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Abstract
We study the asymptotic behavior of solutions to the viscousBurgers equation by

presenting a new asymptotic approximate solution. This approximate solution, called
a diffusion wave approximate solution to the viscous Burgers equation ofk-th order,
is expanded in terms of the initial moments up tok-th order. Moreover, the spatial
and time shifts are introduced into the leading order term tocapture precisely the
effect of the initial data on the long-time behavior of the actual solution. We also
show the optimal convergence order inL p-norm, 1 � p � 1, of the diffusion wave
approximate solution ofk-th order. These results allow us to obtain the convergence
of any higher order inL p-norm by taking such a diffusion wave approximate solution
with order k large enough.

1. Introduction

We consider the viscous Burgers equation

(1.1) ut + uux = uxx in R� R+,

with the initial condition

(1.2) u(x, 0) = u0(x) on R.

Here u = u(x, t) is an unknown function; the coefficient of viscosity is assumed to be
1, for simplicity; R+ = ft 2 R j t > 0g. We assume that the initial datau0 satisfies
that, for a nonnegative integerk 2 N0 (� N [ f0g) and a small positive constant�,
(1.3) (1 +jxj)k+3+�u0 2 L1(R).

We introduce Cole-Hopf transformation of the solutionu to (1.1)–(1.2) which is
given by

(1.4) H [u(t)](x) = exp

��1

2

Z x

�1 u(y, t) dy

�� 1,
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t being regarded as a parameter. Then we put�(x, t) = (d=dx)H [u(t)](x). It is well-
known that (1.1)–(1.2) is converted into the heat equation of �
(1.5) �t = �xx in R� R+,

with the initial condition

(1.6)

�(x, 0) = H [u0]0(x)

= �1

2
u0(x) exp

��1

2

Z x

�1 u0(y) dy

�
on R.

We notice that the condition (1.3) implies

(1.7) (1 +jxj)k+3+�H [u0]0 2 L1(R),

thereby it is easy to see that there exists a unique smooth solution � to (1.5)–(1.6).
Hence, taking the inverse of Cole-Hopf transformation of�, we obtain a unique global
smooth solution to (1.1)–(1.2) (see (2.35) and (2.29)).

The purpose of this paper is to present a precise descriptionof the long-time as-
ymptotic behavior of the solution to the viscous Burgers equation (1.1) with the initial
condition (1.2). For this purpose, we begin by introducing an asymptotic approximate
solution to the heat equation (1.5) with (1.6) up to arbitrary finite order: First we de-
fine the j-th moment of a function f(x), j 2 N0, by

(1.8) M j ( f ) =
Z

R

x j f (x) dx.

We note here that (1.7) ensures thatM j (H [u0]0) < 1 for 0 � j � k + 2. In what
follows we shall assume, in addition, that

(1.9) Mk(H [u0]0) 6= 0.

We then introducean asymptotic approximate solution to(1.5)–(1.6) of k-th order
which is defined by

(1.10)

�k(x, t) =
k�1X
j =0

(�1) j M j (H [u0]0)
j !

� ��x

� j

Gt (x)

+ (�1)k
Mk(H [u0]0)

k!

� ��x

�k

Gt+(tk)+(x � k) for t > 0, x 2 R.

Here Gt (x) denotes 1-D heat kernel, i.e.,

(1.11) Gt (x) =
1p
4� t

exp

��x2

4t

�
.
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Of course, in case thatk = 0, RHS of (1.10) except for the last term should be dropped.
The spatial shiftk and the time shift (tk)+, where (tk)+ = max(tk, 0), appearing in the
last term on RHS of (1.10) are specified as follows: The spatial shift k is determined
by the relation

(1.12) Mk+1(H [u0]0)� (k + 1)Mk(H [u0]0)k = 0.

Then the time shift (tk)+ is given throughtk which is determined by the relation

(1.13) Mk+2(H [u0]0)� (k + 2)(k + 1)

2
Mk(H [u0]0)( 2

k + 2tk) = 0.

From (1.12), (1.13) we see thatk and (tk)+ are expressed as

(1.14) k =
Mk+1(H [u0]0)

(k + 1)Mk(H [u0]0) ,

and

(1.15) (tk)+ =

8>>>>>>>><
>>>>>>>>:

2(k + 1)Mk+2(H [u0]0)Mk(H [u0]0)� (k + 2)fMk+1(H [u0]0)g2
2(k + 1)2(k + 2)fMk(H [u0]0)g2

if Mk+2(H [u0]0)Mk(H [u0]0) > k + 2

2(k + 1)
fMk+1(H [u0]0)g2,

0 if Mk+2(H [u0]0)Mk(H [u0]0) � k + 2

2(k + 1)
fMk+1(H [u0]0)g2.

It should be remarked that the asymptotic approximate solution �k of k-th order defined
by (1.10) can be also represented in terms of the Hermite polynomials as follows:

�k(x, t) =
k�1X
j =0

M j (H [u0]0)
j !

�
1

2
p

t

� j

H j

�
x

2
p

t

�
1p
4� t

exp

��x2

4t

�

+
Mk(H [u0]0)

k!

�
1

2
p

t + (tk)+

�k

Hk

�
x � k

2
p

t + (tk)+

�

� 1p
4�(t + (tk)+)

exp

�� (x � k)2

4(t + (tk)+)

�
.

(1.16)

Here H j is the j -th Hermite polynomial which is generated by the relation

(1.17) H j (� ) = (�1) j exp(�2)
d j

d� j
(exp(��2)).

As seen from (1.10), the asymptotic approximate solution�k of k-th order consists
of the j -th order spatial derivative of heat kernel with the strength given by the j -th
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moments ofH [u0]0, 0 � j � k. By taking the approximate solution like this form,
we can make all the initial moments of the error term up tok-th order canceled. Fur-
thermore, adjusting the center and width of the highest order derivative of heat kernel
of �k by use of the shiftsk and (tk)+, we find that the (k + 1)-th and (k + 2)-th ini-
tial moments of the error term also vanish (see Remark 2.2 (i)in §2 and Lemma A.3
in Appendix). As a result, our asymptotic approximate solution �k controls the initial
moments up tok + 2-th order and this fact enables us to obtain the optimal decay rate
of the error term inL p-norm (see Proposition 2.1 in§2).

Once we obtain the asymptotic approximate solution�k to (1.5)–(1.6) ofk-th or-
der, by taking formally the inverse of Cole-Hopf transformation of �k, we finally reach
a diffusion wave approximate solution to(1.1)–(1.2)of k-th orderwhich is defined by

(1.18) �k(x, t) = �2
�k(x, t)

1 +
R x�1 �k(y, t) dy

for t > 0, x 2 R.

The validity of taking the inverse of Cole-Hopf transformation of �k with k � 1 is
ensured by the fact that the denominator in (1.18) is certainly uniformly positive after
the timeTk which is determined only byk and the moments ofH [u0]0 up to k-th order
(see Lemma 2.5 in§2).

Then, on the base of the optimal error estimates of the asymptotic approximate
solution �k in L p-norm, the following main theorem of this paper builds the precise
convergence estimates of this diffusion wave approximate solution �k of k-th order.

Theorem 1.1. Suppose that(1 + jxj)k+3+�u0 2 L1(R) and Mk(H [u0]0) 6= 0 for an
integer k� 0 with � > 0 small. Let u be a solution to(1.1)–(1.2)and �k a diffusion
wave approximate solution to(1.1)–(1.2) of k-th order defined by(1.18). Then, for any
p 2 [1,1]:
1. In case that k= 0, the diffusion wave approximation solution�0 of 0-th order is
well-defined on the interval(0,1) and the following estimates hold for a constant C0:

ku(t)� �0(t)kL p(R) � C0t1=(2p)�2 for t > 0, when (tk)+ > 0,(1.19)

ku(t)� �0(t)kL p(R) � C0t1=(2p)�3=2 for t > 0, when (tk)+ = 0.(1.20)

Here C0 depends only on H[u0]0 in (1.6).
2. In case that k� 1, there exists a constant Tk � 0 such that the diffusion wave
approximate solution�k of k-th order is well-defined on the interval(Tk,1) and the
following estimates hold for a constant C1:

ku(t)� �k(t)kL p(R) � C1t1=(2p)�2�k=2 for t > Tk, when (tk)+ > 0,(1.21)

ku(t)� �k(t)kL p(R) � C1t1=(2p)�3=2�k=2 for t > Tk, when (tk)+ = 0.(1.22)

Here Tk depends only on k andM j (H [u0]0), 1� j � k, and C1 depends only on H[u0]0.
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REMARK 1.2. (i) It is easy to see that the condition (1 +jxj)k+3+�u0 2 L1(R)
can be replaced by a weaker condition (1 +jxj)k+2+�u0 2 L1(R) when (tk)+ = 0. (See
the proof of Lemma 2.3 in§2.)
(ii) We can readily observe from (1.4) thatM0(H [u0]0) = 0 if and only if M0(u0) = 0.
In addition, if M0(H [u0]0) = 0, it is not hard to see that

Mk(H [u0]0) = �1

2
Mk(u0), k 2 N.

Therefore, for anyk 2 N, the condition thatM0(H [u0]0) = 0 andMk(H [u0]0) = 0 is
equivalent to the condition thatM0(u0) = 0 andMk(u0) = 0.
(iii) Suppose that the initial datau0 is a nontrivial continuous function with compact
support inR. Then, sinceH [u0]0 also has the same property as supposed above, by
virtue of well-known Hausdorff’s moments theorem (see§6 in [1], for example), we
find that there exists an integerk0 2 N0 such thatMk0(H [u0]0) 6= 0. So, in this case
we need not assume the condition (1.9).
(iv) We say that the moments off (x) degenerate up tol -th order,l 2 N0, provided that

(1.23) M j ( f ) = 0 for 0� j � l , Ml+1( f ) 6= 0.

Assume that the moments ofH [u0]0 degenerate up to (k � 1)-th order,k 2 N. Then,
it readily follows from the item (ii) above that

(1.24) M j (H [u0]0) = 0 for 0� j � k� 1, Mk(H [u0]0) 6= 0.

We can now deduce from (1.24), (1.12) that the spatial shiftk is given by

(1.25)
Z

R

(x � k)k+1H [u0]0(x) dx = 0,

which implies that thek is regarded as a center ofk-th moment ofH [u0]0. Similarly,
we can see from (1.24), (1.13) that thetk is expressed simply as

(1.26) tk =
1

2

�
k + 2

2

�
Mk(H [u0]0) Z

R

(x � k)k+2H [u0]0(x) dx.

It is clear that this expression is valid even whenk = 0. Hence, we conclude
from (1.26) that, if u0 is nonnegative and the moments ofH [u0]0 degenerate up to
(k� 1)-th order, the time shift (tk)+ becomes strictly positive for anyk = 2m, m 2 N0.
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(v) The diffusion wave approximate solution�k of order k is an explicit smooth solu-
tion to the viscous Burgers equation fort > 0, and is self-similar whenk = 0. It can
be also seen that

(1.27)
Z

R

�k(x, t) dx = M0(u0) for t > 0,

which means that the 0-th moment of�k is a conserved quantity.

In [2], the diffusion and N-wave approximate solutions to the viscous Burgers equa-
tion were introduced and their error estimates inL p-norm were obtained. They further
discuss the metastability phenomenon appearing in the long-time behavior of the solu-
tion to the viscous Burgers equation with small viscosity (see also [3]). However, they
study the diffusion wave approximate solution ofonly 0-th order without the time shift.
In [5], both the spatial and time shifts are taken into account for the diffusion wave ap-
proximate solution to (1.1)–(1.2) and the error estimate inL p-norm was gained. But
the diffusion wave approximate solution ofonly 0-th order is again considered in [5]
for the restricted nonnegative initial data. On the other hand, the asymptotic approx-
imate solution to the heat equation of higher order with bothspatial and time shifts
like (1.10) has already been introduced in [4], althoughno error estimates were ob-
tained there. Moreover, in [6], an asymptotic approximate solutionof 0-th order with
the spatial and time shifts to the heat equation was introduced for the study of the as-
ymptotic behavior of the damped wave equation. Curious investigation on the adequate
choice of the time shift for an approximate self-similar solution to the nonlinear porous
medium equation was presented in [7].

In brief, our Theorem 1.1 generalizes and refines the resultsin [2] and [5], by
introducing a diffusion wave approximate solution to (1.1)–(1.2) of any higher order
with both spatial and time shiftsand by showing the optimal convergence rates of the
error term,under a weakened condition on the initial data.

The plan of the paper is the following: In§2 we give the optimal error estimates
in L p-norm of the asymptotic approximate solution�k to the heat equation ofk-th or-
der. In this stage, checking the integrability of the iterated anti-derivatives of the initial
error term of�k becomes most crucial (see Lemma 2.3). We then show the uniform
pointwise estimates of the denominator appearing in the inverse of Cole-Hopf transfor-
mation of both the actual and asymptotic approximate solutions to the heat equation.
Finally, combining the error estimates and the uniform pointwise estimates obtained
in the preceding steps, we accomplish the proof of Theorem 1.1. The proof of sev-
eral elementary lemmas which are used in§2 and the proof of equivalence of the rela-
tions (1.12)–(1.13) and the conditions (2.5) forj = k + 1,k + 2 are given in Appendix.
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2. Proof of Theorem 1.1

We begin with studying the long-time behavior of the solution to the initial value
problem of the heat equation (1.5)–(1.6) under the conditions (1.3), (1.9). The follow-
ing proposition gives the optimal error estimates of the asymptotic approximate solu-
tion �k to (1.5)–(1.6) of orderk defined by (1.10). This result seems to be new and
of independent interest.

Proposition 2.1. Let 1 � p � 1. Suppose that the conditions(1.3) and (1.9)
hold. Let � be a solution to(1.5)–(1.6)and �k an asymptotic approximate solution
to (1.5)–(1.6)of order k defined by(1.10). Then the following estimates hold:

k�(t)� �k(t)kL p(R) � C2t1=(2p)�2�k=2 for t > 0, when (tk)+ > 0,(2.1)

k�(t)� �k(t)kL p(R) � C2t1=(2p)�3=2�k=2 for t > 0, when (tk)+ = 0,(2.2)

and 
Z �

�1 �(y, t) dy� Z �

�1 �k(y, t) dy


L p(R)

� C3t1=(2p)�3=2�k=2
for t > 0, when (tk)+ > 0,

(2.3)


Z �

�1 �(y, t) dy� Z �

�1 �k(y, t) dy


L p(R)

� C3t1=(2p)�1�k=2
for t > 0, when (tk)+ = 0.

(2.4)

Here the constants C2 and C3 depend only onkIk(H [u0]0)kL1(R), where Ik(H [u0]0) is
defined below in(2.6) when (tk)+ > 0, and in (2.7) when (tk)+ = 0, respectively.

REMARK 2.2. (i) The following claim reveals the reason why we specify the
shifts k, (tk)+ appearing in�k by the relations (1.12)–(1.13):

Suppose that the datau0 satisfies

Mk+2(H [u0]0)Mk(H [u0]0) > k + 2

2(k + 1)
fMk+1(H [u0]0)g2,

which means that (tk)+ > 0. Then the relations (1.12)–(1.13) hold if and only if the
following condition is fulfilled for j = k + 1,k + 2:

(2.5) lim
t!0+

Z
R

x j f�(x, t)� �k(x, t)g dx = 0.

This claim implies that the choice of the shiftsk, (tk)+ as in (1.12)–(1.13) enables
us to control the (k + 1)-th and (k + 2)-th moments of the initial error term. Moreover
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we notice that the conditions (2.5) for 0� j � k always hold even if the shiftsk,
(tk)+ are not specified.

The equivalence of the relations (1.12)–(1.13) and the conditions (2.5) for j = k +
1,k + 2 is proved in Lemma A.3 in Appendix.
(ii) In view of (1.10), we can see that the fastest decay term of �k is
(�1)k(Mk(H [u0]0)=k!)(�=�x)kGt+(tk)+(x � k) and its decay rate inL p-norm is
t1=(2p)�1=2�k=2. Accordingly, we know that the error estimates (2.1)–(2.2)are effective.
In a similar way, the error estimates (2.3)–(2.4) are also viewed as effective.

To prove Proposition 2.1 we shall make some auxiliary observations. First define
a functional Ik(H [u0]0) by: In case that (tk)+ > 0,

Ik(H [u0]0)(x)

=
Z x

�1
�Z x1

�1 � � �
Z xk+1

�1
�Z xk+2

�1 H [u0]0(xk+3) dxk+3

�
dxk+2 � � �

�
dx1

� k�1X
j =0

(�1) j M j (H [u0]0)
j !

� Z x

0

�Z x1

0
� � � Z xk� j

0

�Z xk+1� j

0
Y0(xk+2� j ) dxk+2� j

�
dxk+1� j � � �

�
dx1

� (�1)k
Mk(H [u0]0)

k!

Z x

�1
�Z x1

�1
�Z

R

Gtk(x2 � y)Yk (y) dy

�
dx2

�
dx1;

(2.6)

In case that (tk)+ = 0,

Ik(H [u0]0)(x)

=
Z x

�1
�Z x1

�1 � � �
Z xk

�1
�Z xk+1

�1 H [u0]0(xk+2) dxk+2

�
dxk+1 � � �

�
dx1

� k�1X
j =0

(�1) j M j (H [u0]0)
j !

Z x

0

�Z x1

0
� � � Z xk� j

0
Y0(xk+1� j ) dxk+1� j � � �

�
dx1

� (�1)k
Mk(H [u0]0)

k!

Z x

�1
�Z x1

�1 Yk (x2) dx2

�
dx1.

(2.7)

Here Ya(x) is the Heaviside function with the jump atx = a, that is,

Ya(x) =

�
0 if x � a,
1 if x > a.

We are going to prove the integrability ofIk(H [u0]0) on R by making use of the
relations (1.12)–(1.13) in essence.
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Lemma 2.3. Suppose that the relations(1.12)–(1.12)hold. Then, under the con-
ditions (1.7), it follows that Ik(H [u0]0) 2 L1

loc(R) and

jIk(H [u0]0)(x)j = o(jxj�1��) when (tk)+ > 0,(2.8)

jIk(H [u0]0)(x)j = o(jxj�2��) when (tk)+ = 0,(2.9)

as jxj ! 1. Here � is the small positive constant appearing in(1.3).

Proof. We give the proof only of the case that (tk)+ > 0. The proof of the case
that (tk)+ = 0 is achieved in the similar way, so we omit it.

First we decompose the termIk(H [u0]0)(x) into the following three parts:

B1(x) =
Z x

�1
�Z x1

�1 � � �
Z xk+1

�1
�Z xk+2

�1 H [u0]0(xk+3) dxk+3

�
dxk+2 � � �

�
dx1,

B2(x) = � k�1X
j =0

(�1) j M j (H [u0]0)
j !

� Z x

0

�Z x1

0
� � � Z xk� j

0

�Z xk+1� j

�1 Y0(xk+2� j ) dxk+2� j

�
dxk+1� j � � �

�
dx1,

B3(x) = �(�1)k
Mk(H [u0]0)

k!

Z x

�1
�Z x1

�1
�Z

R

Gtk(x2 � y)Yk (y) dy

�
dx2

�
dx1.

(2.10)

Then, applying Lemma A.1 in Appendix and recalling the condition (1.7), we read-
ily have

(2.11) B1(x) =
1

(k + 2)!

k+2X
j =0

(�1) j

�
k + 2

j

�
xk+2� j M j (H [u0]0)(x),

whereM j ( f )(x) =
R x�1 y j f (y) dy. Furthermore, since

Z x

0

�Z x1

0
� � � Z xk� j

0

�Z xk+1� j

0
Y0(xk+2� j ) dxk+2� j

�
dxk+1� j � � �

�
dx1

=
xk+2� j

+

(k + 2� j )!
for 0� j � k� 1,

we obtain

(2.12) B2(x) = � k�1X
j =0

(�1) j M j (H [u0]0)
j !

xk+2� j
+

(k + 2� j )!
,

where x+ = maxfx, 0g.
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As for B3(x), by the Fubini theorem and by integration by parts we have

B3(x) = �(�1)k
Mk(H [u0]0)

k!

Z
R

�Z x

�1
�Z x1

�1 Gtk(x2 � y) dx2

�
dx1

�
Yk (y) dy

= �(�1)k
Mk(H [u0]0)

k!

Z
R

(�
x1

Z x1

�1 Gtk(x2 � y) dx2

�x1=x

x1=�1
� Z x

�1 x1Gtk(x1 � y) dx1

)
Yk (y) dy

= �(�1)k
Mk(H [u0]0)

k!

�
x
Z

R

�Z x

�1 Gtk(x1 � y) dx1

�
Yk (y) dy

� Z
R

�Z x

�1 x1Gtk(x1 � y) dx1

�
Yk (y) dy

�
.

(2.13)

Then, the first and second terms of the braces on the last line of (2.13) can be treated
as follows:

x
Z

R

�Z x

�1 Gtk(x1� y) dx1

�
Yk (y) dy

= x
Z x

�1
�Z 1

k

Gtk(x1 � y) dy

�
dx1

= x
Z x

�1
�Z x1

�1 Gtk(y� k) dy

�
dx1

= x2
Z x

�1 Gtk(y� k) dy� x
Z x

�1 x1Gtk(x1 � k) dx1,

and

� Z
R

�Z x

�1 x1Gtk(x1 � y) dx1

�
Yk(y) dy

= � Z x

�1 x1

�Z 1
k

Gtk(x1 � y) dy

�
dx1

= � Z x

�1 x1

�Z x1

�1 Gtk(y� k) dy

�
dx1

= �x2

2

Z x

�1 Gtk(y� k) dy +
1

2

Z x

�1 x2
1Gtk(x1 � k) dx1,
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so that we arrive at

B3(x) = �(�1)k
Mk(H [u0]0)

k!

�
x2

2

Z x

�1 Gtk(y� k) dy

� x
Z x

�1 yGtk(y� k) dy +
1

2

Z x

�1 y2Gtk(y� k) dy

�
.

(2.14)

Hence we promptly find from (2.11), (2.12), (2.14) thatIk(H [u0]0) 2 L1
loc(R).

We now look at the case whenx ! �1. Recalling (1.7) again and applying
(A.4) of Lemma A.2 withs = k + 3 +� yield, for 0� j � k + 3,

(2.15) M j (H [u0]0)(x) = o(jxj�k�3��+ j ) as x!�1,

thereby it follows from (2.11), (2.12) and (2.15) that

(2.16) B1(x) + B2(x) = o(jxj�1��) as x!�1.

In view of (2.14), we also have

(2.17) B3(x) = O(1)(1 +
p

tk + tk)e�(x�k)2=32tk as x!�1.

Accordingly, from (2.16), (2.17) we can conclude that (2.8)holds whenx!�1.
Next we turn to the case whenx !1. First, it is readily observed from (2.11),

(2.12) that

B1(x) + B2(x)

=
(�1)k+2

(k + 2)!
Mk+2(H [u0]0)(x) +

(�1)k+1

(k + 1)! 1!
Mk+1(H [u0]0)(x)x

+
(�1)k

k! 2!
Mk(H [u0]0)(x)x2

+
k�1X
j =0

(�1) j

(k + 2� j )! j !

�
M j (H [u0]0)(x)xk+2� j �M j (H [u0]0)xk+2� j

+

	
.

(2.18)
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On the other hand, by referring to (2.14), we see that

B3(x) = �(�1)k
Mk(H [u0]0)

k!

�
x2

2

Z x�k

�1 Gtk(y) dy

� x
Z x�k

�1 yGtk (y) dy� kx
Z x�k

�1 Gtk(y) dy

+
1

2

Z x�k

�1 y2Gtk(y) dy

+ k

Z x�k

�1 yGtk (y) dy +
 2

k

2

Z x�k

�1 Gtk(y) dy

�

= �(�1)k
Mk(H [u0]0)

k!

�
x2

2
� kx + tk +

 2
k

2

�

+ O(1)(1 +
p

tk + tk)e�(x�k)2=32tk ,

(2.19)

as x ! 1. Here we have used the fact that
R

R
Gt (x) dx = 1,

R
R

xGt (x) dx = 0, andR
R

x2Gt (x) dx = 2t for t > 0.
Eventually, combining (2.18) and (2.19), then applying (A.3) of Lemma A.2 with

s = k + 3 +�, we have

Ik(H [u0]0)(x) = B1(x) + B2(x) + B3(x)

=
(�1)k+2

(k + 2)!

�
Mk+2(H [u0]0)� (k + 2)(k + 1)

2
( 2

k + 2tk)Mk(H [u0]0)�

+
(�1)k+1

(k + 1)!
fMk+1(H [u0]0)� k(k + 1)Mk(H [u0]0)gx

+
k+2X
j =0

(�1) j

(k + 2� j )! j !

�
M j (H [u0]0)�M j (H [u0]0)(x)

	
xk+2� j

+ O(1)(1 +
p

tk + tk)e�(x�k)2=32tk

=
(�1)k+2

(k + 2)!

�
Mk+2(H [u0]0)� (k + 2)(k + 1)

2
( 2

k + 2tk)Mk(H [u0]0)�

+
(�1)k+1

(k + 1)!
fMk+1(H [u0]0)� k(k + 1)Mk(H [u0]0)gx + o(jxj�1��),

(2.20)

as x!1. Consequently, in view of the relations (1.12)–(1.13), we conclude
from (2.20) that (2.8) holds whenx!1. We have thus proved Lemma 2.3.
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Thanks to Lemma 2.3 just proved, we reach the conclusion thatIk(H [u0]0) 2
L1(R). So we can now defineet1 Ik(H [u0]0) by

(2.21) et1 Ik(H [u0]0)(x) =
Z

R

Gt (x � y)Ik(H [u0]0)(y) dy.

The following lemma says that we can represent the error termof the asymptotic ap-
proximate solution�k in terms of the derivative ofet1 Ik(H [u0]0).

Lemma 2.4. The following equalities hold: In case that(tk)+ > 0,

(2.22) �k+3
x (et1 Ik(H [u0]0))(x) = �(x, t)� �k(x, t) for t > 0, x 2 R;

In case that(tk)+ = 0,

(2.23) �k+2
x (et1 Ik(H [u0]0))(x) = �(x, t)� �k(x, t) for t > 0, x 2 R.

Here �(x, t) is a solution to(1.5)–(1.6)and �k(x, t) is an asymptotic approximate so-
lution to (1.5)–(1.6)of k-th order defined by(1.10).

Proof. We shall give the proof only for the case that (tk)+ > 0 by the same rea-
soning in the preceding proof. We again use the same decomposition of Ik(H [u0]0) as
in (2.10) to obtain

�k+3
x (et1 Ik(H [u0]0))(x)

= �k+3
x

Z
R

Gt (x � y)B1(y) dy + �k+3
x

Z
R

Gt (x � y)B2(y) dy

+ �k+3
x

Z
R

Gt (x � y)B3(y) dy.

(2.24)

Then, owing to the property of the convolution, we know from (1.5), (1.6) that

�k+3
x

Z
R

Gt (x � y)B1(y) dy

=
Z

R

Gt (x � y)�k+3
y

�Z y

�1
�Z x1

�1
�� � � �Z xk+2

�1 H [u0]0(xk+3) dxk+3

� � � � dx1

�
dy

=
Z

R

Gt (x � y)H [u0]0(y) dy

= �(x, t).

(2.25)
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Moreover, it is observed similarly that

�k+3
x

Z
R

Gt (x � y)B2(y) dy

= � k�1X
j =0

(�1) j M j (H [u0]0)
j !

� � j +1
x

Z
R

Gt (x � y)�k+2� j
y

�Z y

0

�Z x1

0
� � � Z xk+1� j

0
Y0(xk+2� j ) dxk+2� j � � �

�
dx1

�
dy

= � k�1X
j =0

(�1) j M j (H [u0]0)
j !

Z 1
0

� j +1
x Gt (x � y) dy

=
k�1X
j =0

(�1) j M j (H [u0]0)
j !

Z 1
0

�y(� j
x Gt (x � y)) dy

= � k�1X
j =0

(�1) j M j (H [u0]0)
j !

� j
x Gt (x).

(2.26)

Whereas, since we have by utilizing the Fubini theorem and the semigroup property of
the heat kernel,

�k+3
x

Z
R

Gt (x � y)

�Z y

�1
�Z x1

�1
�Z

R

Gtk(x2� z)Yk(z) dz

�
dx2

�
dx1

�
dy

= �k+1
x

Z
R

Gt (x � y)�2
y

�Z y

�1
�Z x1

�1
�Z

R

Gtk(x2� z)Yk(z) dz

�
dx2

�
dx1

�
dy

= �k+1
x

Z
R

Gt (x � y)

�Z
R

Gtk(y� z)Yk(z) dz

�
dy

= �k+1
x

Z
R

Gt+tk(x � z)Yk (z) dz

= �k+1
x

Z x

�1 Gt+tk(z� k) dz

= �k
x Gt+tk(x � k),

we can see that

�k+3
x

Z
R

Gt (x � y)B3(y) dy

= �(�1)k
Mk(H [u0]0)

k!

� �k+3
x

Z
R

Gt (x � y)

�Z y

�1
�Z x1

�1
�Z

R

Gtk(x2 � z)Yk(z) dz

�
dx2

�
dx1

�
dy

= �(�1)k
Mk(H [u0]0)

k!
�k

x Gt+tk(x � k).

(2.27)
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Combining (2.25), (2.26) and (2.27), and recalling the formof �k in (1.10), we finally
arrive at (2.22). We complete the proof of Lemma 2.4.

We now give

Proof of Proposition 2.1. By virtue of the well-knownL p� Lq estimate of solu-
tions to the heat equation, we have, for 1� p � 1,

k� j
x et1 Ik(H [u0]0)kL p(R)

=

� j
x

Z
R

Gt (x � y)Ik(H [u0]0)(y) dy


L p(R)

� Ct1=(2p)�1=2� j =2kIk(H [u0]0)kL1(R) for all t > 0.

(2.28)

Here C is a universal constant.
Now, from Lemma 2.4 and the estimates (2.28) withj = k + 3,k + 2,k + 1, and

k, we readily obatin the desired estimates (2.1)–(2.4). The proof of Proposition 2.1 is
completed.

We next show the uniform pointwise estimates for the denominator appearing in
the inverse of Cole-Hopf transformation for both a solution� to (1.5)–(1.6) and an
asymptotic approximate solution�k.

Lemma 2.5. Let � be a solution to(1.5)–(1.6)on [0,1) and �k an asymptotic
approximate solution to(1.5)–(1.6)of order k with k2 N0. Then the estimates

min
x2R

exp

��1

2

Z x

�1 u0(y) dy

� � 1 +
Z x

�1 �(y, t) dy

� max
x2R

exp

��1

2

Z x

�1 u0(y) dy

� <1(2.29)

hold for any x2 R, t > 0.
Furthermore, we have:
In case that k= 0, the estimate

(2.30) min

�
1, exp

��1

2

Z
R

u0(y) dy

�� < 1 +
Z x

�1 �0(y, t) dy

holds for any x2 R, t > 0;
In case that k� 1, there exists a constant Tk � 0 such that the estimate

(2.31)
1

2
min

�
1, exp

��1

2

Z
R

u0(y) dy

�� < 1 +
Z x

�1 �k(y, t) dy

holds for any x2 R, t > Tk. Here Tk depends only on k andM j (H [u0]0), 1� j � k.
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Proof. Since 1 +
R x�1 �(y, t) dy is still a solution of the heat equation (1.5) with

the initial data exp
��(1=2)

R x�1 u0(y)dy
�
, the estimate (2.29) immediately follows from

the maximum principle. Next, noticing thatM0(H [u0]0) exp
�
(1=2)

R
R

u0(y) dy
� � 1,

we have

(2.32) 1 +M0(H [u0]0) Z x

�1 Gt+(t0)+(y) dy> min

�
1, exp

��1

2

Z
R

u0(y) dy

��
,

for any x 2 R, t > 0. Accordingly, since

1 +
Z x

�1 �0(y, t) dy = 1 +M0(H [u0]0) Z x

�1 Gt+(t0)+(y� 0) dy,

it is easy to derive from (2.30) the estimate (2.30).
On the other hand, in view of (1.17), we obtain, forj 2 N,Z x

�1
� ��y

� j

Gt (y) dy =

� ��x

� j�1

Gt (x)

=
1

2 j
p� (�1) j�1t� j =2H j�1

�
x

2
p

t

�
exp

��x2

4t

�
.

(2.33)

Remark that similar equality to (2.33) remains valid even when Gt (y) is shifted with
respect tot and y. Therefore, whenk � 1, we can see from (1.10), (2.33) and the
remark just above that

1 +
Z x

�1 �k(y, t) dy

= 1 +M0(H [u0]0) Z x

�1 Gt (y) dy

� k�1X
j =1

M j (H [u0]0)
j !

1

2 j
p� t� j =2H j�1

�
x

2
p

t

�
exp

��x2

4t

�

�Mk(H [u0]0)
k!

1

2k
p� (t + (tk)+)�k=2Hk�1

�
x � k

2
p

t + (tk)+

�
exp

�� (x � k)2

4(t + (tk)+)

�
.

(2.34)

Consequently, since sup�2R j� l exp(��2)j < Cl holds for anyl 2 N0 with a constant
Cl > 0, we easily find from (2.32) with (t0)+ = 0, (2.34) that there exists a constant
Tk � 0 depending only onk and M j (H [u0]0), 1 � j � k, such that the desired esti-
mate (2.31) holds for anyx 2 R, t > Tk. This completes the proof of Lemma 2.5.

We are in a position to give the proof of Theorem 1.1.

Proof of Theorem 1.1. By virtue of (2.29) of Lemma 2.5, we find that the unique
solution u to (1.1)–(1.2) is indeed given by the inverse of Cole-Hopf transformation of
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the solution� to (1.5)–(1.6), that is,

(2.35) u(x, t) = �2
�(x, t)

1 +
R x�1 �(y, t) dy

.

We consider the case thatk � 1. Since the estimate (2.31) of Lemma 2.5 holds for any
x 2 R, t > Tk, we can show that the diffusion wave approximate solution�k defined
by (1.18) is well-defined on the interval (Tk,1). Accordingly, owing to Proposition 2.1
and Lemma 2.5, we have the following estimates: for any 1� p � 1,

ku(t)� �k(t)kL p(R)

=

�2
�( � , t)

1 +
R ��1 �(y, t) dy

+ 2
�k( � , t)

1 +
R ��1 �k(y, t) dy


L p(R)

� 2k�(t)� �k(t)kL p(R)

1 +
R ��1 �(y, t) dy


L1(R)

infx2R

���1 +
R x�1 �(y, t) dy

�� ��1 +
R x�1 �k(y, t) dy

��	
+

2
R ��1 �(y, t) dy� R ��1 �k(y, t) dy


L p(R)k�(t)kL1(R)

infx2R

���1 +
R x�1 �(y, t) dy

�� ��1 +
R x�1 �k(y, t) dy

��	
� �Ct1=(2p)�2�k=2 for t > Tk, when (tk)+ > 0,

Ct1=(2p)�3=2�k=2 for t > Tk, when (tk)+ = 0,

(2.36)

where C depends only on the constantsC2, C3 in Proposition 2.1 and the lower and
upper bounds in Lemma 2.5. Note that we used an elementary estimate k�(t)kL1(R) �
(1=p4� )kH [u0]0kL1(R)t�1=2, t > 0, in deriving (2.36). The estimates in (2.36) im-
ply (1.21) and (1.22). The case thatk = 0 can be treated likewise and the proof in
that case is omitted. We complete the proof of Theorem 1.1.

3. Appendix

In this appendix, we first give the proof of several elementary lemmas which were
used in the preceding section.

Lemma A.1. Suppose that(1 + jxj)k f 2 L1(R), k 2 N0. Then the equalityZ x0

�1
�Z x1

�1 � � �
Z xk

�1 f (xk+1) dxk+1 � � �
�

dx1

=
1

k!

kX
j =0

(�1)k� j

�
k
j

�
x j

0 Mk� j ( f )(x0)

(A.1)

holds. Here M j ( f )(x) =
R x�1 y j f (y) dy for j 2 N0.
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Proof. We use induction onk. The claim is trivial fork = 0; assume that (A.1)
with k = k0, k0 2 N0, holds for any f such that (1 +jxj)k0 f 2 L1(R). Then, for any f
such that (1 +jxj)k0+1 f 2 L1(R), we have by integration by parts

(A.2)
Z x

�1 yl M j ( f )(y) dy =
xl+1

l + 1
M j ( f )(x)� 1

l + 1
M j +l+1( f )(x)

with 0 � j + l + 1 � k0 + 1 and j , l 2 N0, so that we find from the induction assump-
tion thatZ x0

�1
�Z x1

�1
�Z x1

�1 � � �
Z xk0+1

�1 f (xk0+2) dxk0+2 � � �
�

dx1

�
dx0

=
1

k0!

k0X
j =0

(�1)k0� j

�
k0

j

� Z x0

�1 x j
1 Mk0� j ( f )(x1) dx1

=
1

k0!

k0X
j =0

(�1)k0� j

�
k0

j

�  
x j +1

0

j + 1
Mk0� j ( f )(x0)� 1

j + 1
Mk0+1( f )(x0)

!

=
1

(k0 + 1)!

k0+1X
j =1

(�1)k0+1� j (k0 + 1)

�
k0

j � 1

�
x j

0

j
Mk0+1� j ( f )(x0)

� 1

(k0 + 1)!

(
k0+1X
j =1

(�1)k0+1� j (k0 + 1)

�
k0

j � 1

�
1

j

)
Mk0+1( f )(x0)

=
1

(k0 + 1)!

k0+1X
j =1

(�1)k0+1� j

�
k0 + 1

j

�
x j

0 Mk0+1� j ( f )(x0)

� 1

(k0 + 1)!

(
k0+1X
j =1

(�1)k0+1� j

�
k0 + 1

j

�)
Mk0+1( f )(x0),

=
1

(k0 + 1)!

k0+1X
j =0

(�1)k0+1� j

�
k0 + 1

j

�
x j

0 Mk0+1� j ( f )(x0).

This shows that (A.1) holds whenk = k0+1. So we complete the proof of Lemma A.1.

Lemma A.2. Suppose that(1 + jxj)s f 2 L1(R) for s> 0. Then,

M j ( f )�M j ( f )(x) = o((1 + jxj)�s+ j ) as x!1(A.3)

and

M j ( f )(x) = o((1 + jxj)�s+ j ) as x!�1(A.4)
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hold for j = 0, 1,: : : , [s]. Here [s] denotes the greatest integer not exceeding s.

Proof. Since

��M j ( f )�M j ( f )(x)
�� =

����
Z 1

x
y j f (y) dy

����
�
R1

x (1 + jyj)sj f (y)j dy

(1 + jxj)s� j
for x > 0,

and

��M j ( f )(x)
�� �

R x�1(1 + jyj)sj f (y)j dy

(1 + jxj)s� j
for x < 0,

we can obtain easily (A.3), (A.4) from the assumption (1 +jxj)s f (x) 2 L1(R).

We next give the proof of equivalence of the relations (1.12)–(1.13) and the con-
ditions (2.5) for j = k + 1,k + 2, which was cited in Remark 2.2 (i).

Lemma A.3. Let � be a smooth solution to(1.5)–(1.6)on R � [0, T 0), T 0 > 0,
and let �k be an asymptotic approximate solution to(1.5)–(1.6)of k-th order defined
by (1.10) with k 2 N0. Then it holds that

lim
t!0+

Z
R

xk+1f�(x, t)� �k(x, t)g dx

= Mk+1(H [u0]0)� (k + 1)Mk(H [u0]0)k

(A.5)

and

lim
t!0+

Z
R

xk+2f�(x, t)� �k(x, t)g dx

= Mk+1(H [u0]0)� (k + 2)(k + 1)

2
Mk(H [u0]0)(2(tk)+ +  2

k ).

(A.6)

Proof. We first prove (A.5). By integration by parts, we obtain

(A.7) lim
t!0+

Z
R

x j

� ��x

�l

Gt (x) dx = (�1)l j ! Æl j for any l , j 2 N0,
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whereÆl j denotes Kronecker’s delta. Moreover, we have by integrationby partsZ
R

xk+1

� ��x

�k

Gt+(tk)+(x � k) dx

= (�1)k(k + 1)!
Z

R

xGt+(tk)+(x � k) dx

= (�1)k(k + 1)!

�Z
R

xGt+(tk)+(x) dx + k

Z
R

Gt+(tk)+(x) dx

�
= (�1)k(k + 1)! k.

(A.8)

Therefore, in view of (1.5)–(1.6) and (1.10), it follows from (A.7)–(A.8) that

lim
t!0+

Z
R

xk+1f�(x, t)� �k(x, t)g dx

= Mk+1(H [u0]0)� (�1)k
Mk(H [u0]0)

k!
(�1)k(k + 1)! k

= Mk+1(H [u0]0)� (k + 1)Mk(H [u0]0)k,

(A.9)

which proves (A.5).
Next, recalling the fact thatZ

R

x2Gt+(tk)+(x) dx = 2(t + (tk)+),

we see that Z
R

xk+2

� ��x

�k

Gt+(tk)+(x � k) dx

= (�1)k
(k + 2)!

2!

Z
R

x2Gt+(tk)+(x � k) dx

= (�1)k
(k + 2)!

2!

�Z
R

x2Gt+(tk)+(x) dx

+ 2k

Z
R

xGt+(tk)+(x) dx +  2
k

Z
R

Gt+(tk)+(x) dx

�

= (�1)k
(k + 2)!

2!
f2(t + (tk)+) +  2

k g.

(A.10)

Accordingly, we can derive from (A.7) and (A.10) that

lim
t!0+

Z
R

xk+2f�(x, t)� �k(x, t)g dx

= Mk+2(H [u0]0)� (�1)k
Mk(H [u0]0)

k!
(�1)k

(k + 2)!

2!
(2(tk)+ +  2

k )

= Mk+2(H [u0]0)� (k + 2)(k + 1)

2
Mk(H [u0]0)(2(tk)+ +  2

k ),



ASYMPTOTIC BEHAVIOR OF V ISCOUS BURGERS SOLUTIONS 119

which shows (A.7). The proof of Lemma A.3 is now completed.
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