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Abstract

We study hermitian structures, with respect to the standerdral metric on the
cotangent bundlelr*G of a 2n-dimensional Lie grougs, which are left invariant
with respect to the Lie group structure arfG induced by the coadjoint action.
These are in one-to-one correspondence with left invargereralized complex
structures onG. Using this correspondence and results of [8] and [10], ihgu
out that whenG is nilpotent and four or six dimensional, the cotangent tbeiffdG
always has a hermitian structure. However, we prove thét i§ a four dimensional
solvable Lie group admitting neither complex nor symplediructures, thed*G
has no hermitian structure or, equivalentlg has no left invariant generalized
complex structure.

1. Introduction

The cotangent bundl@*G of a Lie groupG with Lie algebrag has a canonical
Lie group structure induced by the coadjoint action®fon g* and also a canonical
bi-invariant neutral metric. With respect to this data, rhigian structures o *G such
that left translations are holomorphic isometries are iy endomorphismg of g &
g* satisfying J2 = — Id which are orthogonal with respect to

1
@ (X, @), (v, B)) = 5(B() + (y)),
and satisfyN; = 0, whereN; is defined in (3), with respect to the Lie bracket:

@) X @), (y, B =(x,¥], —Boadk) +aocady) for x,yeg a fecg"

On the other handg & g* is the fiber at the identite of the bundleT G® T*G over

G and one may extend above to the wholeT G @ T*G using the standard lift of
left multiplication in G. The Courant bracket (see (12) below), when restricted fto le
invariant vector fields and left invariant 1-forms is giveg the equation above thus
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establishing a correspondence, in the invariant case,dagtvinvariant hermitian struc-
tures onT*G and left invariant generalized complex structures®@r{Proposition 3.1).
It follows that any such structure gives rise to a Poissondrieup structure orm*G
such that the dual Poisson Lie group*G)* is a complex Lie group (Corollary 3.2).

The concept ofgeneralized complex structukgas introduced by Hitchin [12] and
developed by Gualtieri [11]. Symplectic and complex geaynere extremal special
cases of generalized complex geometry. In [8] Cavalcardi Gnaltieri show that the
34 classes of 6-dimensional nilpotent Lie groups (see [B],f@r the classification)
have a left invariant generalized complex structure; bug 6if these classes of nilpotent
Lie groups admit neither symplectic nor complex left inaati geometries (see [20]). It
is proved in [10] that every four dimensional nilpotent Lieogp has left invariant sym-
plectic structures and hence generalized complex stegtugo, it seems interesting to
understand the way this property occurs on non-nilpoteiMabte Lie groups.

In this paper we deal with left invariant generalized compétructures on solv-
able Lie groups of dimension 4. To this end, in Propositioh & §3, we show that
there is a one-to-one correspondence between left intagimeralized complex struc-
tures on a Lie groupG and invariant hermitian structuresl,(g) on T*G, whereg
is the standard neutral metric oh*G. In §4 we prove Theorem 4.7 which asserts
that a four dimensional solvable Lie group G has neither left neat symplectic nor
complex structures if and only if G does not admit generdligemplex structuresin
the proof, we use the classification of 4-dimensional sdévdtie groups with left in-
variant complex (resp. symplectic) structures carried iauf23] and [17] (resp. [15];
see also [18]).

On the other hand, K5 we distinguish the solvable Lie groups of dimension
4 admitting a non-extremal left invariant generalized ctexpstructure §5.1) and the
Lie groups carrying a left invariant complex or symplectirusture but without a non-
extremal left invariant generalized complex structuig.Z).

Finally, in §6 we show that Theorem 4.7 does not work in dimension 6. In, fact
we construct an example of a six dimensional (non-nilpdteptvable Lie group ad-
mitting neither left invariant symplectic nor complex sttures but having non-extremal
generalized complex structures.

2. Hermitian structures on cotangent Lie groups

A left invariant complex structur®n a real Lie groupG is a complex structure
on the underlying manifold such that left multiplication kjements of the group are
holomorphic. Equivalently, there exists an endomorphidnof g, the Lie algebra of
G, such that:J2=—1Id and N; = 0, where

(3) NJ(X1 y):[X1 y]+J[JX, y]+‘][Xv‘]y]_[‘]Xv‘]y]v inyEQ'

The conditionN; = 0 is called theintegrability conditionof J.
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The action ofG on itself given by left multiplicationLy: G — G can be lifted
to an action ofG on TG given bydLyg: TG — TG. Thus, a left invariant com-
plex structure is an equivariant endomorphismTdd with respect to the lifted action
of G given by left multiplication. Similarly, a left invariantymplectic structure on
G is an equivariant isomorphism: TG — T*G where the action ofG on T*G is
Lg-1: TG — T*G.

A left invariant hermitian structureon G is a pair (, g) of a left invariant com-
plex structureJ together with a left invariant hermitian metrie (not necessarily pos-
itive definite). If J denotes the corresponding endomorphismgoend (-, -) the non
degenerate symmetric bilinear form gninduced byg, we say that J, (-, -)) is a
hermitian structure org. A non degenerate symmetric bilinear form, -) on g is
said to be ad-invariant when it satisfies:

4) (X, ¥, 22 +(y, [x,2Z]) =0 forany x,y,zeg.

If G is a Lie group with Lie algebrg and g is a bi-invariant metric orG, that is,
g is both left and right invariant, then the bilinear form, -) on g induced byg is
ad-invariant.

Let g* = g®r C be the complexification of the real Lie algebgaand leto denote
the conjugation ing® with respect to the real forng, that is, o(x +iy) = x — iy,
X,y € g. Starting with a hermitian structure)((-, -)) on g, let J (resp.(-, -)©)
denote the complex linear (resp. complex bilinear) extnsif J (resp. (-, -)) to gC.
We obtain a splitting

g“=q®0(q),

where q, the i-eigenspace ofIC, is a complex subalgebra @ which is maximal
isotropic with respect tq -, - )C.

We prove the above statement in the following propositiohgre it is shown that,
conversely, ifB is a symmetric bilinear form og® satisfying certain conditions, then
any splitting g® = q ® o(q), whereq is a maximalB-isotropic complex subalgebra of
gC, gives rise to a hermitian structurd,(( -, -)) on g such that thd -eigenspace of
JC in g€ is q and (x, y) = B(x, y) for x, y € g.

Proposition 2.1. Let G be a Lie group with Lie algebrg and denote byg®
the complexification ofy. There is a one-to-one correspondence between left inviarian
hermitian structureg(J, g) on G and pairs(q, B), where B is a symmetric bilinear
form on g€ and q is a maximal B-isotropic complex subalgebra gf satisfying the
following conditions

(5) g“=ado(),
(6) B(ocz,ow)=B(z, w), zZ we g(c,
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where@ denotes the complex conjugate @fe C and o is the conjugation ing® with
respect tog.

Proof. Given a left invariant hermitian structurd, @) on G, let (J, (-, -)) be
the corresponding hermitian structure gn g© decomposes into a direct sum of sub-
spaceg® = g*%@ g%, the eigenspaces af® of eigenvaluei and —i, respectively. It
follows that

01—

gtO={x—iJx:xeg}), g {x+iJx:x e g}

hence, g®! = o(g*?. EquationN; = 0 is equivalent to the fact that these subspaces
are subalgebras. Moreover, using thatis orthogonal, it is easy to check that both
g>% and g®* are isotropic with respect t¢-, - )C. Since(-, -) is non degenerate,
these subalgebras are maximal isotropic. Heng@l (-, - )°) satisfies the required
conditions. Note that equation (6) holds if and onlyBftakes real values op, and
(-, -)C clearly satisfies this property.

Conversely, given a pairg( B) as in the statement, we wish to show that it gives
rise to a hermitian structureJ((-, -)) on g. Let J be the almost complex structure
defined ong® by

Jz=iz, Joo(@=-ic(2), zeq.

SinceJ oo =0 o J, then J leavesg stable. The fact tha is a subalgebra implies
that J satisfiesN; = 0. Since equation (6) hold$3 takes real values op. Let (-, -)
be the restriction oB to g. It follows from (5) and the fact thaj is B-isotropic that
J is orthogonal with respect t¢-, -). Sinceq is maximal isotropic ther-, -} is non
degenerate, that isJ((-, -)) is a hermitian structure og. Therefore, it induces, by
left translations, a left invariant hermitian structure Gnand the proposition follows.
O

We will be studying a special class of left invariant heranmtistructures. The Lie
groups that come into the picture are the cotangent bundléseayroups with a stan-
dard bi-invariant metric.

Let g be a Lie algebra and a g-module, that is, there exists a Lie algebra homo-
morphismp: g — gl(v). Let g x, v denote the semidirect product gfby v, where
we look uponv as an abelian Lie algebra. The bracketgr, v is given as follows:

(@) [(x, ), (v, )] = ([x, Y], p(X)v = p(y)u) for X,yeg, u,vev.

Complex structures on Lie algebras of the above type werdiestuin [4]. In the
present article we will restrict our attention to the paréc case whern = g* and
p = ad' is the coadjoint representation:

ad'(x)(@) = —a 0 adk), « € g*, X € g.
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We will denoteg x,¢ g* by (T*g, ad), the Lie bracket being given by (2). The co-
tangent algebra T*g, ad’) has a standard non degenerate symmetric ad-invariant
bilinear form (-, -) (see (1)). We notice that the subalgelgraand the idealg* are
maximal isotropic in T*g, (-, - )).

Left invariant hermitian structures on the cotangent Lieugr T*G are given by
endomorphisms]) of T*g whose matrix form with respect to the decompositipr

g is
(A R
J_<Js J4>’

() d=-3, XH=-3, Jk=-J
(8) (i) I+hB=-1d, hkh=—(hd), Ihdh=-(k),
(i) J s integrable.

and satisfy

EXAMPLE 2.2. Let; be a complex structure og dimg = 2n, and defineJ, on
T*g by

©) g% @) =((X), =7 (@), xeg acg

where ;* is the adjoint of;, that is, ;*(«) =« o ;. It follows that J, is orthogonal
with respect to the standard bilinear form, -) on T*g. Moreover, it was shown in
[4] (Proposition 3.2) that the integrability of implies thatJ, is a complex structure
on (T*g, ad). Therefore, §,, (-, -)) is a hermitian structure oril{g, ad").

ExAamMPLE 2.3. Letw: g — g* be a linear isomorphism and define
(10) Jo(X, @) = (o™ H@), ©(x)),

(compare withg4 in [4]). It follows that J, is orthogonal with respect to the standard
bilinear form onT*g if and only if w is skew-symmetric. The integrability al, is
equivalent to the following condition

11) o([, ¥]) = o(x) o ady) — o(y) o adk).

Therefore, ifw satisfies (11)J,, defines a hermitian structure o *g, ad’). We ob-
serve that in this casey is a symplectic structure og.

3. Left invariant generalized complex structures on Lie graps

We recall that a generalized complex structure on a manliblid an endomorphism
J of TM@T*M satisfying 72 = —Id which is orthogonal with respect to the standard
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inner product(-, -) on TM & T*M defined in (1) and such that theeigenbundle of
J in(TMe@T*M)®C is involutive with respect to the Courant bracket. This kedc
is defined as follows:

(12) (X, &), (Y. )] :<[x, YL, Lxn — Lyt — 3l — iYs)),

where X, &), (Y, ) are smooth sections &fF M & T*M.
When M is a Lie groupG, consider the left action o6& on TG & T*G induced
by left multiplication of G on itself, that is,

A Gx(TGHT*G) > TG T*G,

13
(13) (9, (X, a)) = (dLg)nx, (L;,l)gha), XeThG, ¢ € TyG, g,heG

where
(Lg 1) gt = a((dLg)gny), vy € TgnG.
A generalized complex structutg on G is said to be left invariant (oG-invariant) if
J TGeT'G->TGaT'G

is equivariant with respect to the induced left action®fon TG® T*G given in (13).
It follows that, for anyg € G, the following diagram is commutative:

T,GeT;G L T,G®TG

where
hga(X, @) =A@ (X, @), X€TyG, a € T;G.

In other words, 7 is left invariant if and only if, for anyg € G, Jj is given in terms

of J. as follows:
_( (dLg)e ) ( (dLg1)g >
- * oJeo " .
< (Lgs)g (Lo)e

If we identify the space of left invariant sections G @ T*G with g & g*, then the
restriction of the Courant bracket (12) #o® g* is precisely the Lie bracket (2) on the
cotangent algebraT('g, ad’). Therefore, the Courant integrability condition of a left

(14) Jg=hgo Jeorgt
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invariant generalized complex structuge on G is equivalent to the integrability affe
on the cotangent algebrd {g, ad’). Moreover, sinceiy, g € G, are isometries of the
standard bilinear form( -, -) on TG & T*G, it follows that 7 is orthogonal with
respect to( -, -) if and only if J. is compatible with(-, -). Therefore, if7 is a left
invariant generalized complex structure & (Je, (-, -)) is a hermitian structure on
T*g. Conversely, given a hermitian structurg, (-, -)) on (T*g, ad’), where(-, -)
is the standard neutral metric dri‘g, it can be extended, by means of (14), to a left
invariant generalized complex structure on G such that7. = J.

The preceding arguments yield the following result:

Proposition 3.1. There is a one-to-one correspondence between left inviagiam-
eralized complex structures on G and invariant hermitiarudures (J, g) on T*G,
where g is the standard neutral metric orG.

When a Lie groupG has a left invariant complex or symplectic structure, then a
of these structures induces a natural left invariant gdimerhcomplex structure ofs,
as shown in Examples 2.2 and 2.3.

In view of Proposition 3.1, a hermitian structure oh*§, ad’) with respect to the
standard bilinear form will be called a generalized commaxcture ong and denoted
by (7, (-, -)). When 7 satisfies only conditions (i) and (ii) in (8), it will be catle
an almost generalized complex structure. Note that*if is a generalized complex
vector space, dirg=2n (see [11, 6]).

REMARK 1. It was proved in [10] that every four dimensional nilpdtere group
has either left invariant complex or symplectic structuisiybe both; see also [14] for
the classification of these groups). Hence, such a Lie gragpahleft invariant gener-
alized complex structure. In [8] (see also [7]) it was shoWwattevery six dimensional
nilpotent Lie group admits a left invariant generalized e structure. In other words,
the cotangent algebral {g, ad’) of any four or six dimensional nilpotent Lie algebra
g admits a hermitian structurel(( -, -)), where(-, -) is the standard bilinear form
on T*g.

It was proved in [1] that whenJ, g) is a left invariant hermitian structure on a
Lie group H such thatg is bi-invariant then bothH and H* are Poisson Lie groups.
Moreover, sincel is a complex structureH* is a complex Lie group (see [3]). The
Poisson structure ol is given by TI(h) = (dR,)ed — (dLp)ed, h € H, whereJ is
viewed as an element df A b by identifying the Lie algebrd of H with its dual b*
via the metricg. As a corollary of this result and Proposition 3.1, we therefobtain:

Corollary 3.2. If G is a Lie group with a left invariant generalized complésus-
ture, then TG and (T*G)* are Poisson Lie groups such th@f*G)* is a complex Lie

group.
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We end this section by determining the generalized compiexctsires on the two
dimensional non-abelian Lie algebge= aff(R).

ExampPLE 3.3. Generalized complex structures aff(R). Let g = aff(R) be the
two dimensional non-abelian Lie algebra antlff(R) the corresponding cotangent Lie
algebra. Let{ey, &} be a basis ofy such that §y, e;] = e;, and {«°, o'} the dual basis
of g*. Set

Xi=(e_1,0), Xs2=0,a1), i=12
then:
[X1, X2] = Xa,  [Xq, Xq] = =Xy, [X2, X4] = Xa.

A generalized complex structut& on aff(R) takes the following form in the ordered
basis{ Xy, ..., X4}:

a;r  ap 0 a4
apr ap -—a4 O

0 —-an —an -—-an
a1 0 -—app —ax

J =

with 72 = —1d and N; = 0.
In caseay4 # 0, the condition7? = — Id implies ay; 7 0, afl +aj4a41 = -1, a1 =
ax» anda;p = 0 =ay;. Hence,

a1 0 0 a1a
0 & —a4 O

15 =
(15) J 0 —ay —a1 O

as; O 0 —ap

, @ygdq1 70, @) +agay = —1.

It follows that 7 as above satisfiebl; = 0. In particular, ifa;; =0, J arises from
a symplectic structure onff(R) as in Example 2.3, but foa;; # 0 J is not induced
by a symplectic or complex structure eff(R). However, since7 is of type O (see
the paragraph next to (20) ig¥) it follows from Theorem 4.1 that it is equivalent to
a symplectic structure via B-field transformation.

In caseais = 0, the condition7? = — Id implies

_ 2 _ _
an =0, aj;+tapap =-1, apay 70, aj;=—axn.

Therefore,
aiq i 0 0
_l a1 —a1 O 0 2 =
(16) J = 0 0 —ay —an | appapy 70, ag; +apay = -1,

0 0 —ai2 aiq
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and J satisfiesN; = 0. Note that every generalized complex structure in thisilfam
arises from a complex structure afif(R) as in Example 2.2.

We observe thal *aff(R) is isomorphic to the Lie algebray (see [2]). This is the
unique four dimensional solvable Lie algebra admitting raicdtire of a Manin triple.
The above calculations together with Corollary 3.2 implgttithe Lie groupD, with
Lie algebraT*aff(R) is a Poisson Lie group such that the Poisson Lie groyp is a
complex Lie group.

Fix two generalized complex structuregg, J> on g = aff(R) as follows:

a 0 0 b x y 0 O
|10 a —-b O 2 _ lz —x 0 O 2 _
J= 0 —c —a 0 ,a"+bc=-1, J= 0 0 —x —z , Xo+yz=-1,
c 0 0 -a 0 0 -y x

and considelG = — 7, J7,. Observe that/; and /> commute, therefor&?2 =1d. It fol-
lows thatG defines a positive definite metric gne g* if and only if cz < 0. There-
fore, when this condition is satisfied, we obtain generdlig&hler structures onff(RR)
(see [7, 11)).

4. Solvable Lie groups without generalized complex structes

In this section we prove that a four dimensional (non-nép}t solvable Lie group
has no left invariant generalized complex structures if anly if it admits neither left
invariant symplectic nor left invariant complex structsire

We start by fixing some notation. LQ&‘}?ZO be the basis ofi* dual to the basis
(e}, of g. Define the basi§X;}%, of T*g by

17 Xi=(6-1,0) and Xi4=(0,¢'?), 1<i=<4

Let 7 be a linear endomorphism af*g whose matrix form is

Y VN
(18) J—<j3 j4),

with respect to the basisX; }?:1 of T*g defined by (17). If7 is orthogonal with respect
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to the standard bilinear form ofi*g then the matrix of7 is of the form

a1 A2 a3 g 0 e 17 g
d1 A azs dq —aie 0 azy azg
dz1 Az aszs dzq —ay7 —ayy 0 asg
ay1 2 a3 a4 —adg —ag —agg O

19 J =
(19) 0 -—a1 —ann —ag —am1 —ax —as —ay
a1 0 —app —ag —anz —axp —ax —aw
az1 a2 0 —ag3 —a3 —a3 —az —aus
g1 a2  ags 0 -4 -4 —au —au
Moreover, taking into account (8), if72 = — Id then the matrix7 has the following
property:
(20) for every 1<i <4 there exists j Zi such that &; 7 0.

We will say that.7 is of complex typdf 7, = 73 =0, J is of symplectic typef
J1=J4=0, andJ is said to be otype kwhen rank(/;) = 2(n —k), where ding =2n
(compare with [11]). Observe that iff is of complex (resp. symplectic) type then it
is of type 2 (resp. 0).

We recall a theorem from [11, 8]

Theorem 4.1 ([8], Theorem 1.1; [11], Theorem 4.35).Any regular point of type
k in a generalized complezn-manifold has a neighbourhood which is equivalena
a diffeomorphism and a B-field transformatjoio the product of an open set i@k
with an open set in the standard symplectic sp&e& 2.

The previous theorem implies that a-dimensional Lie algebra admits a general-
ized complex structure of type 0 (resp. of typg if and only if it has a symplectic
structure (resp., a complex structure).

In order to prove the main result of this section, we recadl definition of the four
dimensional solvable Lie algebras admitting neither syt nor complex structures
(see [21, 22, 15]). They are
(21)

Rxvzi[e, e] =€, [e,e]=e+es

R xvgy:[en, e] =€, [e,e]=xre, [A <1, 1Z0;
v [eg, @] =€, [e, e]=€+e, [e &]=e+es;
vy, (€0, @] =€, [eo, &]=Ae, [en,e]=€+Ae;, AR, 2 7-1,01;
ta, [€0, @] = €, [eo, €] = uey, [en, €3] = Ay,
—1<pu<i<l pur#0, u+ir #0.
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Next, we show that every Lie algebfaincluded in the list (21) has no left in-
variant generalized complex structures by analyzing ead®e.c To this end, we will
prove that any almost complex structug on T*(h) does not satisfy the integrabil-
ity condition. This condition is equivalent to the vanishiof the 256 coefficient:Ni‘j
defined by

8
Nz(Xi, X)) =D NfXy, 1<i<j<8,
k=1

where N7 is the Nijenhuis tensor off (see (3)).

Proposition 4.2. The Lie algebraR x t3 does not admit generalized complex
structures

Proof. We consider the basis(;} for T*(R x t3) defined by (17). Taking into
account (12) and the definition of the Lie algelRa< v3 given in (21), we see that the
only non-zero Lie brackets of*(R x t3) are

[X2, Xa] = X, [Xo, Xa] = Xz + Xa, [X2, X7] = —X7 — Xg,
[X2, Xg] = —Xg, [Xs, X7] = X, [X4, X7]1 = Xg = [Xa, Xg].

Suppose thaR x tv3 has a generalized complex structure, i.€%(R x t3) has a
hermitian structuref, (-, -)). Since all the coefficientsli'j of the Nijenhuis tensoN_

of J must be zero, we have 0NZ% = ax? and 0 =N/ = ax3?, and soagg = a3 = 0.
Let us consider the equation

(22) 0 =Ngg = 1 +a4s® + auz(apz + Aua + 8g4) + 824842 — A3383.
Now, (22) and the equations
0=Ng =2ap37, 0=N&%=—asd7 0=NE =—apa— 2agay,

imply that a,7 = 0. Moreover, because

0=Njg=—2a6a3s, 0=N3 =aeus, 0=Njs=areaa,
we havea;s = 0 using (22); and because

0=N$, = —axaus, 0 =Nz = —2aass,

and

0 = Nj; = —1 — aa3” + au3(az2 — 833 — Ag4) — Aasdes,
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we see thaby, = 0. Finally,
0=N3; = 2ap8s, 0=N5=—axass

imply ap; = 0 using (22). So, in the matrix (19) qff, the unique non-zero entry
in the 2nd row isay,, which is not possible by (20). This shows thdt cannot be
integrable. ]

Proposition 4.3. For A #0,41, the Lie algebraR x t3; has no generalized com-
plex structure

Proof. Using the basi¢X;} for T*(R x t3,), given by (17), and the definition of
the Lie algebraR x 3, stated in (21), the only non-zero Lie bracketsTof(R x t3;) are

[X2, X3] = X3, [X2, Xg] = A Xg, [X2, X7] = =Xz
[X2, Xg] = =AXs, [X3, X7] = Xs,  [Xa, Xg] = 1 X.

Let (7, (-, -)) be a hermitian structure ofi*(R x t3,). The integrability condition
of J implies that all the coefficient:t\li‘} of the Nijenhuis tensor of/ are zero. In
particular,

(23) 0 =Ngg = AL +aus® + a42u2 + 828882) + 834843 — Agsdes.
Now from (23) and the equations
0 =N = —rawedz, 0=NZ=2raea, O0=NZ =ajsay7,
0 = N&, = raggapy + ar7aps + (A — 1)aseass,
0 = NZ&, = —raygapy + ar7aps — (1 +A)ayeass,
we obtaina;g = 0. On the other hand,
0 =Ng; = (1 — A)agras, 0 =Nz7 = —(1 +2)ag7ags,
0=Njg=(1+2)agsags+ (A — 1)azraus, 0 =N¢; = 2a7aps,
0 =Ngz; = (1 — A)agsadss — (1 +2)az73s3,
and (23) imply thatay,7 = 0; and from the equations
0=N/g=(1+1)azass 0 =Ng=(1+A)azsaps,
0=Nj;=( — Lagsags, 0=Njg=( — 1)axa
we conclude thabtys = 0 using again (23). Moreover,
0 =N75 = Adgiaps, 0=N2; = axas; + (A — 1)aass,

0 = N = Adpidzs, 0 =N3, = apaz + (1 +1)axags,
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imply that ap; = 0 using again (23). So, according to (2@)4® + axg® # 0. Since
A #0,£1, the equations

0 = N&; = 2428,
0= N3, = (» — 1)apsaus + (1 +1)arsags,
0 = N7g = (A — L)aggaza + (1 +1)azsagzs,
imply that ag4a43 = aggags = 0. Therefore,
0 =N$; = 1 +ags® + A(azs43 — A3s8s3),
which implies that 0 = 1 -Bz3%. But this is not possible, and hengé cannot be inte-
grable onT*(R x t3,). Ul
Proposition 4.4. The Lie algebrar, has no generalized complex structure
Proof. From (17), (21) and (12), we have that with respectht liasis{X;} the
only non-zero Lie brackets of*(t4) are
[X1, X2] = Xz, [X1, Xa] = Xz + X3, [X1, Xg] = X3+ Xg,
[X1, X7] = =X7 = Xs, [X1, Xe] = —X6 — X7, [X1, Xg] = —Xa,
[X2, Xe] = [ X3, Xe] = X5, [X3, X7] =[X4, X7] = X5, [Xa, Xg] = Xs.
If there is a hermitian structure7(, (-, -)) on T*(rs), then
0=NJg=ai®, 0=N&=a — aeds,
0=N3$=ap?, 0=N§=—a3®+apa,
imply that a;» = aj3 = a;7 = ayg = 0. S0, it must beajg® + a14°> 7 0 since, according

to (20), at least an elemeni; of the first row of the matrix (19) associated 6 must
be non-zero forj # 1. Now, we consider

0 = N% = 2ay68gs, 0 = N&; = 2ay4a3s,
0 = NJg = —2a36a7, 0 =NJ, = —2ay4ary,
0=Nj;=ai4(u3 — &), 0=N{ =ars(auz — az),

— N3 = — N5 =
0 = Nf5 = ay4a38 — a16832, 0 = Ngz5 = agqay3 + Aeaz2.

From these equations, and using tlaa$ and a;4 do not vanish simultaneously, we
conclude thatagg = a7, = ay3 =az, = 0. Then,

_ N5 2
0 =N3; = 1 +ags” + agp(ay1 + ags + a3) + aya(Azz — ary + a4) — A7872 — Ag3dgzs,

implies that 0 = 1 4a33?, which is not possible. Thus7 cannot be integrable. [J
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Proposition 4.5. For A # 0, £1, the Lie algebrar,, does not admit generalized
complex structures

Proof. With respect to the badiX;} given by (17), and according to (12) and (21),
the only non-zero Lie brackets oh*(ts,) are

[X1, Xo] = X2, [X1, X3] = A X3, [X1, Xa] = X3+ A Xy,
[X1, Xe] = —Xe, [X1, X7] = =AX7 — X, [X1, Xg] = —AXg,
[X2, Xe] = [Xa, X7] = X5, [X3, X7] = [X4, Xg] = A Xs.

Suppose that, foih € R — {—1, 0, B, T*(t4,) has a hermitian structure with com-
plex structure. Since all the coeﬁicientNi']‘ of the Nijenhuis tensor off are zero,
we have

0=Njg=a;g°, and 0=Nj;=as
Thus, a;g = a;3 = 0. Let us consider the equation

(24) 0 = N5 = 1 +ap,?® + ajoay2 + A16861 + 23842 — A2gaz2
+ M(@23832 *+ Q4842 — B7872 — A28382)-
Since
0=N3; = (A — Dagsay, 0 =Ng; = 2 ay6833 — (1 +A)ar7ays,
0=N¢; = areaus — (1 — Aarzds, 0=NE = (1 +1)apaz,
0 =N = (L+A)ag7ar, — apdys, 0= NS = 2hapsass — (1 — A)agzauz,
we obtain thata;7 = 0 using (24) and the conditions# 0, 1,—1. Now, the equations
0 = Njg = —(1 +X)auqaus, 0 = Njg = (1 +A)ar4d5 — a16aus,
0 =Ny = (1 —A)asds + 2 ageags, 0 =Ny = (A — L)aisayo,
0=N$, = (1 +0)agar; + 2ha108g3, 0 = N3 = agp(ayy + azo) + Aaadsn
and (24) imply thata;4 = 0. Henceay,? + a;¢° # 0. Morever, we have
0 =N, = —austus, 0=Ng; = —anaus, 0 =Nig= 2hasass,
0 = N%, = 21a52a3s, 0 =N =2apa56, 0 =N35 = asoas + a6d72,
0 = N2 = —apay; — areaz.

Therefore, ay3 = agg = 0 and agzas, = agzazz, = 0. Taking into account these equali-
ties and

0 = N3, = A(1 +ag3%) + axsasy — Aprarz + us(dss — 11 + AA34) — Aazsdss
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we conclude that 1 #33% = 0 because. # 0. This proves that, for # —1, 0, 1, T
does not admit generalized complex structures. ]

Proposition 4.6. The Lie algebrars, , has no generalized complex structure for
—1 < u <X <1such thatur Z0 and u+A #O0.

Proof. ForT*(ts,,,) we take the basi$X;} defined by (17). Then, using (21)
and (12) we see that the only non-zero Lie bracketsTo(tas,, ;) are
[X1, X2] = Xy, [X1, X3] = uXa, [X1, X4] = A X4,
[X2, Xe] = X5, [X3, X7] = uXs,  [Xa, Xg] = A Xs,
[X1, Xg] = =Xe, [X1, X7]1 = =Xz, [X1, Xg] = =1 Xs.

As in proof of the previous propositions, we assume th&fes . ,) has a hermitian
structure (7, (-, -)). Then,

(25)  0=N3;=1+ap?+apan + aiede1 + /1(23802 — 827872) + A(A24842 — Bg882).

Consider
0=N&=(1—A)aeas, 0=N&=(1+1r)aas,
0=N3 = — wazas, 0=N& = 2rayqays,
0=Nf = — Dasaur+ (1 +1)aigdss, 0=NZ = (1 — A)augaos — (1 +A)assdzs,
0 = NZ% = (1 +p)ausdo7 + (A + 1)ae83s — (1 +A)a178zs,
0= N% = (1 — n)asasy + (r + n)aszags + (A — 1)ai7aae.
From these equations and (25), we obtajg= 0. Now, we have
0=N&=(1- paeanz, 0=N& = (1+u)aas7,
0=Ng = (1 +2A)aw7aps — (A + )auedzs, 0 =NS = (A + p)ardss+ (A — 1)asras,
0=N3; = —2uag7ars, 0=N$, = (u — aszas: + (1 +p)awzar,
0=NZ = (1— p)aszas — (1 +w)assanr.
Then, using (25), we see that; = 0. From the equations
0=N&%=(1+N)amazs, 0=Nj=( — Lajas,
0=N&=(1+N)aas 0=NZ =—(1+p)awdr+(h — 1)aiedas,

0=N& = —Dapas, 0=NE =(1- waas + (4 — A)arzdea,
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and (25), we conclude that;, = 0. Moreover, we have
0=N%=—(1+p)azdr, 0=N = (1 — Dasas,
0=N3j;=—(1+p)asas 0=Nzs=(1+Ar)azas+ (A — w)aieaus,
0=N%=(u—Dapaz, 0=NJ5=(1- r)aizas — (A + p)aieass,

which imply thata;s = 0 using again (25). Thusa;,® +aie° 7 0. Now, taking account
the equations

0 = N& = 2a5845,
0 = N2 = (A + 11)a1633, 0 =N% = (A + w)ayoags,
0=NZ% = (1 — Mayeaus, 0 =N$ = (1 — A)assaus,
0= NP = —auaps — &16882, 0 = Nik = —a1r88 — A16a42,
we have thatazg = auz = 0 andagsass = agxgags = 0. So,
0 = N2g = A(L +auq?) + 11(Bg4843 — A38883) + Bpadap — A2gdg2 = A(L +aus?).

This implies thatA = 0 or 1 +as? = 0, which is not possible. This completes the
proof. ]

Let g be an arbitrary Lie algebra. Denote lm(g) the dimension of the-th co-
homology groupH'(g) of g, by g’ =[g, g] the derived subalgebra and bfg) the center
of g. We recall thatg is calledcompletely solvablevhen g is solvable and act) has
only real eigenvalues for any € g.

Theorem 4.7. Let G be a four dimensional solvable Lie group with Lie algebr
g. Then the following statements are equivalent
(i) G has no left invariant generalized complex structure
(i) G admits neither left invariant symplectic nor left invartacomplex structures
(iii) g is completely solvable and one of the two following condgids satisfied
(8) by(T*g) =3, bs(T*g) = 5, bi(g/3(a)) = 1, or
(b) by(T*g) =1, bs(T*g) = 2.

Proof. Clearly (i) implies (ii). The converse follows fronrdpositions 4.2 to 4.6.
The calculation of the numbels(T*(g)), (i =1, 3), andbi(g/3(g’)), whereg is a four
dimensional solvable Lie algebra, shows that conditiai i§i satisfied if and only if (i)
holds (see Table in Section 5.2). ]

5. Generalized complex structures of type 1 on solvable Liergups

In this section we exhibit the four dimensional solvable kigebras which have
a generalized complex structure of type 1; Theorem 4.7 @spihat they admit either
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symplectic or complex structures. We also study necessady safficient conditions
on a four dimensional solvable Lie algebgato admit generalized complex structures
of type 1. As a consequence of our results, we obtain in Conolb.6 a condition,
involving the odd numbers; (T*(g)), for the non-existence of such structures.

5.1. Existence. First, we list below the family of Lie algebras having either
symplectic or complex structures. Such Lie algebras tagetlith those shown in (21),

exhaust the class of four dimensional solvable Lie algefsas [2, 9, 16, 19]).

(26)
aff(R) x aff(R): [eo, &1] = €1, [€2, &3] = €3;
aff(C): [eo, &] = €, [en, &3] = €3, [€1, &] = €3, [€1, &3] = —&;
R x e(2): [er, &] = —e3, [e1, €3] = &;
R x b3: [e1, &] = e3;
R x v3;: [e1, €] = €, [e1,&3] = re3, A€ ({-1,0,1;
s [€0, €] = €, [0, €] = A&, [€0, &3] = &2 + A5, A € {—1,0, 1;
ta,,1’ [€,€1] = €, [eo, €] = ney, [en, €3] = €3, —1l<p =<1, u#0;
T [€0, €] = €, [€, €] = ney, [€, &3] = ne;, —l<u <1, u#0;
tu—n- [€0,€1] = €1, [0, 8] = ey, [e,63] = —pe3, —-1<p<0;
t-1,' [€0,&1] = €1, [€, €] = —&, [, &3] =165, —1<A <O
t4-1,-1: [€0, €] = €1, [, €] = —€, [€0, &3] = —65;
R x vy, [e1, €] = A&, — €3, [€1,€3] = &+ re3, 1 >0;
ny: [€0, &1] = &, [en, €] = €3
.0 [€0,€1] = pey, [eo, €] = Aex — €3, [€, €3] = €2+ Ae3, >0, 4 €R;
040 [eo, &1] = €, [en, €] = —&, [€1, €] = €3;
%4, oo, 4] = ey, [en, &1 = (L~ e, [, €] = €5, [en, ] =€, 1>
0, [e0,@1] = Aep — ey, [en, €] = €1 + Aey, [en, €3] = 2)e3, [€1, €] = e,
A>0;
ha: [0, €1] = €1, [e0, &] = €1 + &, [en, &3] = 263, [€1, €] = €.
Proposition 5.1. The Lie algebrasiff(R) x aff(R), aff(C), R x ¢(2), R x b3, R x

3,0, t4,-1,-1, til,u,o (n > 0), 04,22, 94,2 and DQI,A (A > 0) admit generalized complex
structures of typed, 1 and 2.
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Proof. It follows from results in [15, 18, 23] that all of théave Lie algebras
admit both symplectic and complex structures, which gige tio generalized complex
structures of type 0 and 2, respectively. A generalized dexptructure of type 1 on
aff(R) x aff(R) can be obtained by combining one of type 0 with one of type 1 on
aff(R) (see (15) and (16)). For the remaining Lie algebras, webdixhi generalized
complex structure of type 1.

aff(C), ta_1-1: J(&) =, J(&) =63
(27) R x ¢(2), R X t3,0, 04,172, 03, (A > 0): J (&) = o, J(e) = e,
R x b3, ¥ ,0 (£ > 0), 0420 J(e0) = €1, J(&) = . O

Proposition 5.2. The Lie algebradR x t3_1, ta_1, ta,0, 04, ta,,—u (w1 < p <0)
andrs 1, (—1<x < 0) admit generalized complex structures of typpand 1, but not
of type?2.

Proof. First we notice that every Lie algebra mentioned ie froposition has
symplectic structures but does not admit complex strustfg5, 17, 18, 23]), so it
does not possess generalized complex structures of typaeb(@m 4.1). For each one
of these Lie algebras, we show a generalized complex steuctitype 1:

R X t3_1, 4.0, tap i, Ma: J(€0) = €1, J(&) =’

(28) ,
t4_1, ta_1,: J(&0) =63, J(ey) =’ O

Proposition 5.3. The Lie algebrasR x v3 1, ta1, ¥, , (0 >0, 2 #0), R x 13,
A#20), vau, (Fl<pn =<1 pn#0) 4,1 (-1 <pu=<1 u#0),and 0, , admit
generalized complex structures of typeand 2, but not of typeO.

Proof. These Lie algebras have complex structures and dadmit symplectic
structures ([15, 17, 18, 23]), thus they admit generalizeshpex structures of type 2
but not of type 0. A generalized complex structure of type iien by

R X 31, tapur g, J(€)= o, J(e) = e,
(29) ta,ta;,1: J(&) = o?, J(e1) = e,
R x t/a,,\’ 021,03 J(e) = J(e) = e, O

5.2. Obstructions.

Proposition 5.4. 04 is the unique four dimensional solvable Lie algebra admit-
ting generalized complex structures of typebut not of typeO or 1.
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Proof. We consider the basisj} defined by (17) forT*(d4). Taking into ac-
count (12) and the structure equations of the Lie algehrgiven in (26), we see that
the only non-zero brackets oh*(04) are

[X1, Xo] = Xo, [X1, X3] = = X3,
[X2, X3] = Xa, [X2, Xe] = —[X3, X7] = X5,
—[X1, Xe] = [ X3, X7] = Xg, [X1, X7] = —[X2, Xg] = X7.

Supposse tha¥ is a generalized complex structure mn Let us consider the equations

N7 - - N3 -
0 =Ngg = a16824, 0 =Ngg=azea14, 0=Njyg= —azsa16 — A4a17,
N8 —
0 = Nyg = a4(a12 — azs) — a16882,

— N8 = 2
0 = N3g = —2a14323 — Q13324 + A24” + 216383

The condition. 72 = — Id implies that

(NG _
0 = (J°)5 = anadp1 + aga(agp + As4) + 823834 + A16881 — 27883,

—1 = (J?)7 = Q14841 + Bp4842 + 34843 + Aa4” + Q13851 + 2aAg2 + 33383,
and so we obtair;g = 0. Now, from the equations

_ Nl - _ N2 — _ N6 —

0=Ny; = a7, 0=Ng=a7a, 0=Ng;=—aza17,
_NT -

0 = Ny7 = az4(a13 — aga) — as78g3,

N6 — 2
0 = Ng; = —2a1483> — @10834 + A34” + 17882,
and, fromJ72 = —1d,
— o T2NA _
0 = (J“); = a14831 + 824832 + a34(A33 + 844) + 17881 + A27882,

—1 = (J2)5 = Q14841 + Bpa8up + Bg48u3 + Aa4° + Q15851 + paAg2 + 33383,

we obtaina;; = 0. Moreover,ay7 =0 becausel\l?8 = —a7”2=0.
The equations

(725 _ N8 — N7 -
0=(J°)] =—2ag4a18, 0 =Ngg=aygass — asdzs, 0 =Ngg=aisdg— ayzas.
_ N8 — N7 -
0 = Ngg = ag4808 — a1gdoa, 0 = Ngg = azg(ayz + @) — argdys,

_ N7 — 2
0 =N;; = —1+ay3831 — ap3azx + 833" — Q21834



784 L.C.DE ANDRES, M.L. BARBERIS, |. DOTTI AND M. FERNANDEZ
imply that a;g = 0. But, since

0= (725 = —2axas, 0=NZ = ax(@s+az),
0= (725 = —audes, 0= (T2 = arans + assass,

—1=(J?)] = a11® + agpap; + ay3831 + A142u1,
we obtainayg = 0. And finally, from the equations

0=(J%8 =axags, 0=NZ=—agas 0= (T%)}=—2azass,

- - 2
0 =Nj; =1 +ags” + a13831 — A23832 — A21834,

we haveagg = 0. So the matrix7; in (18) is the null matrix, and thed, does not
admit generalized complex structures of types 0 and 1. Thmwstl complex structure
defined by J(e) = e, and J(e3) = & is integrable and thus, admits a generalized
complex structure of type 2. The uniqueness is seen in thie t@bthe end of this
section. [

Proposition 5.5. The Lie algebrasds;, (A # 1/2, 2) and h4 admit generalized
complex structures of typ@ and 2, but not of typel.

Proof. Doing a similar calculation to that made in the pregigroposition, one
can check that for a generalized complex structurehgn the matrices7; and J»
in (18) are

ail 0 a3 0 0 0 0 ais
_| @1 a2 ax ais _ 0 0 2218 agg
= azy 0 ass 0 T2 0 —2a8 0 azg
1 g a3 A —a;g —axp —ag O
From J2 = —Id we haveag® + a2, # 0. Since 0 =N&; = 3a;5313, we have the two

following possibilities:
e a370,a;3=0. Then, rank/, =4 and the possible generalized complex structures
are of type 0; for example,

J(eo) =203, J(er) =’
e a;370, a;3=0. In this case, we obtaiagg = azg = 0 using 0 :N778 = 3a;3azg and

0= Ngs = ay3(daxg + agzg). S0 J» = 0 and the possible generalized complex structures
are of type 2; for example,

J(&) =€, J(e)=es.



HERMITIAN STRUCTURES ONCOTANGENT LIE GROUPS 785

For a generalized complex structure on the Lie algahrg (A # 1/2, 1, 2), the
matrices.7; and J2, given by (18), are

ai; ai;p a3 0 0 0 0 a8
= A1 A A axu B 0 0 ajg  agg
Ag1 a3 ag3 Az 0 -—ag 0 ass
41 Qs sz ass —ayg —apg —agg O

We consider two possibilities according #gg # 0 or a;g = 0:
e If ayg #0, rank7, = 4 and the generalized complex structures are of type 0O; for
example,

J(e) =a®, J(e) =’

o If a;g=0, thena? +ai3®> # 0. Since 0 =N& = (1 — 2X)aza13, We consider two
subcases
A) a;» 0, a13=0. From Ng’s = —Aajsarg We obtainayg =0 and from O :N$8 =
—agg(@zs — a;2(A — 2)) and 0 :Nf7 = ag4(rag2 + ag4) We obtainagg = 0. Hence
J>» = 0 and the generalized complex structures are of type 2; famele,

J(e) = re1, J(&) = —es.

B) a3 #0, a2 = 0. From N§8 = (—1 + A)ayzazg we obtainagg = 0 and from

0 = Ng = apg(@4 + auz(h + 1)) and 0 =N/ = —apa(aps + a13(> — 1)) we obtain

as = 0. So, J, = 0 and the generalized complex structures are of type 2; for
example,

J(&)=1—-21e, J(e)=es.

For a generalized complex structure on the Lie algehra the matrices7; and
J2 in (18) are

a1 aAiz 0 0 0 0 0 a8
T = a1 ap as 0 T 0 0 a;g A
az1 a3 a3 —ap 0 —ag 0 ass
1 g uz A —a1g —a —agg O

Therefore, a;,? + ayg> # 0. Since 0 :N§8 = 2a;0a13 we consider the two following
possibilities:

e a;g#0, a;o=0. Then, rank/, = 4 and the generalized complex structures are of
type O; for example,

J(e)=a®, J(e)=a?
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e a3=0, a5, #0. BecauseN778 = —agpag and 0 :N$8 = 2azga;», We haveayg = azg =
0. So, J> =0 and the generalized complex structures are of type 2; famele,

J(eo) = €1,

J(&) = —€s.

O

The previous propositions together with Table 1 imply th&tnesult.

Corollary 5.6.

Let g be a four dimensional Lie algebra admitting a generalized

complex structure Then g does not admit a generalized complex structure of type
if and only if g is completely solvable and one of the following conditicnsatisfied

(i) bu(T*g) =bs(T*g) =1, or
(i) by(T*g) =2, bs(T*g) = 4.

REMARK 2.

We must notice that the Lie algebrd, , satisfiesby(T*0,;) =

b3(T*0y,) =1, but it is not completely solvable. Therefore, accogdio the previ-
ous Corollary, it has generalized complex structures oétyp In general, in the table
below, the Lie algebrag’ are not completely solvable, so they have generalized com-
plex structures of type 1.

In the table below we summarize the previous results ande#fmh solvable Lie
algebra admitting generalized complex structures, webéxbine of the simplest ex-
amples of each type (—stands for non existence).

Table 1.
g b1(T*g) | ba(T*g) | Type O Type 1 Type 2
R x t3 3 5 — — —
R x 3,1 3 5 _ — N
A <1, A #0
@ 1 2 _ — _
T4, 1 2 _ _ J—
reR, A #-1,01
t4,u,k
“1l<u<i<l1 1 2 — — —
ur 20, u+Ar #0
J(e) =at, | T(e) =at, | T(ep) =ey,
R R 3 5
aff(R) x aff(R) TE)=dd | Je)=e | T(e)=es
J(eo) =ad, | T(e) =, | T(eo) =6,
C 2 2
aff(C) Je)=c? | J&) =6 |J(E)=—e
J(e) =a?, | J(e) =€, | J(eo) =6y,
R 5 31
x b Jen=c® | Je)=a® | J(e)=es
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g by (T*g) | bs(T*g)| Type O Type 1 Type 2
J(eo) =a?, | J(eo) =€, o
R xv3_1 3 13 e = o3 (&) = o
J(e) =a?, | J(eo) =0, | J(en) = €3,
R > ts0 >l M Je)=—| Je)=e | ) =e
o J(eo) = at, | T(eo) = ey,
Rx a1 3o 13 JE@) =6 | Je)=e
J(eo) = a?, | J(e0) = €, .
-1 ! Yl ) =ed | T =a?
J(e) =at, | J(e) = ey, .
t4,0 3 7 () = 3 (&) = o3
- 1 4 _ J (o) =0, | J(e0) =&,
‘ Je)=e | Je)=e
t4,[A,l! 1 4 _ j(eo) = azv \.7(&)) = ey,
—l<pu<1l u#0 Je)=e | J(e)=e3
T4, 1 4 _ J(e) =al, | T(eo) =&y,
—1l<p<1l u#0 Je)=6 | J(&) =6
41, 1 4 J(e) =2, | J(e0) = e, .
—-1<i1<0 Je) =a? | J(e) =a?
i A 4 | T =3 |TE@)=al | T(e) =e,
T Je)=ao® | Je)=e | J(&) =6
, J (&) =a®, | T(eo) =, | T(e0) = &3,
R x 5 11
fs.0 Je)=e? | Je)=e | Je) =
R x t, 3 5 . J(e0) = o, | J(eo) = &3,
A>0 Je)=e | JEe)=e




788 L.C.DE ANDRI’ES, M.L. BARBERIS, |. DOTTI AND M. FERNANDEZ
g by (T*g) | b3(T*g) Type 0 Type 1 Type 2
J(e) =3, | T(e) =ey,
14 _
n 3 Je)=o? | J(e)=a’
n X A | TE)=dl [TEe)=e, | Je)=a,
n>0 Je)=c® | J(e)=c®| J(&) =&
til,pt,)»’ 1 2 S j(a)) = al, j(a)) =6,
nw>0 170 Je)=e | J(&)=es
J (&) = 203, J(e0) = e,
1 1 _
ba J(er) = a? J(e) = e3
J (&) =€y,
2 2 4 _ _
¢ J(e)=e
o L | de=et | | )=,
- 2 —
A>§,/\¢1,2 JEe)=«a J(&) = —e
J (&) = o, J(eo) = ey,
2 2 4 _
ot J(er) = a? J(&) = —e3
1
J(e) =3 |J(@) =0 | J(e) = e,
2 1 3
i Je)=a® | JE@)=e | s e
2,2 1 s | )= | Je)=e, | T
' Je)=ao? | J(e)=0ab J(ez):—§e3
N 5 4 _ J(e)=a? | J(eo) =6,
4,0 — -
: Je)=e | JE)=e
P 1 1 | J(E@)=20d | T(e)=a? | J(e) =6,
A>0 Je)=c® | Je)=e | JEe)=e
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6. An example in dimension 6

In this section we exhibit an example of a six dimensionah{ndpotent) solvable
Lie algebrags admitting neither symplectic nor complex structures butif gener-
alized complex structures of types 1 and 2. This proves theoilem 4.1 fails for
solvable Lie algebras of dimension six. Examples of six disienal nilpotent Lie al-
gebras having neither left invariant symplectic nor compéuctures but with gener-
alized complex structures are given in [8].

Let us consider the solvable 6-dimensional Lie algefyaefined by the structure
equations

(30) do' = 0, (1<i <4, da® =%+ pLa15, da® = a1+, uw #0.

Let w be a 2-formw =3Y";_;_;_s wije'l. Then, one can check that is closed if and
only if

W16 = W26 = W36 = Was = W5p = W25 = W35 = w45 = 0,

that is, w is expressed as
5 4

(31) o= Z oyt + Z wyia® + wgea®
i=2 i=3

But such a formw is degenerate. This means that the Lie algglyaoes not admit
generalized complex structures of type 0.

On the other hand, we consider the bas)'S}iezl dual to the basis of 1-forms
{a‘}?:l. From the equations (30) we get that the only non-zero Liekats are

[X1, Xo] = =X5,  [X1, Xs] = =X — X5, [X3, Xa] = —Xe.

Let J be an almost complex structure gg defined byJ(X;) = Z?zla”— Xj. Then, the
components I(IJ)}‘J- of the Nijenhuis tensolN; of J satisfy

(N)3s = ass®,  (Ny)3g= —a6s”, (Ny)ig = nasiaer +ag1®,  (Ny)3g = 51861

Therefore,ag; = agz = a4 = 0 sinceN; = 0. Moreover, J2 = — Id implies thatay® +
ag1? + a1’ + a5 # 0, and the equations

(N3)Ss = @esaor,  (N3)Ss = assas1, (Ni)Ss = agsaur, (N3)Ss = @ssas,
imply that ags = 0. Now, from

(N3)36 = @s2821, (N3)36 = @s2831, (Ni)3s = @s28a1, (N3)2g = @681,
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we obtainag; = 0. But —1 = (J2)g = ags?, Which is not possible. This proves that
ge does not admit complex structures or, equivalently, it does admit generalized
complex structures of type 3.

To describe generalized complex structures of types 1 or &,take the basis
{Xi}2 of T*g given by

Xi =(X;,0) and Xi+s=(0,a'), 1<i <B6.

Notice that the matriceg/; in (18) have order 6

a;1 &2 a3 &4 a5 A 0 b bz by bis b
Q1 @ a3 x4 ax Ay —bp 0 by bps bps b
T = @31 832 aAz3 34 aAzs Azp T —biz —bz 0 b3y bzs bse
1 2 3 A4 s A —bis —bos —b3s 0  bss lbye
851 @52 As3 854 As5 Ase —bis —bos —bss —bss O bse
As1 B2 Ap3 A4 Aes Asp —bie —boe —bzg —bse —bsg O

Analogous calculations to those performed in the previmiens allow us to obtain

Apz=as=ag=ap =age = =0,
P12 = b1z =Db1a = bz =bps =b3s =0,

bis = ubie, ais = pays.

Notice that det(>) = 0, and sogs does not admit generalized complex structures of
type 0 as we already knew.
Let us consider

(TH7 = —1 =ays® +agp(@ + pasy) — bie(Cis + 11C15),
(J?)1 = 0 =—2uarobs.

This leads us to distinguish the two following cases, thdtaest all the possibilities:
(I) bis 7z 0 but a,=0, (II) big=0 but azp 7z 0.
In case (i), assuming that ragk = 2 and the integrabiblity of the generalized almost

complex structure, we get/@)2 = (ass— naes)?, Which is not possible. So, a necessary
condition for having a generalized complex structure ig thak 7, = 4, that is,

(32) bos 7 ubge, bss 7 ubse  or bas 7 pbse.
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Taking, for example bys # ubys we have the following generalized complex structure
of type 1:

j(X:L) = o{ﬁ, j(Xz) =a® = /’LO{6, j(XS) = Xy, j(X4) =X
T(Xs) = —a?  J(Xe) = —a*+pa®, J@)=uXs+Xe,  J(@?)=Xs,
J@) =o', Teh)=—a, T@®) = —uXy — Xo,  T(@) =Xy,

Similar results are obtained for the remaining choices @).(3
In case (i), that is,byg = 0 anda;» # 0, the condition7? = — Id implies that

0= (798 = —pabys, 0=(T%)]=—napbs, 0= (T =—pabss,
0 = (J1? = aa(b2s + ubse),

and then
bos = bss =bss =0, and byg = —pbse.

Therefore, rank7, =0 or 2. If rank7, = 0, we have—1 = (72)8 = age?, which is not
possible. This means that does not admit generalized complex structures of type 3,
as we mentioned before. So we must have rdnk 2, that is,

(33) bssg 70, bse #0 or bsg 7 0.

Considerbsg # 0. Then forbsg = 1 we obtain the following generalized complex
structure:

J(X1) =Xz, JT(X3) = Xa, T(Xs) = =Xy — b,
(34) TXe)=e® Tl =a?+puc®  J(@?)=—a+puXe,
J@®)=a,  J(@®) = —uXz+ Xs.

Changing the basi§X;, o'} to {Y;, g} defined by
Yi=Xi, i=1,2,3,4,6, and Ys= Xs— uXy,

(and the corresponding change between the dual Basjsand {8'}, resp.) the equa-
tions (34) can be written, as stated in Theorem 4.1, in theplsish form:

J(Y1) = Y2, T(Ys) = Ya, T (Ys) = — 8,
J(Ye) = B, T (BY) = B, T (B%) = B,

that is, the generalized complex structufe has type 2. For the remaining choices
in (33) we obtain similar results.
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