miURA CONJECTURE ON AFFINE CURVES

Joe SUZUKI

(Received June 23, 2005, revised May 10, 2006)

Abstract

Shinji Miura gave certain multivariable polynomials that express an Affine curve for a given algebraic function field F and its degree one place \mathcal{O}, if F contains such an \mathcal{O}. Suppose the equations contain $t(\geq 2)$ variables, and that the pole orders at \mathcal{O} are $a_{1}, \ldots, a_{t} \geq 1$, where $\operatorname{GCD}\left\{a_{1}, \ldots, a_{t}\right\}=1$. If $$
\frac{a_{i}}{d_{i}} \in \frac{a_{1}}{d_{i-1}} \mathbb{N}+\cdots+\frac{a_{i-1}}{d_{i-1}} \mathbb{N}, \quad d_{i}=\operatorname{GCD}\left\{a_{1}, \ldots, a_{i}\right\}
$$ for each $i=2, \ldots, t$, by arranging a_{1}, \ldots, a_{t}, then we say that the orders a_{1}, \ldots, a_{t} are telescopic. On the other hand, the number $t^{\prime}(\geq t-1)$ of the equations in the Miura canonical form is determined by a_{1}, \ldots, a_{t}. If $t^{\prime}=t-1$, then we say that a_{1}, \ldots, a_{t} are complete intersection. It is known that the telescopic condition implies the complete intersection condition. However, the converse was open thus far. This paper solves the conjecture in the affirmative by giving its proof.

1. Introduction

Let F / K be a function field with degree one place \mathcal{O}, and $a_{1}, \ldots, a_{t} \geq 1$ $\left(\operatorname{GCD}\left\{a_{1}, \ldots, a_{t}\right\}=1\right)$ generators of the monoid $\left\{-v_{\mathcal{O}}(f) \geq 0 \mid f \in F\right\}$ (the nonnegative pole orders at \mathcal{O}), i.e.

$$
a_{1} \mathbb{N}+\cdots+a_{t} \mathbb{N}=\left\{-v_{\mathcal{O}}(f) \geq 0 \mid f \in F\right\} .
$$

Shinji Miura [1,2] gave generators of the ideal expressing an Affine curve with the point \mathcal{O} at infinity. For $x_{1}, \ldots, x_{t} \in F$ such that $a_{i}=-v_{\mathcal{O}}\left(x_{i}\right)$, the Miura canonical form (MCF) is the set of equations in the form

$$
\begin{equation*}
x_{1}^{M_{1}} \cdots x_{t}^{M_{t}}+\alpha_{L} x_{1}^{L_{1}} \cdots x_{t}^{L_{t}}+\sum_{\left(N_{1}, \ldots, N_{t}\right) \in \mathbb{N}^{t}} \alpha_{N} x_{1}^{N_{1}} \cdots x_{t}^{N_{t}}=0 \tag{1}
\end{equation*}
$$

with $M=\left(M_{1}, \ldots, M_{t}\right) \in \mathbb{N}^{t}$ and $L=\left(L_{1}, \ldots, L_{t}\right) \in \mathbb{N}^{t}$, where $\alpha_{L}, \alpha_{N} \in K, \alpha_{L} \neq 0$, and

$$
\sum_{i=1}^{t} a_{i} M_{i}=\sum_{i=1}^{t} a_{i} L_{i}>\sum_{i=1}^{t} a_{i} N_{i}
$$

for $N=\left(N_{1}, \ldots, N_{t}\right) \in \mathbb{N}^{t}, N \neq L, M$.

We consider two conditions on a_{1}, \ldots, a_{t} : telescopic and complete intersection conditions. If

$$
\frac{a_{i}}{d_{i}} \in \frac{a_{1}}{d_{i-1}} \mathbb{N}+\cdots+\frac{a_{i-1}}{d_{i-1}} \mathbb{N}, \quad d_{i}=\operatorname{GCD}\left\{a_{1}, \ldots, a_{i}\right\}
$$

for each $i=2, \ldots, t$, by replacing a_{1}, \ldots, a_{t} with $a_{\sigma(1)}, \ldots, a_{\sigma(t)}$ for some permutation σ in $\{1, \ldots, t\}$, then we say that the orders a_{1}, \ldots, a_{t} are telescopic. Notice that the number $t^{\prime}(\geq t-1)$ of equations contained in the MCF only depends on a_{1}, \ldots, a_{t}. If $t^{\prime}=t-1$, then we say that a_{1}, \ldots, a_{t} are complete intersection. Miura himself proved that the telescopic condition implies the complete intersection condition. However, the converse was open:

Conjecture 1. The complete intersection condition implies the telescopic condition.

In general, the set of polynomials in the form of (1) with arbitrary a_{1}, \ldots, a_{t} $\left(\operatorname{GCD}\left\{a_{1}, \ldots, a_{t}\right\}=1\right)$ and $\alpha_{L}, \alpha_{N} \in K$ does not always express a curve. It is required to be a Gröbner basis, which is not easy to recognize by computation. On the other hand, Miura derived that the telescopic condition is sufficient for a MCF to express a curve [1, 2].

This paper solves Conjecture 1 in the affirmative, which means that a complete intersection MCF expresses a curve:

Theorem 1. The complete intersection condition implies the telescopic condition.

Section 2 explains basic materials on one-variable algebraic function fields and states the main theorem in Miura theory. Section 3 relates Miura theory in terms of Gröbner base. Section 4 gives a proof of the conjecture.

Throughout the paper, $\mathbb{Z}, \mathbb{Z}_{+}, \mathbb{N}$, and $K=\mathbb{F}_{q}$ denote the integers, the positive integers, the nonnegative integers, the finite field with q elements, respectively.

2. One-variable algebraic function field

If F is a finite algebraic extension of $K(x)$ for some $x \in F$ which is transcendental over a field $K, F / K$ is said to be an algebraic function field of one variable over K. A ring \mathcal{O} such that

1. $K \subset \mathcal{O} \subset F, \mathcal{O} \neq K, F$
2. $z \in \mathcal{O}$ or $z^{-1} \in \mathcal{O}$ for any $z \in F$
is said to be a valuation ring of F / K (I.1.4 [5]). Each \mathcal{O} is a local ring, and the maximal ideal $P=\mathcal{O} \backslash \mathcal{O}^{*}$ is said to be a place, where $\mathcal{O}^{*}:=\left\{z \in \mathcal{O} \mid z^{-1} \in \mathcal{O}\right\}$. Hereafter, \mathbb{P}_{F} denotes the set of places in F / K. Then, for each $P \in \mathbb{P}_{F}, \mathcal{O}_{P}:=\{z \in$ $\left.F \mid z^{-1} \notin P\right\}$ is a valuation ring of F / K. Furthermore, P is a principal ideal of \mathcal{O}_{P},
and when we write each $0 \neq z \in F$ by $z=t^{n} u\left(u \in \mathcal{O}_{P}^{*}, n \in \mathbb{Z}\right)$ using $t \in F$ such that $P=t \mathcal{O}_{P}$, the value of n (the discrete valuation of z at P) does not depend on the choice of t (I.1.6 [5]), and we write it by $v_{P}(z)$. Let ∞ be the symbol not in \mathbb{Z} such that $\infty+\infty=\infty+n=n+\infty=\infty$ and $\infty>m$ for all $m, n \in \mathbb{Z}$, and let $v_{P}(0)=\infty$. Then, $v_{P}: F \rightarrow \mathbb{Z} \cup\{\infty\}$ satisfies
3. $v_{P}(x)=\infty \Longleftrightarrow x=0$
4. $v_{P}(x y)=v_{P}(x)+v_{P}(y)$, for any $x, y \in F$
5. $v_{P}(x+y) \geq \min \left\{v_{P}(x), v_{P}(y)\right\}$, for any $x, y \in F$
6. there exists $z \in F$ such that $v_{P}(z)=1$
7. $v_{P}(a)=0$, for any $0 \neq a \in K$.

For example, $\mathcal{O}_{P}=\left\{z \in F \mid v_{P}(z) \geq 0\right\}, \mathcal{O}_{P}^{*}=\left\{z \in F \mid v_{P}(z)=0\right\}, P=\{z \in F \mid$ $\left.v_{P}(z)>0\right\}$ (I.1.12 [5]). Let $F_{P}:=\mathcal{O}_{P} / P$ and $\operatorname{deg} P:=\left[F_{P}: K\right]$.

Assumption 1. There exists $P \in \mathbb{P}_{F}$ such that $\operatorname{deg} P=1$.
Under Assumption 1, the constant field K coincides with

$$
\tilde{K}:=\{z \in F \mid z \text { is algebraic over } K\}
$$

(we say K to be the full constant field of F). In fact, since \tilde{K} is embedded into F_{P} via the residue class map $\mathcal{O}_{P} \rightarrow F_{P}$ (I.1.5 [5]), so $\operatorname{deg} P=1$ means

$$
K=F_{P} \supseteq \tilde{K} \supseteq K .
$$

Hereafter, we arbitrarily fix such $P \in \mathbb{P}_{F}$ with $\operatorname{deg} P=1$. We define

$$
\mathcal{L}(\infty P):=\left\{z \in F \mid v_{Q}(z) \geq 0, Q \in \mathbb{P}_{F} \backslash\{P\}\right\} \cup\{0\}=\bigcap_{Q \in \mathbb{P}_{F} \backslash\{P\}} \mathcal{O}_{Q}
$$

and $M_{P}(R):=\left\{-v_{P}(x) \mid x \in R \backslash\{0\}\right\}$ for integral R such that $K \subset R \subseteq \mathcal{L}(\infty P)$, $K \neq R$. Since an arbitrary monoid in \mathbb{N} is finitely generated, we write the generators of $M_{P}(R)$ by $a_{1}, a_{2}, \ldots, a_{t} \in \mathbb{Z}_{+}, t \in \mathbb{Z}_{+}$and express $A_{t}=\left(a_{1}, \ldots, a_{t}\right) \in \mathbb{Z}_{+}^{t}$, where the order of $a_{1}, a_{2}, \ldots, a_{t}$ is fixed. If we fix $x_{1}, x_{2}, \ldots, x_{t} \in R \backslash K$ so that $-v_{P}\left(x_{i}\right)=$ $a_{i}, i=1,2, \ldots, t$, then we have $R=K\left[x_{1}, x_{2}, \ldots, x_{t}\right]$. Furthermore, let $K[X]:=$ $K\left[X_{1}, X_{2}, \ldots, X_{t}\right]$ be the the polynomial ring over K of t-variables $X_{1}, X_{2}, \ldots, X_{t}$, and let $\Theta: K[X] \rightarrow R$ be the canonical surjective homomorphism from $K[X]$ to R such that for $f\left(X_{1}, X_{2}, \ldots, X_{t}\right) \in K[X], \Theta\left(f\left(X_{1}, X_{2}, \ldots, X_{t}\right)\right):=f\left(x_{1}, x_{2}, \ldots, x_{t}\right) \in R$. Then, $\operatorname{ker} \Theta$ makes an ideal in $K[X]$ and from the homomorphism theorem, we have $K[X] / \operatorname{ker} \Theta \simeq R$.

Lemma 1. The following three are equivalent:

1. F is a fraction field of R.
2. $\mathbb{N} \backslash M_{P}(R)$ is a finite set.
3. $\operatorname{GCD}\left\{A_{t}\right\}=1$.
(See Miura [1] for proof.)
We choose R so that F is a fraction field of R. Therefore, we have $\operatorname{GCD}\left\{A_{t}\right\}=1$. Moreover, since the transcendental dimension of F / K is $1, \operatorname{ker} \Theta$ is an ideal expressing a curve.

We define the map $\Psi: \mathbb{N}^{t} \rightarrow\left\langle A_{t}\right\rangle$ by $\Psi\left(\left(n_{1}, \ldots, n_{t}\right)\right):=\sum_{i} a_{i} n_{i}$, and define the order $<$ in \mathbb{N}^{t} so that $M<M^{\prime}$ for $M=\left(m_{1}, m_{2}, \ldots, m_{t}\right)$ and $M^{\prime}=\left(m_{1}^{\prime}, m_{2}^{\prime}, \ldots, m_{t}^{\prime}\right)$ if 1. $\Psi(M)<\Psi\left(M^{\prime}\right)$
2. $\Psi(M)=\Psi\left(M^{\prime}\right)$ and $m_{1}=m_{1}^{\prime}, m_{2}=m_{2}^{\prime}, \ldots, m_{i-1}=m_{i-1}^{\prime}, m_{i}>m_{i}^{\prime}$ for some i ($1 \leq i \leq t$).
Let $M(a)$ be the minimum element with respect to the order $<$ in \mathbb{N}^{t} satisfying $\Psi(M)=$ $a \in\left\langle A_{t}\right\rangle$. We define $B\left(A_{t}\right) \in \mathbb{N}^{t}$ and $V\left(A_{t}\right) \subseteq \mathbb{N}^{t} \backslash B\left(A_{t}\right)$ by

$$
B\left(A_{t}\right):=\left\{M(a) \mid a \in\left\langle A_{t}\right\rangle\right\}
$$

and

$$
\begin{gathered}
V\left(A_{t}\right):=\left\{L \in \mathbb{N}^{t} \backslash B\left(A_{t}\right) \mid L=M+N, M \in \mathbb{N}^{t} \backslash B\left(A_{t}\right), N \in \mathbb{N}^{t}\right. \\
\Longrightarrow N=(0,0, \ldots, 0)\},
\end{gathered}
$$

respectively. Also, let

$$
T\left(A_{t}\right):=B\left(A_{t}\right) \cap\left\{\left(n_{1}, n_{2}, \ldots, n_{t}\right) \in \mathbb{N}^{t} \mid n_{1}=0\right\} .
$$

Then, we have
Lemma 2 (Miura [1]).

$$
V\left(A_{t}\right)+\mathbb{N}^{t}=\mathbb{N}^{t} \backslash B\left(A_{t}\right)
$$

and
Lemma 3 (Miura [1]).

$$
\# T\left(A_{t}\right)=a_{1} .
$$

(See Appendix for proofs.)
Hereafter, for $A \subset K[X], \operatorname{Span}\{A\}$ and (A) denote the linear space over K generated by A and the ideal in $K[X]$ generated by A, respectively. Also, $X^{M}, M=$ $\left(m_{1}, m_{2}, \ldots, m_{t}\right) \in \mathbb{N}^{t}$, denotes $X^{M}=X_{1}^{m_{1}} X_{2}^{m_{2}} \cdots X_{t}^{m_{t}}$ for simplicity.

Theorem 2 (Miura [1]). There exists a set of generators, $\left\{F_{M} \mid M \in V\left(A_{t}\right)\right\}$, of $\operatorname{ker} \Theta \subseteq K[X]$ satisfying

C1 For each $M \in V\left(A_{t}\right)$,

$$
\begin{aligned}
& F_{M}-X^{M} \\
& \in \operatorname{Span}\left\{X^{N} \mid N \in B\left(A_{t}\right), \Psi(N) \leq \Psi(M)\right\} \backslash \operatorname{Span}\left\{X^{N} \mid N \in B\left(A_{t}\right), \Psi(N)<\Psi(M)\right\},
\end{aligned}
$$

and
C2 $\operatorname{Span}\left\{X^{N} \mid N \in B\left(A_{t}\right)\right\} \cap\left(\left\{F_{M} \mid M \in V\left(A_{t}\right)\right\}\right)=\{0\}$.
C1 is precisely expressed by
(2) $\quad F_{M}=X^{M}+\alpha_{L} X^{L}+\sum_{\left\{N \in B\left(A_{t}\right) \mid \Psi(N)<\Psi(M)\right\}} \alpha_{N} X^{N}, \quad 0 \neq \alpha_{L}, \alpha_{N} \in K$,
where $\Psi(M)=\Psi(L)$.
Theorem 3 (Miura [1]). Suppose we fix $t \in \mathbb{Z}_{+}, A_{t}=\left(a_{1}, a_{2}, \ldots, a_{t}\right) \in \mathbb{Z}_{+}^{t}$, g.c.d $\left\{A_{t}\right\}=1$. If $\left\{F_{M} \mid M \in V\left(A_{t}\right)\right\} \in K[X]$ satisfies C 1 and C 2 in Theorem 1, then $I:=\left(\left\{F_{M} \mid M \in V\left(A_{t}\right)\right\}\right)$ makes a prime ideal in $K[X]$. Moreover, the fraction field of the integral domain $K[X] / I$ is a one-variable algebraic function field over K.

3. Gröbner base

For $f=\sum a_{N} X^{N} \in K[X], a_{N} \in K, N \in \mathbb{N}^{t}$, we define

$$
\operatorname{multideg}(f)= \begin{cases}-\infty, & f=0 \\ \max \left\{N \in \mathbb{N}^{t} \mid a_{N} \neq 0\right\}, & f \neq 0\end{cases}
$$

where "max" is the maximum in the sense of the order < that has been already defined. We set

$$
L T(f)=\left\{\begin{array}{ll}
0, & f=0 \\
a_{T} X^{T}, & f \neq 0
\end{array},\right.
$$

where $T:=\operatorname{multideg}(f)$. If a finite subset $G=\left\{G_{1}, \ldots, G_{m}\right\}$ of ideal I satisfies

$$
(\{L T(f) \mid f \in I\})=\left(\left\{L T\left(G_{1}\right), \ldots, L T\left(G_{m}\right)\right\}\right),
$$

G is said to make a Gröbner basis of ideal I with respect $<$. It is known that for any ideal ($\neq\{0\}$) and any order, there exists a Gröbner basis [4].

For ideal I in $K[X]$, we define the Δ-set of I by

$$
\Delta(I)=\mathbb{N}^{t} \backslash \bigcup_{f \in I \backslash\{0\}}\left\{\operatorname{multideg}(f)+\mathbb{N}^{t}\right\}
$$

Proposition 1 (Miura [1]). Assuming (2),

1. C 2 is equivalent to that $\left\{F_{M} \mid M \in V\left(A_{t}\right)\right\} \subseteq K[X]$ is a Gröbner basis of $\left(\left\{F_{M} \mid\right.\right.$ $\left.\left.M \in V\left(A_{t}\right)\right\}\right) \subseteq K[X]$ with respect to the order $<$
2. $\Delta(I)=B\left(A_{t}\right)$.

Therefore, the verification of C 2 is not easy except for specific cases.

Lemma 4. If a basis $G=\left\{G_{1}, \ldots, G_{m}\right\}$ of ideal I satisfies $\operatorname{LCM}\left(L T\left(G_{i}\right), L T\left(G_{j}\right)\right)=$ $L T\left(G_{i}\right) L T\left(G_{j}\right), i \neq j$, then G makes a Gröbner basis of I.
(See [4] for proof.)
Noting the following lemma, we define $S V\left(A_{t}\right) \subseteq V\left(A_{t}\right) \subseteq \mathbb{N}^{t} \backslash B\left(A_{t}\right)$ by $S V\left(A_{t}\right):=$ $\left\{N_{i} \mid 2 \leq i \leq t\right\}$, where $N_{i}, 2 \leq i \leq t$ is the unique N_{i} such that $\left\{N_{i}\right\}=\{0\}^{i-1} \times \mathbb{N} \times$ $\{0\}^{t-i} \cap V\left(A_{t}\right)$.

Lemma 5 (Miura [1]). For each $2 \leq i \leq t$, the set $\{0\}^{i-1} \times \mathbb{N} \times\{0\}^{t-i} \cap V\left(A_{t}\right)$ has one element.

If $V\left(A_{t}\right)=S V\left(A_{t}\right)$, i.e. elements of $\left(\left\{F_{M} \mid M \in V\left(A_{t}\right)\right\}\right)$ are generated by exactly $t-1$ elements in $K[X]$ (A_{t} is said to be complete intersection), then $\left\{F_{M} \mid M \in\right.$ $\left.V\left(A_{t}\right)\right\} \subseteq K[X]$ makes a Gröbner basis, so that we do not have to verify C 2 . In fact, applying $\operatorname{LCM}\left(L T\left(F_{M}\right), L T\left(F_{N}\right)\right)=X^{M} X^{N}=L T\left(F_{M}\right) L T\left(F_{N}\right), M \in\{0\}^{i-1} \times \mathbb{N} \times\{0\}^{t-i}$, $N \in\{0\}^{j-1} \times \mathbb{N} \times\{0\}^{t-j}, 2 \leq i<j \leq t$ to Lemma 4, we obtain the claim.

Even if we replace C 2 by the complete intersection condition, we do not know how to construct A_{t} such that $V\left(A_{t}\right)=S V\left(A_{t}\right)$. However, we can construct some A_{t} such that $V\left(A_{t}\right)=S V\left(A_{t}\right)$ as follows.

DEFINITION 1 (Kirfel-Pellikan [3]). If $A_{t}=\left(a_{1}, \ldots, a_{t}\right) \in \mathbb{Z}_{+}^{t}$ satisfies

$$
\frac{a_{i}}{d_{i}} \in\left\langle\frac{a_{1}}{d_{i-1}}, \ldots, \frac{a_{i-1}}{d_{i-1}}\right\rangle, \quad d_{i}=\operatorname{GCD}\left(a_{1}, \ldots, a_{i}\right), 1 \leq i \leq t, d_{0}=1
$$

then A_{t} is said to be strictly telescopic. Moreover, A_{t} is said to be telescopic if A_{t} becomes strictly telescopic by changing the order of elements in A_{t}.

Whether A_{t} is strictly telescopic depends on the order of elements in A_{t} as well as elements in A_{t}. If $t=2$, then $a_{2} / \operatorname{GCD}\left\{a_{1}, a_{2}\right\} \in\langle(1)\rangle$ and A_{t} is automatically telescopic.

REMARK 1. If $2 g-1 \notin\left\langle A_{t}\right\rangle$, where $g:=\#\left(\mathbb{N} \backslash\left\langle A_{t}\right\rangle\right), A_{t}$ is said to be symmetric. The following implication [6] is known:

$$
t=2 \Longrightarrow A_{t}: \text { telescopic } \Longrightarrow A_{t}: \text { symmetric. }
$$

Proposition 2 (Miura [1]). If A_{t} is telescopic, then

$$
S V\left(A_{t}\right)=V\left(A_{t}\right)=\left\{\left.\left(0, \ldots, 0, \frac{d_{i-1}}{d_{i}}, 0, \ldots, 0\right) \right\rvert\, 2 \leq i \leq t\right\} .
$$

Hence, if $t=2\left(C_{a b}\right)$, or if A_{t} is telescopic, then A_{t} is complete intersection, so that we do not have to verify C 2 . However, the converse has been open, i.e. if A_{t} being complete intersection implies A_{t} being telescopic. If this is solved in the affirmative, arbitrary complete intersection A_{t} will be obtained constructively. If we pull back the ideal $I=\left(\left\{F_{2}, \ldots, F_{t}\right\}\right)$ in $K[X]$ to the projective space, only $I^{*} \supseteq$ $\left(\left\{F_{2}^{*}, \ldots, F_{t}^{*}\right\}\right)$ holds in general. Besides, not all algebraic curves are expressed by complete intersection A_{t}. However, if we obtain all the expressions with $t-1$ equations relating t variables in MCFs via telescopic A_{t}, it will be pleasing to engineers who are engaged in algebraic coding theory and algebraic curve cryptography.

Conjecture 2 (Miura [1]). If A_{t} is complete intersection, then A_{t} is telescopic. In other words,

$$
A_{t}: \text { telescopic } \Longleftrightarrow A_{t}: \text { complete intersection. }
$$

4. Proof of Miura conjecture

Since we assume $V\left(A_{t}\right)=S V\left(A_{t}\right)$, we may write

$$
V\left(A_{t}\right)=\left\{M^{(2)}, M^{(3)}, \ldots, M^{(t)}\right\}
$$

with

$$
M^{(i)}=\left(0, \ldots, M_{i}, 0, \ldots, 0\right), \quad M_{i} \geq 1, i=2,3, \ldots, t
$$

and $L^{(i)}:=\left(L_{1}^{(i)}, \ldots, L_{t}^{(i)}\right)$ for L corresponding to $M=M^{(i)}$ in (2).
Lemma 6. There is no $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subseteq\{2,3, \ldots, t\}(1 \leq k \leq t-1)$ such that

$$
\begin{equation*}
L_{i_{1}}^{\left(i_{2}\right)} \geq 1, L_{i_{2}}^{\left(i_{3}\right)} \geq 1, \ldots, L_{i_{k-1}}^{\left(i_{k}\right)} \geq 1, L_{i_{k}}^{\left(i_{1}\right)} \geq 1 \tag{3}
\end{equation*}
$$

Proof. Suppose there exists a sequence of length k satisfying (3). Let $N:=$ $\left(N_{1}, \ldots, N_{t}\right) \in \mathbb{N}^{t}$ be such that

$$
N_{l}:=\left\{\begin{array}{ll}
1, & l \in\left\{i_{1}, \ldots, i_{k}\right\} \\
0, & l \notin\left\{i_{1}, \ldots, i_{k}\right\}
\end{array}\right\}
$$

Then, for $M:=\sum_{j=1}^{k} M^{\left(i_{j}\right)}-N$ and $L:=\sum_{j=1}^{k} L^{\left(i_{j}\right)}-N$, we have $M, L \in \mathbb{N}^{t}$.

In general, for $H, H^{\prime} \in \mathbb{N}^{t}$ such that $\Psi(H)=\Psi\left(H^{\prime}\right)$ and $H>H^{\prime}$, and arbitrary $H^{\prime \prime} \in \mathbb{N}^{t}$, we have

$$
\Psi\left(H+H^{\prime \prime}\right)=\Psi\left(H^{\prime}+H^{\prime \prime}\right), \quad H+H^{\prime \prime}>H^{\prime}+H^{\prime \prime}
$$

and if $H-H^{\prime \prime}, H^{\prime}-H^{\prime \prime} \in \mathbb{N}^{t}$, then

$$
\Psi\left(H-H^{\prime \prime}\right)=\Psi\left(H^{\prime}-H^{\prime \prime}\right), \quad H-H^{\prime \prime}>H^{\prime}-H^{\prime \prime}
$$

Since $M^{(i)} \notin B\left(A_{t}\right)$ and $L^{(i)} \in B\left(A_{t}\right)$, we have $M^{(i)}>L^{(i)}, i=2,3, \ldots, t$, so that $\Psi(M)=\Psi(L)$ and $M>L$. Hence, $M \in \mathbb{N}^{t} \backslash B\left(A_{t}\right)$. On the other hand, since $M=$ $\sum_{j=1}^{k} M^{\left(i_{j}\right)}-N \notin M^{(i)}+\mathbb{N}^{t}, i=2,3, \ldots, t$, we have $M \notin V\left(A_{t}\right)+\mathbb{N}^{t}$. These contradict to Lemma 2.

We define a partial order \prec in $C=\{2, \ldots, t\}$ as follows:

1. for each $i \in C: i=i$
2. for each of two different $i, j \in C$ such that $L_{i}^{(j)} \geq 1: i \prec j$; and
3. for each of three different $i, j, k \in C$ such that $i \prec j$ and $j \prec k: i \prec k$.

Also, we fix a total order in C that is consistent with the partial order \prec (such an order exists from Lemma 6), and write the total order by \prec also. Without loss of generality, we may assume $2 \prec 3 \prec \cdots \prec t$ by changing the indices in $M_{j}, a_{j},\left\{L_{i}^{(j)}\right\}_{i=1}^{t}$, $j=2,3, \ldots, t$. From Lemma 6, we have

$$
\begin{equation*}
M_{j} a_{j}=\sum_{i=1}^{j-1} L_{i}^{(j)} a_{i} \tag{4}
\end{equation*}
$$

Lemma 7. For each $j=2, \ldots, t$, the ratio d_{j-1} / d_{j} divides M_{j}.

Proof. The right of (4) can be divided by both a_{j} and d_{j-1}, and therefore can be divided by $a_{j} d_{j-1} / \operatorname{GCD}\left(a_{j}, d_{j-1}\right)=a_{j} d_{j-1} / d_{j}$. Hence, d_{j-1} / d_{j} divides M_{j}.

Lemma 8. $\quad M_{2} M_{3} \cdots M_{t}=a_{1}$

Proof. From Lemma 2, we have

$$
\begin{gathered}
B\left(A_{t}\right)=\left\{\left(l_{1}, l_{2}, \ldots, l_{t}\right) \mid l_{1} \in \mathbb{N}, 0 \leq l_{j} \leq M_{j}-1, j=2,3, \ldots, t\right\} \\
T\left(A_{t}\right)=\left\{\left(0, l_{2}, \ldots, l_{t}\right) \mid 0 \leq l_{j} \leq M_{j}-1, j=2,3, \ldots, t\right\}
\end{gathered}
$$

Also, from Lemma 3, we have $M_{2} M_{3} \cdots M_{t}=a_{1}$.

Theorem 4. A_{t} is telescopic if and only if A_{t} is complete intersection.

Proof. From $\prod_{j=2}^{t}\left(d_{j-1} / d_{j}\right)=a_{1}$ and Lemmas 7 and 8, we obtain $M_{j}=d_{j-1} / d_{j}$. Hence, (4) is written as

$$
\begin{equation*}
\frac{a_{j}}{d_{j}}=\sum_{i=1}^{j-1} L_{i}^{(j)} \frac{a_{i}}{d_{j-1}} \tag{5}
\end{equation*}
$$

Appendix: Proofs of Lemmas 2 and 3

The following proofs of Lemma 2 and $\# T\left(A_{t}\right)=a_{1}$ appeared in Miura [1]. We give them here for self-containedness.

Proof of Lemma 2. First, we show

$$
\begin{equation*}
\left(\mathbb{N}^{t} \backslash B\left(A_{t}\right)\right)+\mathbb{N}^{t}=\mathbb{N}^{t} \backslash B\left(A_{t}\right) \tag{6}
\end{equation*}
$$

$\left(\mathbb{N}^{t} \backslash B\left(A_{t}\right)\right)+\mathbb{N}^{t} \supseteq \mathbb{N}^{t} \backslash B\left(A_{t}\right)$ is apparent. On the other hand,

$$
\begin{aligned}
& M \notin B\left(A_{t}\right), \quad N \in \mathbb{N}^{t} \\
& \Longrightarrow \exists M^{\prime} \in B\left(A_{t}\right) \quad \text { s.t. } \quad M>M^{\prime}, \quad \Psi(M)=\Psi\left(M^{\prime}\right), \quad N \in \mathbb{N}^{t} \\
& \Longrightarrow M+N>M^{\prime}+N, \quad \Psi(M+N)=\Psi\left(M^{\prime}+N\right) \\
& \Longrightarrow M+N \notin B\left(A_{t}\right) .
\end{aligned}
$$

Therefore, (6) holds.
Secondly, From $V\left(A_{t}\right) \subseteq \mathbb{N}^{t} \backslash B\left(A_{t}\right)$ and (6), we have

$$
\begin{equation*}
V\left(A_{t}\right)+\mathbb{N}^{t} \subseteq \mathbb{N}^{t} \backslash B\left(A_{t}\right) \tag{7}
\end{equation*}
$$

We derive contradiction, assuming that the inclusion in (7) is not \subseteq but \subset. Notice

$$
\begin{aligned}
& \exists M_{1} \quad \text { s.t. } \quad M_{1} \in \mathbb{N}^{t} \backslash B\left(A_{t}\right), \quad M_{1} \notin V\left(A_{t}\right)+\mathbb{N}^{t} \\
& \Longrightarrow \exists N_{1}, M_{2} \quad \text { s.t. } \quad M_{1}=M_{2}+N_{1}, \quad M_{2} \in \mathbb{N}^{t} \backslash B\left(A_{t}\right), \quad(0,0, \ldots, 0) \neq N_{1} \in \mathbb{N}^{t} \\
& \Longrightarrow \exists M_{2} \quad \text { s.t. } \quad M_{2} \in \mathbb{N}^{t} \backslash B\left(A_{t}\right), \quad M_{2} \notin V\left(A_{t}\right)+\mathbb{N}^{t} \\
& \Longrightarrow \exists N_{2}, M_{3} \quad \text { s.t. } \quad M_{2}=M_{3}+N_{2}, \quad M_{3} \in \mathbb{N}^{t} \backslash B\left(A_{t}\right), \quad(0,0, \ldots, 0) \neq N_{2} \in \mathbb{N}^{t} \\
& \Longrightarrow \exists M_{3} \quad \text { s.t. } \quad M_{3} \in \mathbb{N}^{t} \backslash B\left(A_{t}\right), \quad M_{3} \notin V\left(A_{t}\right)+\mathbb{N}^{t} \\
& \Longrightarrow \cdots .
\end{aligned}
$$

However, this implies an infinite sequence M_{1}, M_{2}, \ldots, such that $\Psi\left(M_{1}\right)>\Psi\left(M_{2}\right)>$ \cdots, which is a contradiction. Therefore, M_{1} such that $M_{1} \in \mathbb{N}^{t} \backslash B\left(A_{t}\right), M_{1} \notin V\left(A_{t}\right)+$ \mathbb{N}^{t} does not exist. Hence, the equality holds in (7).

Proof of Lemma 3. For each $i=0,1, \ldots, a_{1}-1$, we define

$$
b_{i}:=\min \left\{b \in\left\langle a_{2}, a_{3}, \ldots, a_{t}\right\rangle \mid b \equiv i \bmod a_{1}\right\} .
$$

We show $\left|T\left(A_{t}\right)\right|=a_{1}$ by deriving $T\left(A_{t}\right)=\left\{M\left(b_{i}\right) \in B\left(A_{t}\right) \mid i=0,1, \ldots, a_{1}-1\right\}$.
Since $a_{1}>0$ and $\operatorname{GCD}\left\{A_{t}\right\}=1$, for each $i=0,1, \ldots, a_{1}-1,\left\{b \in\left\langle\left(a_{2}, a_{3}, \ldots, a_{t}\right)\right\rangle \mid\right.$ $\left.b \equiv i \bmod a_{1}\right\}$ is not empty.

Let $M, N \in \mathbb{N}^{t}$ be such that $\Psi(M)>\Psi(N)$ and $\Psi(M)-\Psi(N)=n a_{1}$ for some $n \in \mathbb{Z}_{+}$. We claim $M \notin T\left(A_{t}\right)$. Let $N^{\prime}:=(n, 0, \ldots, 0)+N$. Since $n>0, N^{\prime} \notin\{0\} \times \mathbb{N}^{t-1}$ and $\Psi(M)=\Psi\left(N^{\prime}\right)$. If $M \notin\{0\} \times \mathbb{N}^{t-1}$, then $M \notin T\left(A_{t}\right)$. If $M \in\{0\} \times \mathbb{N}^{t-1}$, then $\Psi(M)=\Psi\left(N^{\prime}\right)$ and $M>N^{\prime}$, which means $M \notin B\left(A_{t}\right)$. In any case, $M \notin T\left(A_{t}\right)$.

We claim $M\left(b_{i}\right) \in\{0\} \times \mathbb{N}^{t-1}$. To this end, we derive a contradiction, assuming $m_{1} \neq 0$ in $M\left(b_{i}\right)=\left(m_{1}, m_{2}, \ldots, m_{t}\right)$. Since $\Psi\left(\left(0, m_{2}, \ldots, m_{t}\right)\right)+m_{1} a_{1}=b_{i}$ and

$$
\Psi\left(\left(0, m_{2}, \ldots, m_{t}\right)\right) \equiv b_{i} \equiv i \bmod a_{1},
$$

$m_{1} \neq 0$ implies $\Psi\left(\left(0, m_{2}, \ldots, m_{t}\right)\right)<b_{i}$, which contradicts the minimality of b_{i}.
Acknowledgement. The author sincerely thanks Prof. Sinji Miura for his suggestions.

References

[1] S. Miura: Error-Correcting Codes based on Algebraic Geometry, Ph. D. Thesis, University of Tokyo, 1998
[2] S. Miura and N. Kamiya: Geometric-Goppa codes on some maximal curves and their minimum distance; in Proc. 1993 IEEE Information Theory Workshop, Shizuoka Japan, June 4-8, 1993, 85-86.
[3] C. Kirfel and R. Pellikan: The minimum distance of codes in an array coming from telescopic semigroups, Journal AAECC (1993), 1720-1732
[4] D. Cox, J. Little and D.O'Shea: Ideals, Varieties, and Algorithms, UTM, Springer-Verlag, Berlin, 1992.
[5] H. Stichtenoth: Algebraic Function Fields and Codes, Springer-Verlag, 1993.
[6] A. Nijenhuis and H.S. Wilf: Representations of integers by linear forms in nonnegative integers, J. Number Theory 4 (1972), 98-106.

