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Abstract
Shinji Miura gave certain multivariable polynomials that express an Affine curve

for a given algebraic function fieldF and its degree one placeO, if F contains such
an O. Suppose the equations containt (� 2) variables, and that the pole orders at
O are a1, : : : , at � 1, whereGCDfa1, : : : , at g = 1. If

ai

di
2 a1

di�1
N + � � � + ai�1

di�1
N, di = GCDfa1, : : : , ai g

for eachi = 2, : : : , t , by arranginga1, : : : , at , then we say that the ordersa1, : : : , at

are telescopic. On the other hand, the numbert 0 (� t � 1) of the equations in the
Miura canonical form is determined bya1, : : : , at . If t 0 = t � 1, then we say that
a1, : : : ,at are complete intersection. It is known that the telescopic condition implies
the complete intersection condition. However, the converse was open thus far. This
paper solves the conjecture in the affirmative by giving its proof.

1. Introduction

Let F=K be a function field with degree one placeO, and a1, : : : , at � 1
(GCDfa1, : : : , at g = 1) generators of the monoidf�vO( f ) � 0 j f 2 Fg (the non-
negative pole orders atO), i.e.

a1N + � � � + atN = f�vO( f ) � 0 j f 2 Fg.
Shinji Miura [1, 2] gave generators of the ideal expressing anAffine curve with the
point O at infinity. For x1, : : : , xt 2 F such thatai = �vO(xi ), the Miura canonical
form (MCF) is the set of equations in the form

(1) xM1
1 � � � xMt

t + �L xL1
1 � � � xL t

t +
X

(N1,:::,Nt )2Nt

�N xN1
1 � � � xNt

t = 0

with M = (M1, : : : , Mt ) 2 Nt andL = (L1, : : : , L t ) 2 Nt , where�L ,�N 2 K , �L 6= 0, and

tX
i =1

ai Mi =
tX

i =1

ai L i > tX
i =1

ai Ni

for N = (N1, : : : , Nt ) 2 Nt , N 6= L, M.
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We consider two conditions ona1, : : : , at : telescopic and complete intersection
conditions. If

ai

di
2 a1

di�1
N + � � � + ai�1

di�1
N, di = GCDfa1, : : : , ai g

for eachi = 2,: : : , t , by replacinga1, : : : , at with a� (1), : : : , a� (t) for some permutation� in f1, : : : , tg, then we say that the ordersa1, : : : , at are telescopic. Notice that the
numbert 0 (� t � 1) of equations contained in the MCF only depends ona1, : : : , at . If
t 0 = t � 1, then we say thata1, : : : , at are complete intersection. Miura himself proved
that the telescopic condition implies the complete intersection condition. However, the
converse was open:

Conjecture 1. The complete intersection condition implies the telescopic
condition.

In general, the set of polynomials in the form of (1) with arbitrary a1, : : : , at

(GCDfa1, : : : , at g = 1) and�L ,�N 2 K does not always express a curve. It is required
to be a Gröbner basis, which is not easy to recognize by computation. On the other
hand, Miura derived that the telescopic condition is sufficient for a MCF to express a
curve [1, 2].

This paper solves Conjecture 1 in the affirmative, which means that a complete
intersection MCF expresses a curve:

Theorem 1. The complete intersection condition implies the telescopic condition.

Section 2 explains basic materials on one-variable algebraic function fields and
states the main theorem in Miura theory. Section 3 relates Miura theory in terms of
Gröbner base. Section 4 gives a proof of the conjecture.

Throughout the paper,Z, Z+, N, and K = Fq denote the integers, the positive inte-
gers, the nonnegative integers, the finite field withq elements, respectively.

2. One-variable algebraic function field

If F is a finite algebraic extension ofK (x) for somex 2 F which is transcendental
over a fieldK , F=K is said to be an algebraic function field of one variable overK .
A ring O such that
1. K � O � F , O 6= K , F
2. z 2 O or z�1 2 O for any z 2 F
is said to be a valuation ring ofF=K (I.1.4 [5]). EachO is a local ring, and the
maximal ideal P = O n O� is said to be a place, whereO� := fz 2 O j z�1 2 Og.
Hereafter,PF denotes the set of places inF=K . Then, for eachP 2 PF , OP := fz 2
F j z�1 =2 Pg is a valuation ring ofF=K . Furthermore,P is a principal ideal ofOP,
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and when we write each 06= z 2 F by z = tnu (u 2 O�
P, n 2 Z) using t 2 F such

that P = tOP, the value ofn (the discrete valuation ofz at P) does not depend on the
choice of t (I.1.6 [5]), and we write it byvP(z). Let 1 be the symbol not inZ such
that1 +1 =1 + n = n +1 =1 and1 > m for all m, n 2 Z, and letvP(0) =1.
Then, vP : F ! Z [ f1g satisfies
1. vP(x) =1() x = 0
2. vP(xy) = vP(x) + vP(y), for any x, y 2 F
3. vP(x + y) � minfvP(x), vP(y)g, for any x, y 2 F
4. there existsz 2 F such thatvP(z) = 1
5. vP(a) = 0, for any 06= a 2 K .
For example,OP = fz 2 F j vP(z) � 0g, O�

P = fz 2 F j vP(z) = 0g, P = fz 2 F jvP(z) > 0g (I.1.12 [5]). Let FP := OP=P and degP := [FP : K ].

Assumption 1. There exists P2 PF such thatdegP = 1.

Under Assumption 1, the constant fieldK coincides with

K̃ := fz 2 F j z is algebraic overK g
(we say K to be the full constant field ofF). In fact, sinceK̃ is embedded intoFP

via the residue class mapOP ! FP (I.1.5 [5]), so degP = 1 means

K = FP � K̃ � K .

Hereafter, we arbitrarily fix suchP 2 PF with degP = 1. We define

L(1P) := fz 2 F j vQ(z) � 0, Q 2 PF n fPgg [ f0g =
\

Q2PFnfPgOQ

and MP(R) := f�vP(x) j x 2 R n f0gg for integral R such thatK � R � L(1P),
K 6= R. Since an arbitrary monoid inN is finitely generated, we write the generators
of MP(R) by a1, a2, : : : , at 2 Z+, t 2 Z+ and expressAt = (a1, : : : , at ) 2 Zt

+, where
the order ofa1, a2, : : : , at is fixed. If we fix x1, x2, : : : , xt 2 R n K so that�vP(xi ) =
ai , i = 1, 2,: : : , t , then we haveR = K [x1, x2, : : : , xt ]. Furthermore, letK [X] :=
K [X1, X2, : : : , Xt ] be the the polynomial ring overK of t-variablesX1, X2, : : : , Xt ,
and let2 : K [X] ! R be the canonical surjective homomorphism fromK [X] to R
such that for f (X1, X2, : : : , Xt ) 2 K [X], 2( f (X1, X2, : : : , Xt )) := f (x1, x2, : : : , xt ) 2 R.
Then, ker2 makes an ideal inK [X] and from the homomorphism theorem, we have
K [X]=ker2 ' R.

Lemma 1. The following three are equivalent:
1. F is a fraction field of R.
2. N n MP(R) is a finite set.
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3. GCDfAt g = 1.

(See Miura [1] for proof.)
We chooseR so thatF is a fraction field ofR. Therefore, we have GCDfAt g = 1.

Moreover, since the transcendental dimension ofF=K is 1, ker2 is an ideal expressing
a curve.

We define the map9 : Nt ! hAt i by 9((n1, : : : , nt )) :=
P

i ai ni , and define the
order< in Nt so thatM < M 0 for M = (m1, m2, : : : , mt ) and M 0 = (m0

1, m0
2, : : : , m0

t ) if
1. 9(M) < 9(M 0)
2. 9(M) = 9(M 0) and m1 = m0

1, m2 = m0
2, : : : , mi�1 = m0

i�1, mi > m0
i for some i

(1� i � t).
Let M(a) be the minimum element with respect to the order< in Nt satisfying9(M) =
a 2 hAt i. We defineB(At ) 2 Nt and V(At ) � Nt n B(At ) by

B(At ) := fM(a) j a 2 hAt ig
and

V(At ) := fL 2 Nt n B(At ) j L = M + N, M 2 Nt n B(At ), N 2 Nt

=⇒ N = (0, 0,: : : , 0)g,
respectively. Also, let

T(At ) := B(At ) \ f(n1, n2, : : : , nt ) 2 Nt j n1 = 0g.
Then, we have

Lemma 2 (Miura [1]).

V(At ) + Nt = Nt n B(At )

and

Lemma 3 (Miura [1]).

# T(At ) = a1.

(See Appendix for proofs.)
Hereafter, forA � K [X], SpanfAg and (A) denote the linear space overK gen-

erated by A and the ideal inK [X] generated byA, respectively. Also,XM , M =
(m1, m2, : : : , mt ) 2 Nt , denotesXM = Xm1

1 Xm2
2 � � � Xmt

t for simplicity.

Theorem 2 (Miura [1]). There exists a set of generators, fFM j M 2 V(At )g, of
ker2 � K [X] satisfying



M IURA CONJECTURE ONAFFINE CURVES 191

C1 For each M2 V(At ),

FM � XM

2 Span
�
XN

�� N 2 B(At ), 9(N) � 9(M)
	 n Span

�
XN

�� N 2 B(At ), 9(N) < 9(M)
	
,

and
C2 SpanfXN j N 2 B(At )g \ (fFM j M 2 V(At )g) = f0g.

C1 is precisely expressed by

(2) FM = XM + �L XL +
X

fN2B(At )j9(N)<9(M)g �N XN , 0 6= �L , �N 2 K ,

where9(M) = 9(L).

Theorem 3 (Miura [1]). Suppose we fix t2 Z+, At = (a1, a2, : : : , at ) 2 Zt
+,

g:c:dfAt g = 1. If fFM j M 2 V(At )g 2 K [X] satisfiesC1 and C2 in Theorem 1,
then I := (fFM j M 2 V(At )g) makes a prime ideal in K[X]. Moreover, the fraction
field of the integral domain K[X]=I is a one-variable algebraic function field over K.

3. Gröbner base

For f =
P

aN XN 2 K [X], aN 2 K , N 2 Nt , we define

multideg(f ) =

��1, f = 0
maxfN 2 Nt j aN 6= 0g, f 6= 0

,

where “max” is the maximum in the sense of the order< that has been already de-
fined. We set

LT( f ) =

�
0, f = 0
aT XT , f 6= 0

,

where T := multideg(f ). If a finite subsetG = fG1, : : : , Gmg of ideal I satisfies

(fLT( f ) j f 2 I g) = (fLT(G1), : : : , LT(Gm)g),
G is said to make a Gröbner basis of idealI with respect<. It is known that for any
ideal (6= f0g) and any order, there exists a Gröbner basis [4].

For ideal I in K [X], we define the1-set of I by

1(I ) = Nt n [
f 2I nf0gfmultideg(f ) + Nt g.
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Proposition 1 (Miura [1]). Assuming(2),
1. C2 is equivalent to thatfFM j M 2 V(At )g � K [X] is a Gröbner basis of(fFM j
M 2 V(At )g) � K [X] with respect to the order<
2. 1(I ) = B(At ).

Therefore, the verification of C2 is not easy except for specific cases.

Lemma 4. If a basis G= fG1, : : : ,Gmg of ideal I satisfiesLCM(LT(Gi ),LT(G j )) =
LT(Gi )LT(G j ), i 6= j , then G makes a Gröbner basis of I.

(See [4] for proof.)
Noting the following lemma, we defineSV(At ) � V(At ) � Nt n B(At ) by SV(At ) :=fNi j 2 � i � tg, where Ni , 2� i � t is the uniqueNi such thatfNi g = f0gi�1 � N�f0gt�i \ V(At ).

Lemma 5 (Miura [1]). For each2 � i � t , the setf0gi�1 � N � f0gt�i \ V(At )
has one element.

If V(At ) = SV(At ), i.e. elements of (fFM jM 2 V(At )g) are generated by exactly
t � 1 elements inK [X] ( At is said to be complete intersection), thenfFM j M 2
V(At )g � K [X] makes a Gröbner basis, so that we do not have to verify C2. In fact,
applying LCM(LT(FM ), LT(FN)) = XM XN = LT(FM )LT(FN), M 2 f0gi�1 � N� f0gt�i ,
N 2 f0g j�1 � N� f0gt� j , 2� i < j � t to Lemma 4, we obtain the claim.

Even if we replace C2 by the complete intersection condition, we do not know
how to constructAt such thatV(At ) = SV(At ). However, we can construct someAt

such thatV(At ) = SV(At ) as follows.

DEFINITION 1 (Kirfel-Pellikan [3]). If At = (a1, : : : , at ) 2 Zt
+ satisfies

ai

di
2 � a1

di�1
, : : : , ai�1

di�1

�
, di = GCD(a1, : : : , ai ), 1� i � t , d0 = 1,

then At is said to be strictly telescopic. Moreover,At is said to be telescopic ifAt

becomes strictly telescopic by changing the order of elements in At .

WhetherAt is strictly telescopic depends on the order of elements inAt as well as el-
ements inAt . If t = 2, thena2=GCDfa1,a2g 2 h(1)i and At is automatically telescopic.

REMARK 1. If 2g�1 =2 hAt i, whereg := #(NnhAt i), At is said to be symmetric.
The following implication [6] is known:

t = 2 =⇒ At : telescopic=⇒ At : symmetric.
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Proposition 2 (Miura [1]). If At is telescopic, then

SV(At ) = V(At ) =

��
0, : : : , 0,

di�1

di
, 0, : : : , 0

� ���� 2� i � t

�
.

Hence, if t = 2 (Cab), or if At is telescopic, thenAt is complete intersection,
so that we do not have to verify C2. However, the converse has been open, i.e. if
At being complete intersection impliesAt being telescopic. If this is solved in the
affirmative, arbitrary complete intersectionAt will be obtained constructively. If we
pull back the idealI = (fF2, : : : , Ft g) in K [X] to the projective space, onlyI � �
(fF�

2 , : : : , F�
t g) holds in general. Besides, not all algebraic curves are expressed by

complete intersectionAt . However, if we obtain all the expressions witht�1 equations
relating t variables in MCFs via telescopicAt , it will be pleasing to engineers who are
engaged in algebraic coding theory and algebraic curve cryptography.

Conjecture 2 (Miura [1]). If At is complete intersection, then At is telescopic.
In other words,

At : telescopic() At : complete intersection.

4. Proof of Miura conjecture

Since we assumeV(At ) = SV(At ), we may write

V(At ) = fM (2), M (3), : : : , M (t)g
with

M (i ) = (0, : : : , Mi , 0, : : : , 0), Mi � 1, i = 2, 3,: : : , t ,

and L (i ) := (L (i )
1 , : : : , L (i )

t ) for L corresponding toM = M (i ) in (2).

Lemma 6. There is nofi1, i2, : : : , ikg � f2, 3,: : : , tg (1� k � t � 1) such that

(3) L (i2)
i1
� 1, L (i3)

i2
� 1, : : : , L (ik)

ik�1
� 1, L (i1)

ik
� 1.

Proof. Suppose there exists a sequence of lengthk satisfying (3). Let N :=
(N1, : : : , Nt ) 2 Nt be such that

Nl :=

�
1, l 2 fi1, : : : , ikg
0, l =2 fi1, : : : , ikg.

Then, for M :=
Pk

j =1 M (i j ) � N and L :=
Pk

j =1 L (i j ) � N, we haveM, L 2 Nt .
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In general, forH , H 0 2 Nt such that9(H ) = 9(H 0) and H > H 0, and arbitrary
H 00 2 Nt , we have

9(H + H 00) = 9(H 0 + H 00), H + H 00 > H 0 + H 00,
and if H � H 00, H 0 � H 00 2 Nt , then

9(H � H 00) = 9(H 0 � H 00), H � H 00 > H 0 � H 00.
Since M (i ) =2 B(At ) and L (i ) 2 B(At ), we haveM (i ) > L (i ), i = 2, 3,: : : , t , so that9(M) = 9(L) and M > L. Hence,M 2 Nt n B(At ). On the other hand, sinceM =Pk

j =1 M (i j )� N =2 M (i ) + Nt , i = 2, 3,: : : , t , we haveM =2 V(At ) + Nt . These contradict
to Lemma 2.

We define a partial order� in C = f2, : : : , tg as follows:
1. for eachi 2 C: i = i
2. for each of two differenti , j 2 C such thatL ( j )

i � 1: i � j ; and
3. for each of three differenti , j , k 2 C such thati � j and j � k: i � k.
Also, we fix a total order inC that is consistent with the partial order� (such an
order exists from Lemma 6), and write the total order by� also. Without loss of

generality, we may assume 2� 3� � � � � t by changing the indices inM j ,a j ,
�
L ( j )

i

	t
i =1,

j = 2, 3,: : : , t . From Lemma 6, we have

(4) M j a j =
j�1X
i =1

L ( j )
i ai .

Lemma 7. For each j = 2, : : : , t , the ratio dj�1=d j divides Mj .

Proof. The right of (4) can be divided by botha j and d j�1, and therefore can be
divided by a j d j�1=GCD(a j , d j�1) = a j d j�1=d j . Hence,d j�1=d j divides M j .

Lemma 8. M2M3 � � � Mt = a1

Proof. From Lemma 2, we have

B(At ) = f(l1, l2, : : : , l t ) j l1 2 N, 0� l j � M j � 1, j = 2, 3,: : : , tg
T(At ) = f(0, l2, : : : , l t ) j 0� l j � M j � 1, j = 2, 3,: : : , tg.

Also, from Lemma 3, we haveM2M3 � � � Mt = a1.

Theorem 4. At is telescopic if and only if At is complete intersection.
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Proof. From
Qt

j =2(d j�1=d j ) = a1 and Lemmas 7 and 8, we obtainM j = d j�1=d j .
Hence, (4) is written as

(5)
a j

d j
=

j�1X
i =1

L ( j )
i

ai

d j�1
.

Appendix: Proofs of Lemmas 2 and 3

The following proofs of Lemma 2 and# T(At ) = a1 appeared in Miura [1]. We
give them here for self-containedness.

Proof of Lemma 2. First, we show

(6) (Nt n B(At )) + Nt = Nt n B(At ).

(Nt n B(At )) + Nt � Nt n B(At ) is apparent. On the other hand,

M =2 B(At ), N 2 Nt

=⇒ 9M 0 2 B(At ) s.t. M > M 0, 9(M) = 9(M 0), N 2 Nt

=⇒ M + N > M 0 + N, 9(M + N) = 9(M 0 + N)

=⇒ M + N =2 B(At ).

Therefore, (6) holds.
Secondly, FromV(At ) � Nt n B(At ) and (6), we have

(7) V(At ) + Nt � Nt n B(At ).

We derive contradiction, assuming that the inclusion in (7)is not � but �. Notice

9M1 s.t. M1 2 Nt n B(At ), M1 =2 V(At ) + Nt

=⇒ 9N1, M2 s.t. M1 = M2 + N1, M2 2 Nt n B(At ), (0, 0,: : : , 0) 6= N1 2 Nt

=⇒ 9M2 s.t. M2 2 Nt n B(At ), M2 =2 V(At ) + Nt

=⇒ 9N2, M3 s.t. M2 = M3 + N2, M3 2 Nt n B(At ), (0, 0,: : : , 0) 6= N2 2 Nt

=⇒ 9M3 s.t. M3 2 Nt n B(At ), M3 =2 V(At ) + Nt

=⇒ � � � .

However, this implies an infinite sequenceM1, M2, : : : , such that9(M1) > 9(M2) >� � � , which is a contradiction. Therefore,M1 such thatM1 2 Nt n B(At ), M1 =2 V(At ) +
Nt does not exist. Hence, the equality holds in (7).
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Proof of Lemma 3. For eachi = 0, 1,: : : , a1 � 1, we define

bi := minfb 2 ha2, a3, : : : , at i j b � i moda1g.
We showjT(At )j = a1 by deriving T(At ) = fM(bi ) 2 B(At ) j i = 0, 1,: : : , a1 � 1g.

Sincea1 > 0 and GCDfAt g = 1, for eachi = 0,1,: : : ,a1�1, fb 2 h(a2,a3,: : : ,at )i j
b � i moda1g is not empty.

Let M, N 2 Nt be such that9(M) > 9(N) and9(M) � 9(N) = na1 for some
n 2 Z+. We claim M =2 T(At ). Let N 0 := (n,0,: : :,0)+N. Sincen > 0, N 0 =2 f0g�Nt�1

and9(M) = 9(N 0). If M 62 f0g � Nt�1, then M 62 T(At ). If M 2 f0g � Nt�1, then9(M) = 9(N 0) and M > N 0, which meansM =2 B(At ). In any case,M =2 T(At ).
We claim M(bi ) 2 f0g � Nt�1. To this end, we derive a contradiction, assuming

m1 6= 0 in M(bi ) = (m1, m2, : : : , mt ). Since9((0,m2, : : : , mt )) + m1a1 = bi and

9((0,m2, : : : , mt )) � bi � i moda1,

m1 6= 0 implies9((0,m2, : : : , mt )) < bi , which contradicts the minimality ofbi .
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