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Abstract
Every stationary subgroup of the quasiconformal mapping class group of a

Riemann surface acts on the Teichmüller space discontinuously if the surface satisfies
a certain geometric condition. In this paper, we construct such a Riemann surface
that the quasiconformal mapping class group is non-stationary but it still acts on the
Teichmüller space discontinuously.

1. Introduction and statement of results

For a Riemann surfaceR of analytically infinite type whose Teichmüller space
T(R) is infinite dimensional, the action of the quasiconformal mapping class group
MCG(R) on T(R) is not discontinuous in general. However, we have shown in [9]
that certain subgroups of MCG(R) act on T(R) discontinuously. For example, under
certain geometric conditions onR, a subgroupGc(R) of all quasiconformal mapping
classes that preserve the free homotopy class of a simple close geodesicc acts onT(R)
discontinuously. Also we have shown in [8] that the eventually trivial mapping class
group E(R) acts onT(R) discontinuously as well as the pure mapping class group
P(R). These subgroups have a common property: they are stationary.

DEFINITION 1.1. A subgroupG of MCG(R) is said to bestationary if there ex-
ists a compact subsurfaceW of R such thatg(W) \W 6= ; for every representativeg
of every element ofG. An element [g] 2 MCG(R) is said to be stationary if the cyclic
group generated by [g] is stationary.

REMARK 1.2. There exists a subgroupG � MCG(R) such that each element of
G is stationary butG is not stationary. Indeed, there exists an abstract countable in-
finite group0 such that every element of0 is of finite order, and for any countable
group0, there exists a Riemann surfaceR such that the group Conf(R) of all confor-
mal automorphisms ofR contains a subgroupG isomorphic to0. Then we may regard
G as a subgroup of MCG(R). Every element [g] 2 G is stationary since it is of fi-
nite order. On the other hand,G is not stationary since Conf(R) acts onR properly
discontinuously.
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Actually, for stationary subgroups in general, we know the following result. The
lower and upper bound conditions are defined later in Section2.

Proposition 1.3. [6, Theorem 4.8]Let R be a hyperbolic Riemann surface satis-
fying the lower and upper bound conditions and having no ideal boundary at infinity.
Then every stationary subgroup ofMCG(R) acts on T(R) discontinuously.

On the other hand, we did not know any example of a non-stationary subgroup
that acts discontinuously, not to say the whole quasiconformal mapping class group
MCG(R). In fact, if the genus ofR is positive finite or the number of the punctures
of R is positive finite, then MCG(R) must be stationary (see [9, Theorem 2]). Further-
more, a countable quasiconformal mapping class group constructed in [10] acts discon-
tinuously but it is also stationary as is seen in Section 5.

In Section 3, we first give an easy example of a Riemann surfaceR such that
a non-stationary cyclic subgroupG of MCG(R) acts onT(R) discontinuously. Actu-
ally, this argument tells us certain obstruction for makingour desired Riemann surfaces.
Then in Section 4, we prove the following, which is the main result of this paper.

Theorem 1.4. There exists a Riemann surface R such that the whole quasi-
conformal mapping class groupMCG(R) is non-stationary but acts on T(R)
discontinuously.

The existence of non-stationary and discontinuous quasiconformal mapping class
groups is crucial for the theory of dynamics on infinite dimensional Teichmüller spaces
because it requires further investigations completely different from those in the finite
dimensional cases.

2. Preliminaries

Throughout this paper, we assume that a Riemann surfaceR is hyperbolic. Namely,
the universal covering surface ofR is the upper half-planeH that admits the hyper-
bolic metric. We denote the hyperbolic length of an arcc on R by l (c). We say that
R satisfies thelower bound conditionif the injectivity radius at every point ofR ex-
cept cusp neighborhoods is uniformly bounded away from zero, and R satisfies the
upper bound conditionif there exists a subdomaiňR of R such that the injectivity ra-
dius at every point ofŘ is uniformly bounded from above and that the simple closed
curves in Ř carry the fundamental group ofR. If the injectivity radius at any point
of R is uniformly bounded from above, then clearlyR satisfies the upper bound con-
dition. The lower and upper bound conditions are invariant under quasiconformal de-
formations. For a non-trivial and non-cuspidal simple closed curvec on R, we denote
the simple closed geodesic that is freely homotopic toc by c�.
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The Teichmüller space T(R) is the set of all equivalence classes [f ] of quasi-
conformal homeomorphismsf on R. Here we say that two quasiconformal homeo-
morphisms f1 and f2 on R are equivalentif there exists a conformal homeomorphism
h : f1(R)! f2(R) such that f �1

2 Æ h Æ f1 is homotopic to the identity by a homotopy
that keeps every point of the ideal boundary at infinity fixed throughout. The distance
between two points [f1] and [ f2] in T(R) is defined byd([ f1], [ f2]) = (1=2) log K ( f ),
where f is an extremal quasiconformal homeomorphism in the sense that its maximal
dilatation K ( f ) is minimal in the homotopy class off2 Æ f �1

1 . Then d is a complete
metric on T(R), which is called the Teichmüller distance.

The quasiconformal mapping class[g] is a homotopy class of quasiconformal auto-
morphismsg of a Riemann surfaceR, and thequasiconformal mapping class group
MCG(R) is the group of all quasiconformal mapping classes onR. Here we also con-
sider homotopy classes relative to the ideal boundary at infinity. A mapping class [g] is
said to beeventually trivial if there exists a compact subsurfaceVg � R such that, for
each connected componentW of R� Vg that is not a cusp neighborhood, the restric-
tion gjW : W ! R is homotopic to the inclusion map idjW : W ! R. The eventually
trivial mapping class group E(R) of R is the group of all eventually trivial mapping
classes onR. Furthermore thepure mapping class group P(R) of R is the group of
mapping classes [g] such thatg fix all non-cuspidal ends ofR.

Every element [g] 2 MCG(R) induces a biholomorphic automorphism [g]� of T(R)
by [ f ] 7! [ f Æ g�1], which is also an isometry with respect to the Teichmüller dis-
tance. Let Aut(T(R)) be the group of all biholomorphic automorphisms ofT(R). Then
we have a homomorphism� : MCG(R) ! Aut(T(R)) by [g] 7! [g]� and define the
Teichmüller modular group by Mod(R) = �(MCG(R)). It is known that the homo-
morphism� is injective except for a few low dimensional cases. Thus we may identify
Mod(R) with MCG(R).

We say that a subgroupG � MCG(R) acts at a pointp 2 T(R) discontinuouslyif
there exists a neighborhoodU of p such that the number of elements [g] 2 G satisfy-
ing [g]�(U )\U 6= ; is finite. This is equivalent to that there exist no distinct elements
[gn] 2 G such thatd([gn]�(p), p) ! 0 as n ! 1 (see [5]). We say thatG acts
on T(R) discontinuously ifG acts at every point inT(R) discontinuously. IfR has
the ideal boundary at infinity, then the action of MCG(R) is discontinuous at no points
of T(R).

3. A Riemann surface with length parameters

In this section, we construct a Riemann surfaceR from pairs of pants whose quasi-
conformal mapping class group MCG(R) has a cyclic non-stationary subgroupG that
acts onT(R) discontinuously. Although this property itself is weakerthan that of the
Riemann surface as in Theorem 1.4, the surface in Proposition 3.1 below has the ad-
vantage of flexibility: by changing length parameters, we have quasiconformal mapping
classes of various types as is explained in Remark 3.4 below.
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Hereafter,P(l1,l2,l3) denotes a pair of pants whose geodesic boundary components
have the hyperbolic lengthsl1, l2 and l3. We allow the casel i = 0, which means that
the boundary component degenerates into a puncture. A pair of pants P has three sym-
metry axes, which are the shortest geodesic arcs connectingtwo boundary components
and which divideP into two congruent polygons.

First we make a surfaceS with indefinite parametersfl i gi2Z as follows. For every
i 2 Z, we take two pairs of pantsP�

i = P�
i (l i , 1, 1) and P+

i = P+
i (l i , 1, 1) with ge-

odesic boundary components (a�i , b�i , c�i ) and (a+
i , b+

i , c+
i ) respectively. Let��i be the

symmetry axis ofP�
i connectingb�i and c�i . Similarly, ��i is the symmetry axis con-

nectingc�i and a�i , and �i is the one connectinga�i and b�i . We give an orientation
to each boundary component ofP�

i counterclockwise when we view from the inside of
P�

i . Furthermore we parametrize each boundary component ofP�
i by a normalized arc

length parameter� (0� � � 1) with respect to the hyperbolic metric (that is, the nor-
malization means the variation of the paramter is one) such that a�i (0) = a�i (1) 2 �i ,
b�i (0) = b�i (1) 2 ��i and c�i (0) = c�i (1) 2 ��i .

We glue P�
i and P+

i by identifying a�i (�) with a+
i (1� �) and b�i (�) with b+

i (1� �)
for all � . Then we obtain a torusAi with two geodesic boundary componentsc�i and
c+

i having a�i (�) = a+
i (1� �) and b�i (�) = b+

i (1� �) as simple closed geodesicsai and
bi in it. Note thatl (bi ) = 1 for all i , but l (ai ) = l i are indefinite. Furthermore, for each
i 2 Z, we glue Ai and Ai +1 by identifying c+

i (�) with c�i +1(1� �) for all � . Then the
resulting surface of infinite genus is denoted byS, which is our Riemann surface of
indefinite parametersfl i gi2Z.

Assume here that all the parametersl i are the same. Then this surface admits a
conformal automorphismg determined by a translation such thatg(Ai ) = Ai +1 for all
i . We consider this particular mapping class [g] of S hereafter.

After the preparation of those notations, we can state the example of our Riemann
surface as follows.

Proposition 3.1. Let R be a Riemann surface obtained by taking the lengthsfl i gi2Z of S so that li ! 0 as i ! �1 and that 1=e2 � l i =l i +1 � e2 for every i.
Then the mapping class[g] of R belongs toMCG(R) and the cyclic non-stationary
subgroup G generated by[g] acts on T(R) discontinuously.

The following two lemmas, which give certain estimates of the maximal dilatations
of quasiconformal homeomorphisms, will be used in the proofs of our statements here
and later.

Lemma 3.2 ([2]). Let P = P(l1, l2, l3) and P0 = P0(l 01, l2, l3) be pairs of pants
(possibly degenerate) with maxfl1, l 01, l2, l3g � L. Suppose that" := jlog(l1=l 01)j � 2.
Then there exists a quasiconformal homeomorphism : P ! P0 preserving the sym-
metry axes such that K( ) � 1 + C" for a constant C= C(L) depending only on L
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and that it is identical on each boundary component with respect to the normalized arc
length parameter.

Lemma 3.3 ([12], [13]). Let c be a simple closed geodesic on a Riemann sur-
face R with the hyperbolic length l(c) and f : R ! R0 a quasiconformal homeo-
morphism of R onto another Riemann surface R0. Then the hyperbolic length l( f (c)�)
of the geodesic f(c)� satisfies

1

K ( f )
l (c) � l ( f (c)�) � K ( f )l (c).

Proof of Proposition 3.1. By applying Lemma 3.2 to each pair of pants, we see
that there exists a quasiconformal automorphismh of R in the mapping class [g] such
that K (hjAi ) � 1 + C(L i )"i on Ai . Here "i = jlog(l i =l i +1)j � 2 and L i = maxfl i , l i +1, 1g
for every i . Hence the mapping class [g] belongs to MCG(R).

We will prove that G acts onT(R) discontinuously. First we show thatG acts
at the base pointo = [id] 2 T(R) discontinuously. Suppose to the contrary that there
exists a subsequencef[gnk ]g such thatd([gnk ]�(o), o) ! 0 as k ! 1. Then there
exist representativeshk in the mapping classes [gnk ] such thatK (hk)! 1 ask!1.
However, sincehk(a0) is freely homotopic toank , we haveK (hk) � l0=lnk ! 1 by
Lemma 3.3. This is a contradiction.

Next consider an arbitrary pointp = [ f ] 2 T(R), where f is a quasiconformal
homeomorphism ofR. Then, again by Lemma 3.3, the simple closed geodesicsf (an)�
on f (R) satisfy l ( f (an)�)! 0 asn! �1. Then by the same consideration, we see
that G acts atp 2 T(R) discontinuously.

REMARK 3.4. In Proposition 3.1, we can choose the parameters ofR as l i =
l�i = 1=2i for i � 0. Then the quasiconformal mapping class [g] is not asymptoti-
cally comformal. Indeed, sincejlog(l i =l i +1)j = log 2 for every i , Theorem 3.6 in [7]
yields the assertion. For the definifion of asymptotically comformal homeomorphisms,
see [4]. Also, we can setl0 = 1 and l i = l�i = 1=i for i � 1 as well. In this case,
the quasiconformal mapping class [g] is asymptotically comformal. Indeed, by apply-
ing Lemma 3.2 as in the proof of Proposition 3.1, there existsa quasiconformal au-
tomorphismh in the mapping class [g] such thatK (hjAi ) � 1 + C(1)"i on Ai , where"i = jlog(l i =l i +1)j = jlog((i + 1)=i )j ! 0 as i !1.

REMARK 3.5. Let R1 be a Riemann surface such that the parametersl i on S are
bounded from above and away from zero. ThenG = h[g]i � MCG(R1) does not act
on T(R1) discontinuously. Indeed, letR0 be a Riemann surface withl i = 1 for all
i 2 Z. Then R1 is a quasiconformal deformation ofR0 and henceT(R1) = T(R0). On
the Riemann surfaceR0, the mapping class [g] has a conformal representative. Then
G does not act discontinuously ato = [id] 2 T(R0).
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4. Proof of main theorem

In this section, we will prove Theorem 1.4. If a Riemann surface R has a se-
quence of simple closed geodesics whose hyperbolic lengthstend to 0, namely, ifR
dose not satisfy the lower bound condition, then the action of MCG(R) on T(R) is not
discontinuous (see [5, Theorem 1]). In particular, the Riemann surface as in Proposi-
tion 3.1 is not appropriate for Theorem 1.4. The Riemann surface as in Remark 3.5 is
not appropriate either by the reason explained there.

Proof of Theorem 1.4. First we define a sequenceflngn2N of positive numbers as
follows. Fix a constantK > 1 once and for all. Setl1 = 1 and take a degenerate pair
of pants P1 = P(l1, l1, 0). Let �̂ be the supremum of� � l1 + 1 such that there exist
K -quasiconformal homeomorphisms' : P1 ! P(l1, �, 0) and'0 : P1 ! P(�, �, 0) that
preserve the symmetry axes and that are identical on each boundary component with
respect to the normalized arc length parameter. Then we setl2 = �̂.

Here the above supremum is actually attained. Indeed, we take a sequencef� j g
converging to ˆ� such that there existK -quasiconformal homeomorphisms' j : P1 !
P(l1, � j , 0) and '0j : P1 ! P(� j , � j , 0). It is enough to consider' j and '0j on the
symmetric halfD1 of P1 and we may assume that their images' j (D1) = D(l1, � j , 0)
and '0j (D1) = D(� j , � j , 0) are embedded in the hyperbolic planeH in such a way that
D(l1, � j , 0) and D(� j , � j , 0) converge to pentagonsD(l1, �̂, 0) and D(�̂, �̂, 0) respec-
tively in the sense of Carathéodory. Then' j and '0j converge toK -quasiconformal
homeomorphisms'1 and '01 respectively (see [11, Theorem 5.2]). Moreover, by an
application of the Carathéodory convergence theorem (see [3, Theorem 3.1]), their im-
ages'1(D1) and '01(D1) are coincident withD

�
l1, �̂, 0

�
and D

��̂, �̂, 0
�

respectively
and they are affine on the two sides ofD1 with respect to the hyperbolic metric. This
implies that'1 and '01 attain the supremum.

Assuming thatln has been determined, we defineln+1 as follows. For a degenerate
pair of pantsPn = P(ln, ln, 0), let ln+1 be the supremum of� � ln + 1 (which is actually
the maximum by the same reason as above) such that there existK -quasiconformal
homeomorphisms' : Pn ! P(ln, �, 0) and'0 : Pn ! P(�, �, 0) that preserve the sym-
metry axes and that are identical on each boundary componentwith respect to the nor-
malized arc length parameter. In this way, we haveln for n � 1 inductively.

Next we prove thatln ! 1. Suppose to the contrary that supln =: l̂ < 1. Let
C( � ) be the constant as in Lemma 3.2. Since supln = l̂ , we can take an integern
such that

ln � max

"
l̂ � exp

 
�K 1=4 � 1

C
�
l̂
�
!

, l̂ � 1

2

#
.

Then by Lemma 3.2, there existK 1=4-quasiconformal homeomorphisms between pairs
of pantsP(ln, ln, 0) and P

�
ln, l̂ , 0

�
, and between pairs of pantsP

�
ln, l̂ , 0

�
and P

�
l̂ , l̂ , 0

�
.
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Furthermore, take a constant� > l̂ such that

� � min

�
l̂ � exp

�
K 1=4 � 1

C
�
l̂ + 1=2�

�
, l̂ +

1

2

�
.

Then by Lemma 3.2, there existK 1=4-quasiconformal homeomorphisms between
P
�
l̂ , l̂ ,0

�
and P

�
l̂ ,�,0

�
, and betweenP

�
l̂ ,�,0

�
and P(�,�,0). By composing the four

K 1=4-quasiconformal homeomorphisms, we obtain aK -quasiconformal homeomorphism
betweenP(ln, ln, 0) and P(�,�, 0). Also, since there is aK 1=4-quasiconformal homeo-
morphism betweenP

�
ln, l̂ , 0

�
and P(ln,�, 0), we have aK 1=2-quasiconformal homeo-

morphism betweenP(ln, ln, 0) and P(ln,�, 0). Remark that� � ln � 1. Since� > l̂ ,
they contradict the definition ofln+1.

Now we construct the desired Riemann surfaceR. For eachi 2 Z � f0g, we
take degenerate pairs of pantsAi = P(l ji j, l ji j, 0) with geodesic boundary components
(a�i , a+

i , xi ) and Bi = P(l ji j, l ji j+1, 0) with geodesic boundary components (b�i , b+
i , yi ).

Here xi and yi are punctures. Fori = 0, we setB0 = P(1, 1, 0) (namelyl0 = 1) with
geodesic boundary components (b+

0, b+
0, y0) (the two components have the same name).

Let s�i � Ai be the symmetry axis connectinga�i with xi , and let t�i � Bi be the
symmetry axis connectingb�i with yi . We parametrize the boundary components of
Ai and Bi counterclockwise by a normalized arc length parameter� (0 � � � 1) with
respect to the hyperbolic metric such thata�i (0) = a�i (1) 2 s�i and b�i (0) = b�i (1) 2 t�i .

We glue B0 and A1 by identifying oneb+
0(�) with a�1 (1 � �), and glueB0 and

A�1 by identifying the otherb+
0(�) with a��1(1� �). For eachi � 1, we glue Ai and

Bi by identifying a+
i (�) with b�i (1 � �), and glue Bi and Ai +1 by identifying b+

i (�)
with a�i +1(1� �). Also for eachi � �1, we glue Ai and Bi by identifying a+

i (�) with
b�i (1� �), and glueBi and Ai�1 by identifying b+

i (�) with a�i�1(1� �). In this manner,
we obtain a planar Riemann surfaceR.

Let v be the geodesic line consisting of all the symmetry axes ofAi and Bi other
than s�i and t�i . If the hyperbolic length ofv is infinite, thenR has no ideal boundary
at infinity. Otherwise, we reconstructR as follows. For eachi , we prepare more than
1=l (v \ Ai ) copies of Ai and glue them in the same way as above to obtainÃi whose
boundary components other than punctures are more than one apart in the hyperbolic
distance. Then, replacingAi with Ãi , we makeR. In this sense, we may assume that
the Riemann surfaceR constructed above has no ideal boundary at infinity.

The union of the symmetry axess+
i [ t�i (i 6= 0) makes a geodesic line connecting

the puncturesxi with yi . Similarly, t+
i�1 [ s�i (i � 1) or t+

i [ s�i�1 (i � 0) makes
a geodesic line connectingyi�1 with xi (i � 1) or yi with xi�1 (i � 0). All these
geodesic lines together withv divide the Riemann surfaceR into the symmetric halves
RÆ and R�, which are simply connected. Also they divide the pair of pants Ai into
the symmetric halvesAÆ

i = Ai \ RÆ and A�
i = Ai \ R�, and divide the pair of pantsBi

as well.
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The quasiconformal mapping class group MCG(R) is non-stationary. Indeed, by
the definition of the sequenceflng, there existK 2-quasiconformal homeomorphisms be-
tween Ai and Bi (i 6= 0), betweenBi�1 and Ai (i � 1) and betweenBi and Ai�1

(i � 0). Hence there exists aK 2-quasiconformal automorphismg of R that mapsfAi g
to fBi g. Clearly this mapping class [g] 2 MCG(R) is non-stationary.

Next we will prove that MCG(R) acts onT(R) discontinuously. To see this, we
use the following.

Proposition 4.1. The Riemann surface R satisfies the lower and upper bound
conditions.

Proof. The hyperbolic distances between geodesic arcs inAi and Bi (i 6= 0)
satisfy

coshd(s+
i , a�i ) =

2 cosh(l ji j=2)

sinh(l ji j=2)
;

coshd(s�i , a+
i ) =

2 cosh(l ji j=2)

sinh(l ji j=2)
;

coshd(t+
i , b�i ) =

cosh(l ji j=2) + cosh(l ji j+1=2)

sinh(l ji j=2)
;

coshd(t�i , b+
i ) =

cosh(l ji j=2) + cosh(l ji j+1=2)

sinh(l ji j+1=2)
.

These are obtained by the combination of formulae for hyperbolic pentagons (see [1,
Theorem 7.18.1]). Sincel ji j+1 � l ji j+1, the above four distances are uniformly bounded
from above and away from zero. In fact, we have

lim sup
i!�1 coshd(t+

i , b�i ) � 1 + e1=2;

lim inf
i!�1 coshd(t�i , b+

i ) � 1 + e�1=2.

First we prove thatR satisfies the lower bound condition. We will show that the
hyperbolic lengthsl (c) of all simple closed geodesicsc on R are uniformly bounded
away from zero. Takec arbitrarily other thana�i or b�i . (Remark thatl (a�i ) � 1 and
l (b�i ) � 1.) Let i (6= 0) be an integer of the largest absolute value satisfying either
c \ Ai 6= ; or c \ Bi 6= ;. In the case wherec \ Ai 6= ; and c \ Bi = ;, we consider
the connected components ofc\ AÆ

i and c\ A�
i , which are simple geodesic arcs. Then

at least one of them, sayc0, connects eithers+
i with a�i or s+

i with v \ Ai . Indeed,
otherwise bothc \ AÆ

i and c \ A�
i connects+

i and s�i , which means thatc surrounds
only one puncturexi . If c0 connectss+

i with a�i , then l (c0) � d(s+
i , a�i ) � arccosh 2 by

the above formula. Ifc0 connectss+
i with v \ Ai , then l (c0) � l (a+

i )=2 � 1=2. In both
cases, we havel (c) � 1=2. Also in the case wherec\ Bi 6= ;, we can apply the same
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argument sinced(t+
i , b�i ) � arccosh 2 andl (b+

i )=2 � 1=2. Hence in all cases, we have
l (c) � 1=2 and conclude thatR satisfies the lower bound condition.

Next we prove thatR satisfies the upper bound condition. We consider a dividing
simple closed geodesic�2i (i 6= 0) that bounds a doubly-connected domain together
with s+

i [ t�i , which surroundsxi and yi . Also we take a simple closed geodesic�2i�1

surrounding eitheryi�1 and xi (i � 1) or yi and xi�1 (i � 0) in the same manner as
above. For each integerm 6= 0, let Zm be one of the connected components ofR� �m

that contains the two punctures, and set

Ř = B0 [[
m6= 0

Zm.

The homomorphism�1
�
Ř
� ! �1(R) induced by the inclusion map̌R ,! R is sur-

jective because the connected components of the complementR� Ř are simply con-
nected. Hence we have only to show that the injectivity radiiof all points in Ř are
uniformly bounded from above.

We will show that the hyperbolic lengths of�m are uniformly bounded from above.
For disjoint geodesic arcss and a in the simply-connected domainRÆ, we denote by
ehs! ai 2 a the end point of the shortest geodesic arc connectings with a. Then we
see that

l (�2i ) � 2fd(s�i , a+
i ) + d(ehs�i ! a+

i i, eht+
i ! b�i i) + d(t+

i , b�i )g
for example. Hence we have only to estimate the distances between these end points.

By a formula for the Lambert quadrilaterals (see [1, Theorem7.17.1 (i)]), we have

d(ehs�i ! a+
i i, eht+

i ! b�i i)
= arcsinh

�
1

sinhd(s�i , a+
i )

�� arcsinh

�
1

sinhd(t+
i , b�i )

�
(i 6= 0);

d(eht�i ! b+
i i, ehs+

i +1! a�i +1i)
= arcsinh

�
1

sinhd(t�i , b+
i )

�� arcsinh

�
1

sinhd(s+
i +1, a�i +1)

�
(i � 1);

d(eht�i ! b+
i i, ehs+

i�1! a�i�1i)
= arcsinh

�
1

sinhd(t�i , b+
i )

�� arcsinh

�
1

sinhd(s+
i�1, a�i�1)

�
(i � 0),

which are uniformly bounded from above. Hence we conclude that l (�m) � Æ for some
constantÆ > 0.

Since the hyperbolic area ofZm is 2� , there exists a constantr > 0 independ-
ent of m such that the radius of any embedded disk in anyZm is not greater than
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r . This means that, for everyz 2 Zm, there exists either a non-trivial closed curve
passing throughz whose length is not greater than 2r , or an arc connectingz with�m = �Zm whose length is not greater thanr . Hence, for everyz 2 Zm, there is
a non-trivial closed curve passing throughz whose length is not greater than 2r + Æ.
Thus we conclude that the injectivity radii of all points ofŘ are uniformly bounded
from above.

Proof of Theorem 1.4 continued. We prove that MCG(R) acts onT(R) discon-
tinuously. First we show that MCG(R) acts at the base pointo = [id] 2 T(R) dis-
continuously. Suppose to the contrary that there is a sequence of distinct elements
[gn] 2 MCG(R) such thatd([gn]�(o), o)! 0 asn!1. If the sequencef[gn]g is sta-
tionary, namely, if there exists a compact subsurfaceW of R such thatgn(W)\W 6= ;
for every representativegn for everyn, then we have a contradiction by Proposition 1.3
(applied to the sequence instead of a subgroup) and Proposition 4.1. Thus we may as-
sume that the sequencef[gn]g is non-stationary.

Let Xi and Yi be horocyclic cusp neighborhoods ofxi and yi respectively whose
hyperbolic areas are 1. Fork � 1, set

Wk = (B0 � Y0) [ [
1�ji j�k

f(Ai � Xi ) [ (Bi � Yi )g,
which is a compact subsurface ofR. Then there existnk 2 N and a representative
gnk 2 [gnk ] such thatgnk(Wk)\Wk = ;. In particular,gnk(c0)� \Wk = ;, wherec0 := b+

0

is a geodesic boundary component ofB0 and gnk (c0)� is the simple closed geodesic
that is freely homotopic tognk(c0). Without loss of generality, we may assume that
gnk(c0)� belongs to

S1
i =ik
f(Ai � Xi ) [ (Bi � Yi )g, where ik � k + 1 is the minimum

integer satisfying this property. We may also assume thatgnk (c0)� is neithera�i nor
b�i , for if gnk(c0)� is eithera�i or b�i then the estimate below is obvious.

First we consider the case wheregnk (c0)� \ Aik 6= ;. The geodesicgnk (c0)� has in-
tersection withs�ik

. Indeed, otherwise, the homotopy class ofgnk (c0) has a closed curve
that is shorter thangnk(c0)�. We consider the connected components ofgnk(c0)� \ RÆ
and gnk (c0)� \ R�, which are simple geodesic arcs. Then one of these arcs, which is
denoted byc0k, connectss�ik

with v. Indeed, suppose thatgnk (c0)� has no intersection
with v. Then one connected component ofR� gnk (c0)� has only finitely many punc-
tures. However, sincec0 divides R into two connected components both of which have
infinitely many punctures and sincegnk is homeomorphic,gnk(c0)� has the same prop-
erty as c0. This is a contradiction. Also in the case wheregnk(c0)� \ Bik 6= ; but
gnk(c0)� \ Aik = ;, by applying the same argument as above, we conclude that oneof
the simple geodesic arcsgnk (c0)� \ RÆ and gnk(c0)� \ R� connectst�ik

with v.

Here we see thatl (c0k) � (1=2)l (a�ik
) since a�ik

restricted toRÆ or R� are short-

est geodesic arcs connectings�ik
with v and t�ik

with v. Then we havel (gnk(c0)�) �
(1=2)l ik !1 ask!1. On the other hand, we can choose representativesg0nk

2 [gnk ]
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such thatK (g0nk
)! 1 ask!1. However by Lemma 3.3, we have

K (g0nk
) � l (g0nk

(c0)�)
l (c0)

= l (gnk(c0)�),
which is a contradiction. Hence we conclude that MCG(R) acts at the base pointo =
[id] 2 T(R) discontinuously.

For an arbitrary pointp = [ f ] 2 T(R), the Riemann surfacef (R) satisfies the
lower and upper bound conditions andl ( f (a�i )�) = 1 as i ! �1 because these
properties are quasiconformally invariant. Thus we can apply the same argument as
above and conclude that MCG(R) acts atp discontinuously.

5. A stationary countable mapping class group

In this section, we will prove that MCG(R) is stationary for the Riemann surface
R that was constructed in [10]. This surfaceR has a property that MCG(R) consists
only of a countable number of elements, and as a consequence,MCG(R) acts onT(R)
discontinuously (see [10, Theorem 1]).

The Riemann surfaceR was constructed as follows. SetP0 = P(1, 1, 1) andPn =
P(n!, (n + 1)!, (n + 1)!) for every integern � 1. We denote the geodesic boundary com-
ponent of lengthn! in each pair of pants bycn. We prepare 2n+1 copies of Pn for
eachn � 0 and glue the geodesic boundary components as follows: We glue the geo-
desic boundary componentsc0 of the 2 copies ofP0 together. The resulting hyperbolic
surface with 4 geodesic boundary componentsc1 is denoted byR1. Next we glue the
geodesic boundary componentc1 of each copy ofP1 to the 4 boundary components of
R1. The resulting hyperbolic surface with 8 geodesic boundarycomponentsc2 is de-
noted by R2. Continuing this process, for every integern � 1, we obtain a hyperbolic
surfaceRn with 2n+1 geodesic boundary componentscn which is made ofRn�1 and 2n

copies of Pn�1. Then take the exhaustion of these compact subsurfacesRn, which is
R =

S1
n=0 Rn. Each connected component ofR�Rn is denoted byEn. At each step of

gluing, we give an appropriate amount of twist along the geodesic boundaries so that
R is a complete hyperbolic surface without ideal boundary at infinity. Then R has the
following property.

Lemma 5.1 ([10, Theorem 3]). Let g: R ! R be a K-quasiconformal auto-
morphism of the Riemann surface R. Then, on each component En of R� Rn for
n � maxfK , 5g, the g restricted to En is homotopic to a conformal homeomorphism of
En onto another component of R� Rn.

We will prove the following.

Proposition 5.2. Let R be the Riemann surface constructed above. ThenMCG(R)
is stationary.
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Proof. Let R1 be the compact subsurface defined as above. We will prove that
g(R1) \ R1 6= ; for every representativesg of every element [g] 2 MCG(R). Suppose
to the contrary that there exists some [g] such thatg(R1) \ R1 = ;. Let K be the
maximal dilatation ofg and take an integern with n � maxfK , 5g. The number of the
componentsEn of R� Rn is 2n+1 and precisely 2n+1=4 of them belong to each of the
four componentsE1 of R� R1.

By Lemma 5.1, [g] gives a permutation of the 2n+1 componentsEn. Since g is
homeomorphic, there are 2n+1=4 componentsEn in each of the four components of
R� g(R1). By the assumption thatg(R1) \ R1 = ;, the imageg(R1) belongs to some
E1. Then we see that there should be at least 3� 2n+1=4 componentsEn belonging
to this E1. This is a contradiction. Hence we conclude thatg(R1) \ R1 6= ; for every
representativesg of every [g] 2 MCG(R), which means that MCG(R) is stationary.
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