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Abstract
We consider finite-dimensional interacting diffusions efhare defined by adding
a linear drift term to independent one dimensional diffasioFor these processes we
prove that the distribution of the occupation time at thet fipgadrant converges to
a generalized arc-sine law.

1. Introduction

Let S be a finite set, and leA = {Ajj}izjcs be a matrix with non-negative ele-
ments. Let us consider the following stochastic differginéquation (SDE):

(1.1) dXi(t) = a(Xi(0) dB (1) + Y Aj(X(t) = Xi()dt, (€9,

jeS

where {Bj(t)}ics is an independent system of one-dimensional standard Baown
motions.

Assume thatv: R — R, is a Borel measurable function satisfying the following
conditions:
[A-1] For some positive constar@ > 0,

(1.2) a(X) <C@+|x]) for xeR.

[A-2] For each compact sef, there exists a positive constari such thata(x) > cx
(x € K),
one can see by standard arguments to use the Girsanov thebatnfor any initial
distribution onRS, the SDE (1.1) has a unique weak solution, which defines asiifh
process X(t), Py) on RS. We call the diffusion procesa finite-dimensional interacting
diffusion

In this paper we are concerned with limiting distribution tas> oo of the occu-
pation time of X(t) at the first quadranRS = [0, 00)S of RS

t
1.3) t} /0 Irs(X(s)) ds.
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In non-interacting case whew = {A;;} is absent, each coordinate process is a diffusion
process X(t), Px) on R governed by the following SDE:

(1.4) dX(t) = «(X(1)) dB(t).

For the one-dimensional diffusion process(f), Px) governed by (1.4) Watanabe [5]
proved that the distribution of

t
% /0 1. (X(9) ds

converges to a non-degenerate distributiort as oo if and only if

m.(x) = /Ox a(u)~?du, m_(x)= /O a(u)™2du (x> 0)

—X

satisfy the following condition; for some @ p <1
(1.5) M. (x) = xP7K 4 (x)

with slowly varying functionsK.(x) and K_(x) at x = o0 and

. K+(X)
@ e

=b € (0, 00).
Then it holds that

E/I 12.(X() ds L Y0 (t — o0),
t Jo

whereq is given by
p
1+bP

q= € (0, 00),

and=Z denotes convergence in distribution avigly is a [0, 1]-valued random variable
with the Stieltjes transform given by

E|: ! ]_0I(u+1)"‘1+(1—q)up‘1

UtYeq)  qurlpr—que ' 470

The family Ypq, 0 < p <1, 0<q < 1, was introduced by Lamperti [2], of which
distribution is calleda generalized arc-sine lawin particular, the distribution o¥1/51/2
is the arc-sine law, of which density function is given by

1
/XA =X)
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For general O< p <1 and O< q < 1, Ypq has the densityf,4(x) on [0, 1];

sin prr g(l — q)xP (1 - x)P1

fpa(x) = g2(1 — x)2P + (1 — )2x2P + 2q(1 — q)xP(1 — X)P cospr

For the finite-dimensional interacting diffusioX(t), P«) governed by (1.1) we
investigate the limiting distribution of (1.3) under thdléeving condition:
[B-1] a(x) is regularly varying both ak — oo and x — —oo with the common expo-
nent—oo < y < 1/2, and

a(=x)

M, =c e (0,00).

[B-2] An Sx Smatrix A= {A;j}i jes, of which diagonal element is defined by

A = — Z Aj (€9,

JeS, j#i

is irreducible.
We note that by [B-2]

Q: = exptA

defines a transition matrix of an irreducible Markov processSp so that there exists
a probability vectorm = {m;}ics with m; > 0 such that for somé > 0

(1.7) 1Qui, j)—mjl<e™™ (i,je9).
The main result of this paper is the following.

Theorem 1.1. Assume the condition®-1] and [B-2]. Then
1 (@)
(1.8) [ 3x0 U8 == Yogdia + (1= Ypa)ions  (t = o0),
0

where +oo0 = {X; = +00}, —00 = {X; = —00}, 8x(s), S+oc @Nd 8_,, stand for the one

point mass at Xs), +oo and —oo respectivelyand 9. denotes the weak convergence
as P([—oo, oo]S)-valued random variablesand here p q are given by

1 c2P
“20—y T i

p

From Theorem 1.1 it follows immediately that
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Corollary 1.2. Assume the same assumptions adlmeorem 1.1.Then

(1.9) %/t lzs(X() ds 2 Ypq  (t — o).
0

The result of Theorem 1.1 can be interpreted as follows. eSBids a finite set, the
effect of the interactionA = {A;j} is so strong that all component processes diverge to
o0 or —oo ast — oo simultaneously. Hence the phenomena would be quite similar
to the one-dimensional case. Nevertheless the one-dioraisinalysis as in Watanabe
[5] cannot be applied, so, in the next section, we will inigege a scaling limit for the
finite-dimensional interacting diffusionX(t), Px) on RS.

2. A scaling limit of X(t)
By the condition [B-1]a(x) has the following form;
a(x) = [x["L(x) (x| > 0),
where L(x) is a slowly varying function both ato and —oo satisfying that

L(—x)

X||_|;noo W =Ceg (0, OO)
Let
p= 1 and 6, =AL(AP)2 (A > 0)
21— ) ’ '

We introduce a rescaled proces$’(t), B*(t)) by
XAt) = A PXHB:t), BAt) =6, V°Bi(6:1), i€S.

Note that {B*(t)}ics are independent Brownians motion and the rescaled process
(X*(t), BA(t)) satisfies the following SDE;

dXH() = as (X (D) dBAU) +65 D A (X () — X (D) dt,

jes
where
a;(X) = AP0 20 (1Px).
Moreover it holds that

) | x (0 < x),
Jim, e.(x) = { c/x|” (0> x).
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In order to describe the limiting processes of thé (t)) we introduce a class of skew
Bessel processes on natural scale.
Let

[mll2x” (0 = x),
Imllocix]” (0 > x).

a(x) = {

where |mllz = /Y .sm?, @(0) = oo if y <0, and@(0) =|m| if y = 0.

Let us consider the following one-dimensional SDE:

2.1) dZ(t) = @(Z(1)) dB(t),
Z(0)=x e R.

If —oco <y <0, the SDE (2.1) has a law unique solution, however, ¥ @ < 1/2,
the law uniqueness for (2.1) fails. In this case, if we add mioa-sticky condition
to (2.1), i.e.

t
(2.2) / lg(Z(s))ds=0 (vt >0), P-as.,

0
the law uniqueness holds. In fact, the solution can be coctstd from a Brownian
motion through the time change method. Thus we have a diffuprocess Z(t), P)

on R, which is calleda skew Bessel process on natural scale

Theorem 2.1. Assume the condition®-1] and [B-2], and X(0) is a RS-valued
random variable independent of(B = {B;(t)}ics. Then

£ [o¢] —_ o0
(2.3) (1) = DX (Dhes) 22 (X¥() = (XP (i) (= o),
(£ -
where 22X stands for the weak convergence of the probability laws enphth space
induced by{X*(t)}. Moreover all component processes ¢K> (t)}ics coincide with
each other and the common process is equivalent to a skevelBiasion on natural

scale (Z(t)) governed by(2.1) with Z(0) = 0 being imposed the non-sticky condition
whenever0 < y < 1/2;

t

(2.4) / lig(Z(s))ds=0 (t >0), P-as.
0

From Theorem 2.1 it follows the following

Corollary 2.2.  Under the same assumption of Theorem 2.1,

(2.5) X(1) 2 8in + (1— Q)S_ne  (t — 00).
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Proof of Theorem 1.1. Theorem 1.1 follows immediately from Theorem 2.1. In
fact, since

/t I(Z(s) =0)ds=0,
0

by Theorem 2.1 we can see that for every bounded continuawdidn f on [—oo, 0]
it holds that

0>, 1
1 / f(X(s))ds:/ f(APX*(s)) ds
0. Jo 0
() 1 1
— f(+@)/ I (Z(s) > 0)ds+ f(—@)/ I1(Z(s) < 0)ds
0 0
=Ypq f(+20) + (1 — Ypq) f(—20),
because of
1
/ 1(Z(s) > 0)ds @ v,
0
For the last relation see Watanabe [5]. ]

3. Proof of Theorem 2.1

To avoid complication of arguments we prove Theorem 2.1 uride following
condition [B-3] instead of [B-1], since the proof is essaltyi the same even under the
condition [B-1].

[B-3] Let —oc0 < ¥ < 1/2, and for somex, > 0 anda_ > 0

(3.1) lim —= =, lim —=

Xx—00 XV X—>—00 |V

a(x) . a(x)
|X

In what follows we assume the conditions [A-1], [A-2], [B-2hd [B-3]. Let

1
3.2 = -
(3.2) P 20-7)
and fori > 0 we set
(3.3) o, (X) = AP 2 (APx),

and

a XV (0 < x),
a_|X[” (X < 0).

(3.4) roo(X) = {
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where
_J oo (¥ <0,
(XOO(O) B { oy (y = O)
Moreover we set
(3.5) a(x) = [[mll2at00 (X),

where {m; }ics is a probability vector in (1.7), an@imll> = /> i s miz.
For the diffusion processX(t), Px) governed by (1.1) we introduce a rescaled pro-
cessX*(t) (r > 0) by
XHt) = A7PXi(At) (i €9),

which satisfies the following SDE:

(3.6) dX} (1) = o (X (1) dBA®) + 2. 3 A (XE(1) — XE () dit

jesS

For the proof of Theorem 2.1 we may assume that the initiaditmm X(0) is
non-random, i.e.

X(0) = {Xi }ies € RS,

We first prepare several moment estimates of the rescalexgs (t).

Lemma 3.1. Let—oo <y < 1/2. For a > 2 there exists a constant €C(a, p) >
0 such that

@7 Y _mE[X [ <c<x P ATPY S ™y |2 + tpa> (t>0,1>0).

ieS ieS

Proof. Using the It6 formula and taking expectations, weehav

g Z mE[Xi (1)1 =a) Y mAjE[IXi (1) sgni (0)(X; (t) — Xi(t)]

(3.8) ieS ieS jeS
+ = a(a 1) Y mE[IXi () 2a?(X (1))]-
ieS
Note that
(3.9) DD mA I sgn)(x; — %) <0,

ieS jeS
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because, using_;.s Aij =0, > j.smi Aj =0 and a simple inequality

a—-1 1
ta s < Tta + asa (t>0,s>0),

we see

DO mi A X2t sgn)(x) — xi)

ieS jeS

< O m A (6P = 1% 17)
ieS jeS
1

< S0 T m A P = 1%
a4

ieS jeS
=0.

Note that by the conditions [A-1], [A-2] and [B-3] there etdsconstantC; > 0 and
C, > 0 satisfying

(3.10) Ci1 +Ix])” = a(x) = C(L+[x])", (x €R),

so that there exists a constadt such that

1-1/ap
(3.11) > milx|2a?(x) < Cs(l +Y o milx |a> :

ieS ieS

Hence, by (3.9), (3.10) and (3.1B(t) = >_;.s M E[| X (t)|??] satisfies
S P < a1+ P

Thus we obtain, for som€, > 0,

(3.12) Zmi E[I1X;(1)?] < C4<1+Zmi|xi|a+tap>.
ieS ieS
(3.7) follows immediately from (3.12). ]
Let

U i) =Xit)— Xjt) (#je9),
and forx > O let

UL =X0-X0 (#]e9.
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Lemma 3.2. (i) For any a> 2 there exists a constant & 0 such that

CA2(L+t3) (0<y < 1/2),
cir—ap (oo <y <0).

a
(3.13) e[V, 0] < {
(i) For each T> 0 there exists a constant{C> O such that for every. > 1
(3.14) E[|U}t) — U} )] <Cralt—sP (O<s<t<T)

Proof. First, note thai(t) satisfies

t
(3.15)  Xi®) =) | Quuli,Ke(Xk(W) dBc(u) + > Qusli, )Xk(s) (i €9),

kes V'S keS

so that

t
Ui = Uij(s) = Y | (Quuli, k) — Qiu(j, KD (Xi(u)) d Be(u)

kes VS
+3 0 Qusi, KUik(8) + ) Qus(is KU k(S).
ki k# |

Using this and the Burkholder inequality, we have

E[IUij(t) — Ui j(s)I?]

t a/2
< ([ (@i — Qe uti Pe(x du) |

keSs

(3.16) +CE |:<Z Qt-s(i, K)Ui vk(s)> j|

keS

+C,E [( > Qs k)uj,k(s)> }

keS

When 0< y < 1/2, using this withs = 0, (1.7) and Lemma 3.1 we have a constant
C, > 0 satisfying that

E[IU;j(t)[%] < Ca(1 +t3P),

which yields (3.13). Using (1.7), (3.10), and Lemma 3.1, we that the first term of
the r.h.s. of (3.16) witha = 6 is dominated by

3
Cs ) E[( / t e 2=V 2(X (u)) du) } < Ca((t — s) A 1)3(1 +15P7).

keS
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Furthermore, by (3.13) the last two terms of (3.16) are daeid by
Cs((t — S) A 1)B(L +t°Pr),
thus we have
(3.17) E[JUi j(t) — U;,j(9)I°] < Ce((t —s) A 1)3(1 +1°P7).
From this it follows that
E[JU} () — U/ (9)[°] < Crlat — 5) A 1P 79P(L + (ut)°)
<Cra (t—s)%

which concludes (3.14). In the caseo < y < 0, sincea(x) is bounded,E[U; j(t)°]
is also bounded it > 0. Hence it is easy to obtain (3.14). ]

Lemma 3.3. Suppose that ¥) is a continuous martingale with (R) = 0 defined
on a complete probability spad€, F, P) with filtration {#;}, of which quadratic vari-
ation process satisfies

t
(X)(t) = /0 F(X(9)) ds,

wherew(x) is of (3.4). If 0 <y < 1, we further assume the non-sticky condition
t
/ lioy(X(s))ds=0 (t>0) P-as.
0

Then the probability law on the path space 3\C([0, o0), R) induced by(X(t)) coin-
cides with that of the skew Bessel process on natural scélg sfarting atO governed
by the SDE(2.1) with (2.2).

Proof. Proof is to verify thaiX(t) satisfies the SDE (2.1) for some Brownian mo-
tion B(t) using the time-change method, that is quite standard, somie it. l

Proof of Theorem 2.1 in case 0 y < 1/2. In this case the proof is rather
standard, that is, first to verify the tightness of the pralitgdaws P* on W induced
by {X*(t)} and next to identify the limit of P*} asi — oo.

For the stationary probability vectdm;} of Q; we set

YA =Y mX(),
ieS
which satisfies the following equation;

(3.18) dY () = ) mie, (X} (1)) d B ().

ieS
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Lemma 3.4. LetO<y <1/2. For each T> O there exists constant+C> 0 such
that for everyx > 0,

(3.19) E[[Y*t) = Y*@©®)['] <Cr(t—5)? (0<st<T).
Proof. It is immediate from (3.18) and Lemma 3.1. Ul

Lemma 3.5. LetO<y <1/2.
t
(3.20) lim lim sup/ P(|X(s)| =&)ds=0. (€S t=>D0).
e=>0+ )0 0

Proof. For eacke > 0 define a functionp, by

el(X) = IXI"Z (x| < &),
IX] y
0.(%) :/0 /0 ¢//(U) du dy

Applying 1t6 formula we obtain

t
(3.21) E[%(Y*(t»l:%(rpzmixi)+2 /0 MPE[a?(X}(8))¢/(Y* () ds].

ieS ieS
Since
el-2y
lge(X)] < mlxl,
using Lemma 3.1 we have
(3.22) ) E@Jiﬁsolojpz /O t m2E[a?(X}(8))¢! (Y*(s)) ds] = 0.

ieS
Note that for someC; > 0
a?(X) = CLA P+ X))’ (X €R, 1 > 0),

and fory =Y, mx;

> o mieZ(6)el(y) = Cu Y mGTP+ 6 ) T 1yl <€)
ieS ieS

> Co( P+ YN Iy 1 (ly] < e)

> Cal(lyl < e).
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Hence from this and (3.22) it follows that

(3.23) lim lim sup/t P(IY*(s)| < &)du=0.
0

e—=>0+ ; L0

Here we notice that
P(IX(s)] < &) < P(IYX(s)] < 2¢) + P(| X (s) — Y*(5)| > ¢),

and that for eaclr > 0 the second term vanishs as— oco. Hence (3.20) follows
from (3.23). ]

Now we proceed to the proof of Theorem 2.1 in the case < 1/2. Let P* be
the probability measure oW = C([0, cc), RS) induced byX*(t). We use the notation
EP" for the expectation byP*. Then by Lemma 3.4 and Lemma 3{P*} is tight.
Suppose that for somg.,} tending tooco, P* converges weakly tdP>. Let

w(t) =Y mw(t).

ieS
Since by (3.18)w(t) is a P*-martingale with quadratic variation process
t
(3.24) (w)(t) = Z mIZ/ a?(wi(s))ds P-as.,
ieS 0

using Lemma 3.1 we see easily thaft) is a P*°-martingale withw(0) = 0. Moreover,
it follows from Lemma 3.2 that

(3.25) P (w (t) = wj (t) (Vt > 0)) = 1.

(3.24) implies that for every & s <t and aFs-measurable and bounded continuous
function ®s(w) on W

(3.26) EP |:<w2(t) —W2(s) — Z m? / t o?(wi (u)) du) @S(w)i| =0.

ieS

We claim that

) t t
(327)  lim E'”[( / a?(w; (u)) du) @S(w)i| = EP”[< / @2 (wi (U)) du) cps(w)]

For ¢ > 0 let 9. be a smooth function oiR satisfying

IR\[—e.e1(X) < @0e(X) < IR\[—¢/2,/21(X).
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Sincew; (X) converges tar,(x) as A — co compact uniformly inR \ {0} and
a;(x) = Cs(1 +|x]") (x €R),

using Lemma 3.1 we see that for every- 0

jim &7 [( [ i) du) oo
=E” [( / o2 (e (1) du) %(w)].

S

(3.28)

On the other hand by Lemma 3.5

im,im supe® [ ( 2 ) - )i () du)o.(u)

e=>+0 ) 00

t
< Cy lim lim sup P(IX}(u)| <&)du=0.
e—>+ 0

A—00

(3.27) follows from this and (3.28). Thug(t) is a P>-martingale with quadratic vari-
ation provess

(w)(t) = ij m? /0 "o oy () du = /O @) du

Therefore by Lemma 3.3?* coincides with the probability law of the skew Bessel
process on natural scale, which completes the proof of Hmed?.1 in the case &
y <1/2. U]

Proof of Theorem 2.1 in case <y < 0. In this case it seems hard to ob-
tain the moment estimate fof*(t) as in Lemma 3.4 due to difficulty of negative power
moment estimates, so we consider a spatial transformagiantasymptotic scale func-
tion §(x);

_| X3 (y = 0),
S(X)‘{ XZEN) (< 0).

Lemma 3.6. Let —co < y < 0. For each T> 0 there exists a constant{C> 0
such that for every. > 1

(3.29) E[|S(Y (1) — S(YAe)[*] < Crlt—sP, (0<st<T).
Proof. Recall thaty’(t) satisfies

(3.30) dYA(t) = e (YA(1)) dVA (1),
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where V(t) is a continuous martingale with quadratic variation pssce

(3.31) v =Yon? [ EACHCI

el )
Applying 1td formula to S(x) together with Burkholder’'s inequality we see that
E[IS(Y*(t) — S(Y* ()]
<cie[([ 1@ avi) |

t 4
(3.32) +clE[( / S’(Y*(u»af(v(xu»d<v*>(u))]
t t
<cu [ ESe @l du [ BV @) du

t
+Cy1[| S22 (t — ) / E[((V*)(u))*] du,

S

where

N 20‘5()({\(“))
W% >(u)—§mim,

and we notice thaB’a?(x) is bounded inx € R and » > 1. Note that
CoAPP~HL+APIX)Y < af(x) < CaA®P~H(L +APIx|)¥,

then

G0 _ C4(l+xp|y|

2ly|
< Ca(L +AP|x — y[)27l.
2y Toh) = C-y)

Hence,
e =142 3 o™}
j7k

which is bounded inu > 0 by Lemma 3.2. Accordingly, it follows from this and
(3.32) that

E[(S(Y () — S(Y*(9))Y] = C7(t — S|+t —s[%),

which completes the proof of Lemma 3.6. L]
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Lemma 3.7. Let —oo <y < 0. Then

t

(3.33) Iirrglim sup [ E[e2(XM(s)I(IX](s) <e)]ds=0 (i €9).
e=>U A-o00 JO
Proof. In the proof of Lemma 3.5, replacing(x) by ¢(X) = l—(X) we have
t
(3.34) lim lim supz / MZE [ (X} (5)) =, (Y*(s)) ds] = 0.
e=>0+ 00 0

ieS

Noting that

l[—S,é‘](Xi)L(S)) =< I[—28,2£] (YA(S)) + Z I[—s,e](x?(s) - X%(S))r
jeS

and by Lemma 3.2 we can see
t
; 2
im /0 E[o2(X (e (X(S) — XP(s))] s
t
< A|Lmoo AP ]2 /O P(JU}i(s)] > &) =0.
Thus (3.33) follows from this and (3.34). ]
Now we are in position to complete the proof of Theorem 2.1hia tase—oco <
y < 0, but one can proceed the proof as in the case of)0< 1/2, so we shall only
sketch the proof. By virture of Lemma 3.2 and Lemma 3.6, we mssume thaP’»

converges weakly t&®> asn — oo for somei,  oco. Then,w(t) is P*-martingale
with w(0) = 0 and

wit) =w;t) =w(t) P -as. (,je9)

in the same way as & y < 1/2. Using the Lemma 3.7 instead of Lemma 3.5, we
also have (3.27) which implies

t
EP” [(wz(t) — w2(s) — / a?(w(u)) du) <I>S(w)}= 0,
S
and then by Lemma 3.3, the probability law(f), P*°) coincides with that of the de-
sired skew Bessel process on natural scale. Therefore @mme@rl has been proved

completely. ]
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