has no left invariant generalized complex structures if andonly if it admits neither left
invariant symplectic nor left invariant complex structures.

We start by fixing some notation. Letf�i g3i =0 be the basis ofg� dual to the basisfei g3i =0 of g. Define the basisfXi g8i =1 of T�g by

(17) Xi = (ei�1, 0) and Xi +4 = (0, �i�1), 1� i � 4.

Let J be a linear endomorphism ofT�g whose matrix form is

(18) J =

�
J1 J2

J3 J4

�
,

with respect to the basisfXi g8i =1 of T�g defined by (17). IfJ is orthogonal with respect
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to the standard bilinear form onT�g then the matrix ofJ is of the form

(19) J =

0
BBBBBBBBBBB�

a11 a12 a13 a14 0 a16 a17 a18

a21 a22 a23 a24 �a16 0 a27 a28

a31 a32 a33 a34 �a17 �a27 0 a38

a41 a42 a43 a44 �a18 �a28 �a38 0
0 �a61 �a71 �a81 �a11 �a21 �a31 �a41

a61 0 �a72 �a82 �a12 �a22 �a32 �a42

a71 a72 0 �a83 �a13 �a23 �a33 �a43

a81 a82 a83 0 �a14 �a24 �a34 �a44

1
CCCCCCCCCCCA

.

Moreover, taking into account (8), ifJ 2 = � Id then the matrixJ has the following
property:

(20) for every 1� i � 4 there exists j 6= i such that ai j 6= 0.

We will say thatJ is of complex typeif J2 = J3 = 0, J is of symplectic typeif
J1 = J4 = 0, andJ is said to be oftype k when rank(J2) = 2(n�k), where dimg = 2n
(compare with [11]). Observe that ifJ is of complex (resp. symplectic) type then it
is of type 2 (resp. 0).

We recall a theorem from [11, 8]

Theorem 4.1 ([8], Theorem 1.1; [11], Theorem 4.35).Any regular point of type
k in a generalized complex2n-manifold has a neighbourhood which is equivalent, via
a diffeomorphism and a B-field transformation, to the product of an open set inCk

with an open set in the standard symplectic spaceR2n�2k.

The previous theorem implies that a 2n-dimensional Lie algebra admits a general-
ized complex structure of type 0 (resp. of typen) if and only if it has a symplectic
structure (resp., a complex structure).

In order to prove the main result of this section, we recall the definition of the four
dimensional solvable Lie algebras admitting neither symplectic nor complex structures
(see [21, 22, 15]). They are
(21)

R� r3 : [e1, e2] = e2, [e1, e3] = e2 + e3

R� r3,� : [e1, e2] = e2, [e1, e3] = �e3, j�j < 1, � 6= 0;

r4 : [e0, e1] = e1, [e0, e2] = e1 + e2, [e0, e3] = e2 + e3;

r4,� : [e0, e1] = e1, [e0, e2] = �e2, [e0, e3] = e2 + �e3, � 2 R, � 6= �1, 0, 1;

r4,�,� : [e0, e1] = e1, [e0, e2] = �e2, [e0, e3] = �e3,

�1< � < � < 1, �� 6= 0, � + � 6= 0.
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Next, we show that every Lie algebrah included in the list (21) has no left in-
variant generalized complex structures by analyzing each case. To this end, we will
prove that any almost complex structureJ on T�(h) does not satisfy the integrabil-
ity condition. This condition is equivalent to the vanishing of the 256 coefficientsNk

i j

defined by

NJ (Xi , X j ) =
8X

k=1

Nk
i j Xk, 1� i < j � 8,

where NJ is the Nijenhuis tensor ofJ (see (3)).

Proposition 4.2. The Lie algebraR � r3 does not admit generalized complex
structures.

Proof. We consider the basisfXi g for T�(R � r3) defined by (17). Taking into
account (12) and the definition of the Lie algebraR� r3 given in (21), we see that the
only non-zero Lie brackets onT�(R� r3) are

[X2, X3] = X3, [X2, X4] = X3 + X4, [X2, X7] = �X7 � X8,

[X2, X8] = �X8, [X3, X7] = X6, [X4, X7] = X6 = [X4, X8].

Suppose thatR � r3 has a generalized complex structure, i.e.,T�(R � r3) has a
hermitian structure (J , h� , �i). Since all the coefficientsNk

i j of the Nijenhuis tensorNJ

of J must be zero, we have 0 =N2
78 = a28

2 and 0 =N7
46 = a23

2, and soa28 = a23 = 0.
Let us consider the equation

(22) 0 = N6
48 = 1 +a44

2 + a43(a22 + a44 + a34) + a24a42� a38a83.

Now, (22) and the equations

0 = N8
67 = 2a24a27, 0 = N6

68 = �a43a27, 0 = N8
37 = �a43a24� 2a83a27,

imply that a27 = 0. Moreover, because

0 = N1
78 = �2a16a38, 0 = N1

37 = a16a43, 0 = N1
46 = a16a24,

we havea16 = 0 using (22); and because

0 = N8
37 = �a24a43, 0 = N3

48 = �2a24a38,

and

0 = N7
27 = �1� a33

2 + a43(a22� a33� a34)� a38a83,



776 L.C. DE ANDRÉS, M.L. BARBERIS, I. DOTTI AND M. FERNÁNDEZ

we see thata24 = 0. Finally,

0 = N5
78 = 2a21a38, 0 = N8

18 = �a21a43

imply a21 = 0 using (22). So, in the matrix (19) ofJ , the unique non-zero entry
in the 2nd row isa22, which is not possible by (20). This shows thatJ cannot be
integrable.

Proposition 4.3. For � 6= 0,�1, the Lie algebraR�r3,� has no generalized com-
plex structure.

Proof. Using the basisfXi g for T�(R � r3,�), given by (17), and the definition of
the Lie algebraR� r3,� stated in (21), the only non-zero Lie brackets onT�(R� r3,�) are

[X2, X3] = X3, [X2, X4] = �X4, [X2, X7] = �X7

[X2, X8] = ��X8, [X3, X7] = X6, [X4, X8] = �X6.

Let (J , h � , � i) be a hermitian structure onT�(R�r3,�). The integrability condition
of J implies that all the coefficientsNk

i j of the Nijenhuis tensor ofJ are zero. In
particular,

(23) 0 = N6
48 = �(1 + a44

2 + a24a42 + a28a82) + a34a43� a38a83.

Now from (23) and the equations

0 = N1
68 = ��a16a28, 0 = N2

45 = �a16a24, 0 = N2
57 = a16a27,

0 = N8
57 = �a14a27 + a17a24 + (�� 1)a16a34,

0 = N4
57 = ��a18a27 + a17a28� (1 +�)a16a38,

we obtaina16 = 0. On the other hand,

0 = N4
67 = (1� �)a27a28, 0 = N2

47 = �(1 +�)a27a24,

0 = N7
78 = (1 +�)a23a38 + (�� 1)a27a43, 0 = N7

67 = 2a27a23,

0 = N8
37 = (1� �)a23a34� (1 +�)a27a83,

and (23) imply thata27 = 0; and from the equations

0 = N7
78 = (1 +�)a23a38, 0 = N7

68 = (1 +�)a23a28,

0 = N7
47 = (�� 1)a23a34, 0 = N7

46 = (�� 1)a23a24

we conclude thata23 = 0 using again (23). Moreover,

0 = N5
48 = �a21a24, 0 = N5

47 = a24a31 + (�� 1)a21a34,

0 = N5
68 = �a21a28, 0 = N5

34 = a24a71 + (1 +�)a21a83,
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imply that a21 = 0 using again (23). So, according to (20),a24
2 + a28

2 6= 0. Since� 6= 0,�1, the equations

0 = N6
37 = 2�a24a28,

0 = N4
34 = (�� 1)a24a43 + (1 +�)a28a83,

0 = N8
78 = (�� 1)a28a34 + (1 +�)a24a38,

imply that a34a43 = a38a83 = 0. Therefore,

0 = N6
37 = 1 +a33

2 + �(a34a43� a38a83),

which implies that 0 = 1 +a33
2. But this is not possible, and henceJ cannot be inte-

grable onT�(R� r3,�).
Proposition 4.4. The Lie algebrar4 has no generalized complex structure.

Proof. From (17), (21) and (12), we have that with respect to the basisfXi g the
only non-zero Lie brackets onT�(r4) are

[X1, X2] = X2, [X1, X3] = X2 + X3, [X1, X4] = X3 + X4,

[X1, X7] = �X7 � X8, [X1, X6] = �X6 � X7, [X1, X8] = �X8,

[X2, X6] = [ X3, X6] = X5, [X3, X7] = [ X4, X7] = X5, [X4, X8] = X5.

If there is a hermitian structure (J , h � , � i) on T�(r4), then

0 = N1
78 = a18

2, 0 = N1
67 = a17

2 � a16a18,

0 = N6
35 = a12

2, 0 = N8
35 = �a13

2 + a12a14,

imply that a12 = a13 = a17 = a18 = 0. So, it must bea16
2 + a14

2 6= 0 since, according
to (20), at least an elementa1 j of the first row of the matrix (19) associated toJ must
be non-zero forj 6= 1. Now, we consider

0 = N2
78 = 2a16a38, 0 = N8

78 = 2a14a38,

0 = N7
26 = �2a16a72, 0 = N7

24 = �2a14a72,

0 = N7
47 = a14(a43� a32), 0 = N7

67 = a16(a43� a32),

0 = N3
15 = a14a38� a16a32, 0 = N5

35 = a14a43 + a16a72.

From these equations, and using thata16 and a14 do not vanish simultaneously, we
conclude thata38 = a72 = a43 = a32 = 0. Then,

0 = N5
37 = 1 +a33

2 + a32(a11 + a33 + a23) + a43(a33� a11 + a34)� a27a72� a83a38,

implies that 0 = 1 +a33
2, which is not possible. Thus,J cannot be integrable.
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Proposition 4.5. For � 6= 0,�1, the Lie algebrar4,� does not admit generalized
complex structures.

Proof. With respect to the basisfXi g given by (17), and according to (12) and (21),
the only non-zero Lie brackets onT�(r4,�) are

[X1, X2] = X2, [X1, X3] = �X3, [X1, X4] = X3 + �X4,

[X1, X6] = �X6, [X1, X7] = ��X7 � X8, [X1, X8] = ��X8,

[X2, X6] = [ X4, X7] = X5, [X3, X7] = [ X4, X8] = �X5.

Suppose that, for� 2 R � f�1, 0, 1g, T�(r4,�) has a hermitian structure with com-
plex structureJ . Since all the coefficientsNk

i j of the Nijenhuis tensor ofJ are zero,
we have

0 = N1
78 = a18

2, and 0 =N7
45 = a13

2.

Thus, a18 = a13 = 0. Let us consider the equation

(24)
0 = N6

26 = 1 +a22
2 + a12a12 + a16a61 + a23a42� a28a72

+ �(a23a32 + a24a42� a27a72� a28a82).

Since

0 = N2
57 = (�� 1)a16a17, 0 = N4

67 = 2�a16a38� (1 +�)a17a28,

0 = N7
67 = a16a43� (1� �)a17a23, 0 = N6

57 = (1 +�)a12a17,

0 = N6
37 = (1 +�)a17a72� a12a43, 0 = N6

78 = 2�a12a38� (1� �)a17a42,

we obtain thata17 = 0 using (24) and the conditions� 6= 0, 1,�1. Now, the equations

0 = N1
46 = �(1 +�)a14a16, 0 = N4

46 = (1 +�)a14a28� a16a43,

0 = N7
46 = (1� �)a14a23 + 2�a16a83, 0 = N6

45 = (�� 1)a14a12,

0 = N6
34 = (1 +�)a14a72 + 2�a12a83, 0 = N5

25 = a12(a11 + a22) + �a14a42

and (24) imply thata14 = 0. Hencea12
2 + a16

2 6= 0. Morever, we have

0 = N2
37 = �a16a43, 0 = N6

37 = �a12a43, 0 = N2
78 = 2�a16a38,

0 = N6
78 = 2�a12a38, 0 = N6

56 = 2a12a16, 0 = N5
35 = a12a23 + a16a72,

0 = N3
15 = �a12a27� a16a32.

Therefore, a43 = a38 = 0 and a23a32 = a27a72 = 0. Taking into account these equali-
ties and

0 = N5
37 = �(1 + a33

2) + a23a32� a27a72 + a43(a33� a11 + �a34)� �a38a83
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we conclude that 1 +a33
2 = 0 because� 6= 0. This proves that, for� 6= �1, 0, 1, r4,�

does not admit generalized complex structures.

Proposition 4.6. The Lie algebrar4,�,� has no generalized complex structure for�1< � < � < 1 such that�� 6= 0 and � + � 6= 0.

Proof. For T�(r4,�,�) we take the basisfXi g defined by (17). Then, using (21)
and (12) we see that the only non-zero Lie brackets onT�(r4,�,�) are

[X1, X2] = X2, [X1, X3] = �X3, [X1, X4] = �X4,

[X2, X6] = X5, [X3, X7] = �X5, [X4, X8] = �X5,

[X1, X6] = �X6, [X1, X7] = ��X7, [X1, X8] = ��X8.

As in proof of the previous propositions, we assume thatT�(r4,�,�) has a hermitian
structure (J , h � , � i). Then,

(25) 0 = N5
26 = 1 +a22

2 + a21a12 + a16a61 +�(a23a32� a27a72) + �(a24a42� a28a82).

Consider

0 = N1
68 = (1� �)a16a18, 0 = N6

58 = (1 +�)a12a18,

0 = N3
58 = (�� �)a17a18, 0 = N8

58 = 2�a14a18,

0 = N6
48 = (�� 1)a14a42 + (1 +�)a18a82, 0 = N2

48 = (1� �)a18a24� (1 +�)a14a28,

0 = N2
78 = (1 +�)a18a27 + (� +�)a16a38� (1 +�)a17a28,

0 = N6
78 = (1� �)a18a32 + (� +�)a12a38 + (�� 1)a17a42.

From these equations and (25), we obtaina18 = 0. Now, we have

0 = N1
67 = (1� �)a16a17, 0 = N6

57 = (1 +�)a12a17,

0 = N3
68 = (1 +�)a17a28� (� +�)a16a38, 0 = N6

78 = (� +�)a12a38 + (�� 1)a17a42,

0 = N1
37 = �2�a17a13, 0 = N6

37 = (�� 1)a13a32 + (1 +�)a17a72,

0 = N2
37 = (1� �)a17a23� (1 +�)a13a27.

Then, using (25), we see thata17 = 0. From the equations

0 = N8
68 = (1 +�)a14a28, 0 = N6

48 = (�� 1)a14a42,

0 = N8
56 = (1 +�)a14a16, 0 = N2

47 = �(1 +�)a14a27 + (�� �)a16a34,

0 = N8
25 = (�� 1)a12a14, 0 = N8

27 = (1� �)a14a32 + (�� �)a12a34,
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and (25), we conclude thata14 = 0. Moreover, we have

0 = N2
37 = �(1 +�)a13a27, 0 = N6

37 = (�� 1)a13a32,

0 = N1
36 = �(1 +�)a13a16, 0 = N4

36 = (1 +�)a13a28 + (�� �)a16a43,

0 = N6
35 = (�� 1)a12a13, 0 = N8

36 = (1� �)a13a24� (� +�)a16a83,

which imply thata13 = 0 using again (25). Thus,a12
2 + a16

2 6= 0. Now, taking account
the equations

0 = N6
56 = 2a12a16,

0 = N2
78 = (� +�)a16a38, 0 = N6

78 = (� +�)a12a38,

0 = N2
38 = (�� �)a16a43, 0 = N6

38 = (�� �)a12a43,

0 = N6
15 = �a12a24� a16a82, 0 = N4

15 = �a12a28� a16a42,

we have thata38 = a43 = 0 anda24a42 = a28a82 = 0. So,

0 = N5
48 = �(1 + a44

2) +�(a34a43� a38a83) + a24a42� a28a82 = �(1 + a44
2).

This implies that� = 0 or 1 +a44
2 = 0, which is not possible. This completes the

proof.

Let g be an arbitrary Lie algebra. Denote bybi (g) the dimension of thei -th co-
homology groupH i (g) of g, by g0 = [g,g] the derived subalgebra and byz(g) the center
of g. We recall thatg is calledcompletely solvablewhen g is solvable and ad(x) has
only real eigenvalues for anyx 2 g.

Theorem 4.7. Let G be a four dimensional solvable Lie group with Lie algebra
g. Then the following statements are equivalent:
(i) G has no left invariant generalized complex structure;
(ii) G admits neither left invariant symplectic nor left invariant complex structures;
(iii) g is completely solvable and one of the two following conditions is satisfied:

(a) b1(T�g) = 3, b3(T�g) = 5, b1(g=z(g0)) = 1, or
(b) b1(T�g) = 1, b3(T�g) = 2.

Proof. Clearly (i) implies (ii). The converse follows from Propositions 4.2 to 4.6.
The calculation of the numbersbi (T�(g)), (i = 1, 3), andb1(g=z(g0)), whereg is a four
dimensional solvable Lie algebra, shows that condition (iii) is satisfied if and only if (i)
holds (see Table in Section 5.2).

5. Generalized complex structures of type 1 on solvable Lie groups

In this section we exhibit the four dimensional solvable Liealgebras which have
a generalized complex structure of type 1; Theorem 4.7 implies that they admit either
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symplectic or complex structures. We also study necessary and sufficient conditions
on a four dimensional solvable Lie algebrag to admit generalized complex structures
of type 1. As a consequence of our results, we obtain in Corollary 5.6 a condition,
involving the odd numbersbi (T�(g)), for the non-existence of such structures.

5.1. Existence. First, we list below the family of Lie algebras having either
symplectic or complex structures. Such Lie algebras together with those shown in (21),
exhaust the class of four dimensional solvable Lie algebras(see [2, 9, 16, 19]).
(26)
aff(R)� aff(R) : [e0, e1] = e1, [e2, e3] = e3;

aff(C) : [e0, e2] = e2, [e0, e3] = e3, [e1, e2] = e3, [e1, e3] = �e2;

R� e(2) : [e1, e2] = �e3, [e1, e3] = e2;

R� h3 : [e1, e2] = e3;

R� r3,� : [e1, e2] = e2, [e1, e3] = �e3, � 2 f�1, 0, 1g;
r4,� : [e0, e1] = e1, [e0, e2] = �e2, [e0, e3] = e2 + �e3, � 2 f�1, 0, 1g;

r4,�,1 : [e0, e1] = e1, [e0, e2] = �e2, [e0, e3] = e3, �1< � � 1, � 6= 0;

r4,�,� : [e0, e1] = e1, [e0, e2] = �e2, [e0, e3] = �e3, �1< � < 1, � 6= 0;

r4,�,�� : [e0, e1] = e1, [e0, e2] = �e2, [e0, e3] = ��e3, �1< � < 0;

r4,�1,� : [e0, e1] = e1, [e0, e2] = �e2, [e0, e3] = �e3, �1< � < 0;

r4,�1,�1 : [e0, e1] = e1, [e0, e2] = �e2, [e0, e3] = �e3;

R� r03,� : [e1, e2] = �e2 � e3, [e1, e3] = e2 + �e3, � > 0;

n4 : [e0, e1] = e2, [e0, e2] = e3;

r04,�,� : [e0, e1] = �e1, [e0, e2] = �e2 � e3, [e0, e3] = e2 + �e3, � > 0, � 2 R;

d4 : [e0, e1] = e1, [e0, e2] = �e2, [e1, e2] = e3;

d4,� : [e0, e1] = �e1, [e0, e2] = (1� �)e2, [e0, e3] = e3, [e1, e2] = e3, � � 1

2
;

d04,� : [e0, e1] = �e1 � e2, [e0, e2] = e1 + �e2, [e0, e3] = 2�e3, [e1, e2] = e3,

� � 0;

h4 : [e0, e1] = e1, [e0, e2] = e1 + e2, [e0, e3] = 2e3, [e1, e2] = e3.

Proposition 5.1. The Lie algebrasaff(R)� aff(R), aff(C), R� e(2), R� h3, R�
r3,0, r4,�1,�1, r04,�,0 (� > 0), d4,1=2, d4,2 and d04,� (� > 0) admit generalized complex
structures of type0, 1 and 2.
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Proof. It follows from results in [15, 18, 23] that all of the above Lie algebras
admit both symplectic and complex structures, which give rise to generalized complex
structures of type 0 and 2, respectively. A generalized complex structure of type 1 on
aff(R) � aff(R) can be obtained by combining one of type 0 with one of type 1 on
aff(R) (see (15) and (16)). For the remaining Lie algebras, we exhibit a generalized
complex structure of type 1.

(27)

aff(C), r4,�1,�1 : J (e0) = �1, J (e2) = e3

R� e(2), R� r3,0, d4,1=2, d04,� (� > 0) : J (e0) = �3, J (e1) = e2,

R� h3, r04,�,0 (� > 0), d4,2: J (e0) = e1, J (e2) = �3.

Proposition 5.2. The Lie algebrasR� r3,�1, r4,�1, r4,0, n4, r4,�,�� (�1< � < 0)
and r4,�1,� (�1� � < 0) admit generalized complex structures of type0 and 1, but not
of type2.

Proof. First we notice that every Lie algebra mentioned in the proposition has
symplectic structures but does not admit complex structures ([15, 17, 18, 23]), so it
does not possess generalized complex structures of type 2 (Theorem 4.1). For each one
of these Lie algebras, we show a generalized complex structure of type 1:

(28)
R� r3,�1, r4,0, r4,�,��, n4 : J (e0) = e1, J (e2) = �3,

r4,�1, r4,�1,� : J (e0) = e3, J (e1) = �2.

Proposition 5.3. The Lie algebrasR � r3,1, r4,1, r04,�,� (� > 0, � 6= 0), R � r03,�
(� 6= 0), r4,�,� (�1 < � � 1, � 6= 0), r4,�,1 (�1 < � � 1, � 6= 0), and d04,0 admit
generalized complex structures of type1 and 2, but not of type0.

Proof. These Lie algebras have complex structures and do notadmit symplectic
structures ([15, 17, 18, 23]), thus they admit generalized complex structures of type 2
but not of type 0. A generalized complex structure of type 1 isgiven by

(29)

R� r3,1, r4,�,�, r04,�,� : J (e0) = �1, J (e2) = e3,

r4,1,r4,�,1 : J (e0) = �2, J (e1) = e3,

R� r03,�, d04,0: J (e0) = �3, J (e1) = e2,

5.2. Obstructions.

Proposition 5.4. d4 is the unique four dimensional solvable Lie algebra admit-
ting generalized complex structures of type2, but not of type0 or 1.
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Proof. We consider the basisfXi g defined by (17) forT�(d4). Taking into ac-
count (12) and the structure equations of the Lie algebrad4 given in (26), we see that
the only non-zero brackets onT�(d4) are

[X1, X2] = X2, [X1, X3] = �X3,

[X2, X3] = X4, [X2, X6] = �[X3, X7] = X5,

�[X1, X6] = [ X3, X7] = X6, [X1, X7] = �[X2, X8] = X7.

Supposse thatJ is a generalized complex structure ond4. Let us consider the equations

0 = N7
56 = a16a24, 0 = N8

56 = a16a14, 0 = N3
46 = �a34a16� a24a17,

0 = N8
26 = a24(a12� a34)� a16a82,

0 = N8
36 = �2a14a23� a13a24 + a24

2 + a16a83.

The conditionJ 2 = � Id implies that

0 = (J 2)4
2 = a14a21 + a24(a22 + a44) + a23a34 + a16a81� a27a83,

�1 = (J 2)4
4 = a14a41 + a24a42 + a34a43 + a44

2 + a18a81 + a28a82 + a38a83,

and so we obtaina16 = 0. Now, from the equations

0 = N1
47 = a14a17, 0 = N2

47 = a17a24, 0 = N6
57 = �a34a17,

0 = N7
47 = a34(a13� a24)� a17a83,

0 = N6
47 = �2a14a32� a12a34 + a34

2 + a17a82,

and, fromJ 2 = � Id,

0 = (J 2)4
2 = a14a31 + a24a32 + a34(a33 + a44) + a17a81 + a27a82,

�1 = (J 2)4
4 = a14a41 + a24a42 + a34a43 + a44

2 + a18a81 + a28a82 + a38a83,

we obtaina17 = 0. Moreover,a27 = 0 becauseN3
78 = �a27

2 = 0.
The equations

0 = (J 2)5
1 = �2a14a18, 0 = N8

78 = a18a34� a14a38, 0 = N7
58 = a14a28� a13a18,

0 = N8
68 = a14a28� a18a24, 0 = N7

68 = a28(a13 + a24)� a18a23,

0 = N7
17 = �1 + a13a31� a23a32 + a33

2 � a21a34,
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imply that a18 = 0. But, since

0 = (J 2)6
2 = �2a24a28, 0 = N7

68 = a28(a13 + a24),

0 = (J 2)6
1 = �a14a28, 0 = (J 2)8

1 = a12a28 + a13a38,

�1 = (J 2)1
1 = a11

2 + a12a21 + a13a31 + a14a41,

we obtaina28 = 0. And finally, from the equations

0 = (J 2)8
1 = a23a38, 0 = N2

18 = �a38a13, 0 = (J 2)7
3 = �2a34a38,

0 = N7
17 = 1 +a33

2 + a13a31� a23a32� a21a34,

we havea38 = 0. So the matrixJ2 in (18) is the null matrix, and thend4 does not
admit generalized complex structures of types 0 and 1. The almost complex structure
defined by J(e0) = e1 and J(e3) = e2 is integrable and thusd4 admits a generalized
complex structure of type 2. The uniqueness is seen in the table at the end of this
section.

Proposition 5.5. The Lie algebrasd4,�, (� 6= 1=2, 2) and h4 admit generalized
complex structures of type0 and 2, but not of type1.

Proof. Doing a similar calculation to that made in the previous proposition, one
can check that for a generalized complex structure onh4, the matricesJ1 and J2

in (18) are

J1 =

0
BB�

a11 0 a13 0
a21 a22 a23 a13

a31 0 a33 0
a41 a42 a43 a44

1
CCA , J2 =

0
BB�

0 0 0 a18

0 0 2a18 a28

0 �2a18 0 a38�a18 �a28 �a38 0

1
CCA .

From J 2 = � Id we havea18
2 + a2

13 6= 0. Since 0 =N8
68 = 3a18a13, we have the two

following possibilities:
• a18 6= 0, a13 = 0. Then, rankJ2 = 4 and the possible generalized complex structures
are of type 0; for example,

J (e0) = 2�3, J (e1) = �2.

• a13 6= 0, a18 = 0. In this case, we obtaina38 = a28 = 0 using 0 =N7
78 = 3a13a38 and

0 = N7
68 = a13(4a28 + a38). So J2 � 0 and the possible generalized complex structures

are of type 2; for example,

J (e0) = e2, J (e1) = e3.
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For a generalized complex structure on the Lie algebrad4,�, (� 6= 1=2, 1, 2), the
matricesJ1 andJ2, given by (18), are

J1 =

0
BB�

a11 a12 a1,3 0
a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

1
CCA, J2 =

0
BB�

0 0 0 a18

0 0 a18 a28

0 �a18 0 a38�a18 �a28 �a38 0

1
CCA.

We consider two possibilities according toa18 6= 0 or a18 = 0:
• If a18 6= 0, rankJ2 = 4 and the generalized complex structures are of type 0; for
example,

J (e0) = �3, J (e1) = �2.

• If a18 = 0, thena12
2 + a13

2 6= 0. Since 0 =N6
35 = (1� 2�)a12a13, we consider two

subcases
A) a12 6= 0, a13 = 0. From N5

58 = ��a12a28 we obtaina28 = 0 and from 0 =N6
78 =�a38(a34 � a12(� � 2)) and 0 =N6

47 = a34(�a12 + a34) we obtaina38 = 0. Hence
J2 � 0 and the generalized complex structures are of type 2; for example,

J (e0) = �e1, J (e2) = �e3.

B) a13 6= 0, a12 = 0. From N5
58 = (�1 + �)a13a38 we obtain a38 = 0 and from

0 = N7
68 = a28(a24 + a13(� + 1)) and 0 =N7

46 = �a24(a24 + a13(� � 1)) we obtain
a28 = 0. So, J2 � 0 and the generalized complex structures are of type 2; for
example,

J (e0) = (1� �)e2, J (e1) = e3.

For a generalized complex structure on the Lie algebrad4,1, the matricesJ1 and
J2 in (18) are

J1 =

0
BB�

a11 a12 0 0
a21 a22 a23 0
a31 a32 a33 �a12

a41 a42 a43 a44

1
CCA , J2 =

0
BB�

0 0 0 a18

0 0 a18 a28

0 �a18 0 a38�a18 �a28 �a38 0

1
CCA .

Therefore, a12
2 + a18

2 6= 0. Since 0 =N6
58 = 2a12a18 we consider the two following

possibilities:
• a18 6= 0, a12 = 0. Then, rankJ2 = 4 and the generalized complex structures are of
type 0; for example,

J (e0) = �3, J (e1) = �2.
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• a18 = 0, a12 6= 0. BecauseN7
78 =�a12a28 and 0 =N6

78 = 2a38a12, we havea28 = a38 =
0. So, J2 � 0 and the generalized complex structures are of type 2; for example,

J (e0) = e1, J (e2) = �e3.

The previous propositions together with Table 1 imply the next result.

Corollary 5.6. Let g be a four dimensional Lie algebra admitting a generalized
complex structure. Then, g does not admit a generalized complex structure of type1
if and only if g is completely solvable and one of the following conditions is satisfied:
(i) b1(T�g) = b3(T�g) = 1, or
(ii) b1(T�g) = 2, b3(T�g) = 4.

REMARK 2. We must notice that the Lie algebrad04,� satisfies b1(T�d04,�) =
b3(T�d04,�) = 1, but it is not completely solvable. Therefore, according to the previ-
ous Corollary, it has generalized complex structures of type 1. In general, in the table
below, the Lie algebrasg0 are not completely solvable, so they have generalized com-
plex structures of type 1.

In the table below we summarize the previous results and, foreach solvable Lie
algebra admitting generalized complex structures, we exhibit one of the simplest ex-
amples of each type (—stands for non existence).

Table 1.

g b1(T�g) b3(T�g) Type 0 Type 1 Type 2
R� r3 3 5 — — —

R� r3,�j�j < 1, � 6= 0
3 5 — — —

r4 1 2 — — —

r4,�� 2 R, � 6= �1, 0, 1
1 2 — — —

r4,�,��1< � < � < 1�� 6= 0, � + � 6= 0
1 2 — — —

aff(R)� aff(R) 3 5 J (e0) = �1,
J (e2) = �3

J (e0) = �1,
J (e2) = e3

J (e0) = e1,
J (e2) = e3

aff(C) 2 2 J (e0) = �3,
J (e1) = �2

J (e0) = �1,
J (e2) = e3

J (e0) = e3,
J (e1) = �e2

R� h3 5 31 J (e0) = �2,
J (e1) = �3

J (e0) = e1,
J (e2) = �3

J (e0) = e1,
J (e2) = e3
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g b1(T�g) b3(T�g) Type 0 Type 1 Type 2

R� r3,�1 3 13 J (e0) = �2,
J (e1) = ��3

J (e0) = e1,
J (e2) = �3 —

R� r3,0 5 11 J (e0) = �2,
J (e1) = ��3

J (e0) = �3,
J (e1) = e2

J (e0) = e3,
J (e1) = e2

R� r3,1 3 13 —
J (e0) = �1,
J (e2) = e3

J (e0) = e1,
J (e2) = e3

r4,�1 1 4 J (e0) = �2,
J (e1) = �3

J (e0) = e3,
J (e1) = �2 —

r4,0 3 7 J (e0) = �1,
J (e2) = �3

J (e0) = e1,
J (e2) = �3 —

r4,1 1 4 —
J (e0) = �2,
J (e1) = e3

J (e0) = e3,
J (e1) = e2

r4,�,1,�1< � � 1, � 6= 0
1 4 —

J (e0) = �2,
J (e1) = e3

J (e0) = e2,
J (e1) = e3

r4,�,�,�1< � � 1, � 6= 0
1 4 —

J (e0) = �1,
J (e2) = e3

J (e0) = e1,
J (e2) = e3

r4,�1,�,�1< � < 0
1 4 J (e0) = �3,

J (e1) = �2
J (e0) = e3,
J (e1) = �2 —

r4,�1,�1, 1 4 J (e0) = �3,
J (e1) = �2

J (e0) = �1,
J (e2) = e3

J (e0) = e1,
J (e2) = e3

R� r03,0 5 11 J (e0) = �3,
J (e1) = �2

J (e0) = �3,
J (e1) = e2

J (e0) = e3,
J (e1) = e2

R� r03,�,� > 0
3 5 —

J (e0) = �3,
J (e1) = e2

J (e0) = e3,
J (e1) = e2
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g b1(T�g) b3(T�g) Type 0 Type 1 Type 2

n4 3 14 J (e0) = �3,
J (e1) = �2

J (e0) = e1,
J (e2) = �3 —

r04,�,0,� > 0
1 4 J (e0) = �1,

J (e2) = �3
J (e0) = e1,
J (e2) = �3

J (e0) = e1,
J (e2) = e3

r04,�,�,� > 0, � 6= 0
1 2 —

J (e0) = �1,
J (e2) = e3

J (e0) = e1,
J (e2) = e3

h4 1 1 J (e0) = 2�3,
J (e1) = �2 —

J (e0) = e2,
J (e1) = e3

d4 2 4 — —
J (e0) = e1,
J (e3) = e2

d4,�
� > 1

2
, � 6= 1, 2

1 1 J (e0) = �3,
J (e1) = �2 —

J (e0) = �e1,
J (e2) = �e3

d4,1 2 4 J (e0) = �3,
J (e1) = �2 —

J (e0) = e1,
J (e2) = �e3

d4,1=2 1 3 J (e0) = �3,
J (e1) = �2

J (e0) = �3,
J (e1) = e2

J (e0) =
1

2
e2,

J (e1) = e3

d4,2 1 3 J (e0) = �3,
J (e1) = �2

J (e0) = e1,
J (e2) = �3

J (e0) = e1,

J (e2) =�1

2
e3

d04,0 2 4 —
J (e0) = �3,
J (e1) = e2

J (e0) = e3,
J (e1) = e2

d04,�� > 0
1 1 J (e0) = 2��3,

J (e1) = �2
J (e0) = �3,
J (e1) = e2

J (e0) = e3,
J (e1) = e2
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6. An example in dimension 6

In this section we exhibit an example of a six dimensional (non-nilpotent) solvable
Lie algebrag6 admitting neither symplectic nor complex structures but having gener-
alized complex structures of types 1 and 2. This proves that Theorem 4.1 fails for
solvable Lie algebras of dimension six. Examples of six dimensional nilpotent Lie al-
gebras having neither left invariant symplectic nor complex structures but with gener-
alized complex structures are given in [8].

Let us consider the solvable 6-dimensional Lie algebrag6 defined by the structure
equations

(30) d�i = 0, (1� i � 4), d�5 = �12 +��15, d�6 = �15 + �34, � 6= 0.

Let ! be a 2-form! =
P

1�i< j�6 !i j �i j . Then, one can check that! is closed if and
only if

!16 = !26 = !36 = !46 = !56 = !25 = !35 = !45 = 0,

that is, ! is expressed as

(31) ! =
5X

i =2

!1i�1i +
4X

i =3

!2i�2i + !34�34.

But such a form! is degenerate. This means that the Lie algebrag6 does not admit
generalized complex structures of type 0.

On the other hand, we consider the basisfXi g6i =1 dual to the basis of 1-formsf�i g6i =1. From the equations (30) we get that the only non-zero Lie brackets are

[X1, X2] = �X5, [X1, X5] = �X6 � �X5, [X3, X4] = �X6.

Let J be an almost complex structure ong6 defined byJ(Xi ) =
P6

j =1 ai j X j . Then, the

components (NJ)k
i j of the Nijenhuis tensorNJ of J satisfy

(NJ)3
46 = a63

2, (NJ)4
36 = �a64

2, (NJ)1
56 = �a51a61 + a61

2, (NJ)1
26 = a51a61.

Therefore,a61 = a63 = a64 = 0 since NJ = 0. Moreover, J2 = � Id implies thata21
2 +

a31
2 + a41

2 + a51
2 6= 0, and the equations

(NJ)6
26 = a65a21, (NJ)6

36 = a65a31, (NJ)6
46 = a65a41, (NJ)6

56 = a65a51,

imply that a65 = 0. Now, from

(NJ)5
26 = a62a21, (NJ)5

36 = a62a31, (NJ)5
46 = a62a41, (NJ)5

56 = a62a51,
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we obtain a62 = 0. But �1 = (J2)6
6 = a66

2, which is not possible. This proves that
g6 does not admit complex structures or, equivalently, it doesnot admit generalized
complex structures of type 3.

To describe generalized complex structures of types 1 or 2, we take the basisfXi g12
i =1 of T�g given by

Xi = (Xi , 0) and Xi +6 = (0, �i ), 1� i � 6.

Notice that the matricesJi in (18) have order 6

J1 =

0
BBBBBBB�

a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66

1
CCCCCCCA

, J2 =

0
BBBBBBB�

0 b12 b13 b14 b15 b16�b12 0 b23 b24 b25 b26�b13 �b23 0 b34 b35 b36�b14 �b24 �b34 0 b45 b46�b15 �b25 �b35 �b45 0 b56�b16 �b26 �b36 �b46 �b56 0

1
CCCCCCCA

.

Analogous calculations to those performed in the previous sections allow us to obtain

a13 = a14 = a16 = a26 = a36 = a46 = 0,

b12 = b13 = b14 = b23 = b24 = b34 = 0,

b15 = �b16, a15 = �a12.

Notice that det(J2) = 0, and sog6 does not admit generalized complex structures of
type 0 as we already knew.

Let us consider

(J 2)1
1 = �1 = a11

2 + a12(a21 +�a51)� b16(c16 +�c15),

(J 2)7
1 = 0 =�2�2a12b16.

This leads us to distinguish the two following cases, that exhaust all the possibilities:

(i) b16 6= 0 but a12 = 0, (ii) b16 = 0 but a12 6= 0.

In case (i), assuming that rankJ2 = 2 and the integrabiblity of the generalized almost
complex structure, we get (J 2)5

5 = (a55��a65)2, which is not possible. So, a necessary
condition for having a generalized complex structure is that rankJ2 = 4, that is,

(32) b25 6= �b26, b35 6= �b36 or b35 6= �b56.
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Taking, for example,b25 6= �b26 we have the following generalized complex structure
of type 1:

J (X1) = �6, J (X2) = �5 � ��6, J (X3) = X4, J (X4) = �X3

J (X5) = ��2, J (X6) = ��1 +��2, J (�1) = �X5 + X6, J (�2) = X5,

J (�3) = �4, J (�4) = ��3, J (�5) = ��X1 � X2, J (�6) = �X1.

Similar results are obtained for the remaining choices in (32).
In case (ii), that is,b16 = 0 anda12 6= 0, the conditionJ 2 = � Id implies that

0 = (J 2)8
1 = ��a12b25, 0 = (J 2)9

1 = ��a12b35, 0 = (J 2)10
1 = ��a12b45,

0 = (J 2)12
1 = a12(b26 +�b56),

and then

b25 = b35 = b45 = 0, and b26 = ��b56.

Therefore, rankJ2 = 0 or 2. If rankJ2 = 0, we have�1 = (J 2)6
6 = a66

2, which is not
possible. This means thatg6 does not admit generalized complex structures of type 3,
as we mentioned before. So we must have rankJ2 = 2, that is,

(33) b36 6= 0, b46 6= 0 or b56 6= 0.

Consider b56 6= 0. Then for b56 = 1 we obtain the following generalized complex
structure:

(34)

J (X1) = X2, J (X3) = X4, J (X5) = ��X1 � �6,

J (X6) = �5, J (�1) = �2 +��5, J (�2) = ��1 +�X6,

J (�3) = �4, J (�6) = ��X2 + X5.

Changing the basisfXi , �i g to fYi , � i g defined by

Yi = Xi , i = 1, 2, 3, 4, 6, and Y5 = X5 � �X2,

(and the corresponding change between the dual basisf�i g and f� i g, resp.) the equa-
tions (34) can be written, as stated in Theorem 4.1, in the simplest form:

J (Y1) = Y2, J (Y3) = Y4,J (Y5) = ��6,

J (Y6) = �5,J (�1) = �2,J (�3) = �4,

that is, the generalized complex structureJ has type 2. For the remaining choices
in (33) we obtain similar results.
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