Mishra, R.
Osaka J. Math.
43 (2006), 625-639

POLYNOMIAL REPRESENTATION
OF STRONGLY-INVERTIBLE KNOTS
AND STRONGLY-NEGATIVE-AMPHICHEIRAL KNOTS

RAMA MISHRA

(Received August 24, 2005, revised October 26, 2005)

Abstract

It is shown that the symmetric behaviour of certain classraftk can be realized
by their polynomial representations. We prove that evsirpngly invertible knot
(open) can be represented by a polynomial embedding- (f(t), g(t), h(t)) of
R in R® where among the polynomial§(t), g(t) and h(t) two of them are odd
polynomials and one is an even polynomial. We also prove thatubclass of
strongly negative amphicheir&nots can be represented by a polynomial embedding
t > (f(t), g(t), h(t)) of R in R® where all three polynomialg (t), g(t) and h(t) are
odd polynomials.

1. Introduction

It has been proved [10] that every smooth knotShis isotopy equivalent to the
closure of the image of an embeddigg R — R3 defined byg(t) = (f(t), g(t), h(t))
where f(t), g(t) and h(t) are polynomials over the field of real humbeRs In fact
any two such polynomial embeddings representing the samétipe can be joined
by a polynomial isotopy [12]. Thus the set of polynomiallytispic classes of poly-
nomial knots is in one to one correspondence with the set dfiemh isotopy classes
of all classical knots. In [10], Shastri constructed polyna embeddings for the tre-
foil knot and for the figure eight knot respectively. Latere would find a general
procedure ([8], [5]) to construct a polynomial embeddingresenting any torus knot
of type (p,q). Let us look at Shastri's polynomial embeddings for these simple
knots: For the trefoil knot it was given biy— (t2 — 3t, t* — 4t2,t5 — 10t) and for the
figure eight knot it wad — (t2 — 3t, t> — 5t3+4t,t” — 42t). A 3D plot of these knots
using Mathematicais shown in Fig. 1 and Fig. 2 respectively at the end of the pape

One can easily see that the involution map ¥, z) — (—x,y, —2) from R® to
R3, which is orientation preserving, preserves this repregiem of the trefoil knot
set wise but reverses the orientation; similarly for the riggeight representation, the
orientation reversing involutionx(y, z2) — (—x, —y, —2) brings the same knot with
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opposite orientation. Thus, in a way, this provides us a fptbat the trefoil knot is
strongly invertible([9], [3]) and the figure eight knot istrongly-negative-amphicheiral
([41, [1]). With this in mind Kawauchi made the following twoonjectures:

(1) Every strongly invertible knot can be represented by a pmiyial embedding >
(f (1), g(t), h(t)) where among f(t), g(t) and ht), two of them must be odd poly-
nomials and one must be an even polynomial

(2) Every strongly negative amphicheiral knot can be represgiity a polynomial em-
bedding t— (f(t), g(t), h(t)) where all three polynomials (f), g(t) and ht) must be
odd polynomials

In this paper we prove the first conjecture and give a partiabfpof the second con-
jecture. We also construct some examples of such embedébndgew such knots.

2. Definitions and Remarks

DEFINITION 2.1. A knotK in S is said to bestrongly invertibleif there exists
an orientation preserving involution: S* — S® such thath(K) = K setwise but with
the reverse orientation.

REMARK 2.2. By the well known Smith theory [7] the fixed point sEix(h)
will be an unknottedS! intersecting the knot at exactly two points. Then it has
been proved thath will be equivalent (up to conjugate) to a-rotation ([13],

(6], [11]).

REMARK 2.3. RegardingS' and S* as one point compactifications @& and R3
respectively, we can define a long kn@ (n R®) to be strongly invertible if there ex-
ists an orientation preserving involutidit R® — R® which preserves the knot setwise
but reverses its orientation. By the previous remgik(h) will be an unknotted line
intersecting the knot at exactly one point and then such waoldtion will be equiva-
lent to ther-rotation along this line as axis. By linear change of cooatks we can
assume that this axis is thé axis and the involutiorh: R® — RS2 is given by the
standard mapx, vy, z2) = (=X, Y, —2).

DEFINITION 2.4. A knotK in S® is said to bestrongly-negative-amphicheiral
there exists an orientation reversing involution S* — S* such thath(K) = K setwise
but with the reverse orientation. Regardisy =R U {co} and S* = R3 U {oo} we can
modify the definition ofstrongly negative amphicheiral long knots

REMARK 2.5. It is well known by the Smith theory that in this case thet s
Fix(h) will be homeomorphic to eithe® or to * and in either cas€ix(h) intersects
the knot at exactly two points.

If the setFix(h) is homeomorphic tdS? then we can switch it to another involu-
tion sayh; of S® satisfying the same condition of preserviig setwise but reversing
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the orientation andix(h;) is homeomorphic te&°. In this situation we have a famous
open conjecturedue to Folklore:

Conjecture 2.6. Every involution h on $=R3U {oco} with Fix(h) = S° is conju-
gate to the standard involutio(x, y, z) — (=X, —y, —z) on R® and co — oo. Proving
this conjecture is equivalent to proving the following

Conjecture 2.7. Every irreducible homotopy £« is homeomorphic to Px | [2].
Keeping this conjecture in mind we modify our definition as:

DEFINITION 2.8. A long knotK in R is said to befaithfully strongly negative
amphicheiral if there exists an involution: R® — R® conjugate to the standard map
(X,Y,2) — (=x,—Yy, —2) from R® to R® such thath(K) = K setwise but with the
reverse orientation.

REMARK 2.9. Thus every faithfully strongly negative amphichekabt is strong-
ly amphicheiral and if the above conjecture is true then libtéhnotions, the faithfully
strongly negative amphicheiral and the strongly negativlacheiral, are equivalent.

REMARK 2.10. By Remark 2.3 it follows that every strongly inveréiblong
knot can be represented by a smooth embeddingR — R® defined as¢(t) =
(x(t), B(1), y(t)) where and y are smooth odd functions anél is a smooth even
function.

REMARK 2.11. Also by definition it is clear that every faithfully strgly nega-
tive amphicheiral knot can be represented by a smooth enrimptid> («(t), S(t), v (1))
wherea, 8 and y are smooth odd functions.

3. Main Results

Theorem 3.1. Every strongly invertibl§open knot can be represented by a poly-
nomial embedding t- (f(t), g(t), h(t)) from R to R® where f(t) and Kt) are odd
poynomials and 1) is an even polynomial

Proof. Let K be a strongly invertible knot. By Remark 2.18, can be repre-
sented by a smooth embeddigg R — R® defined asp(t) = («(t), A(t), y(t)) where
«a and y are smooth odd functions angl is a smooth even function. Let us assume
that the mapp: R — R2? defined asp(t) = (x(t), B(t)) is a generic immersion, i.e.,
defines a regular projection df. Since, there are only finitely many double points
in the image of¢ and the embeddindk has an asymptotic behaviour at infinity, we
can choose an intervaHA, A] such thatg([—A, A]) contains all the double points
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and the derivativeg’, y’ are positive everywhere outside the intervalA, A] and the
derivative 8’ is negative in {00, —A] and positive in A, o). Let [-M, M] be an in-
terval containing the interval{A, A] be such thatp([—M, M]) is contained in a ball
of radius R with [|¢(=M)| = ||¢(M)|| = R and (M), B(M) and y(A) are positive.
Let [-N, N] be an interval such thap([—N, N]) is contained in a ball of radiusR
with ||¢(=N)| = [l¢(N)|| = 2R. By scaling we can assume that the intervatM], M]
and [N, N] are sufficiently smalllM < N = 1. So we have|¢| is increasing out-
side M, M] with respect to|t| and in fact we can assume that> 1, ¥’ > 1 and
B < —=1in (—oo,—M] and > 1 in [M, 00). Consider the restriction ap to the inter-
val [-N, N] i.e.,

olnny: [N, N] — R3.

Since the set of embeddings from a compact, Hausdorff mdniéoany manifold forms
an open set in the set of all smooth maps with @etopology, there existgg > 0
such thaty € N(¢, o) = ¥: [N, N] — R3 is an embedding, where

(0 N(¢.€0) = ¥: t [ftlipN] v @ =@l [v'©) = O]} < e -

Let € < minfa(M), R/2, ¢0}. For this e, let ¥1 = (f1, g1, hy) be an €/2)-Taylor ap-
proximation of¢ = («, B, y) inside [N, N]. Clearly f; and h; are odd polynomials
and g; is an even polynomial. Also as we are @' topology f; > 1—¢€/2, h} >
1—-¢/2 inside FN,—M]JU[M,N] andg; < —1+¢€/2 in [-N,—-M] and > 1 —¢/2
in [M, N]. Now, for anyé$ € (0, €/2), we can choose a positive integedarge enough
so thaty (t) = (fa(t) + (8/(2n + 1™, gu(t) + (8/(2n))t*", ha(t) + (8/(2n + > =
(f (), gt), h(t)) (say) is ane-C' approximation of¢ inside [N, N] and f’ > 0,
h" > 0 outside FN,N] and g < 0 in (—oo, —N] and > 0 in [N, o) and f and
h are odd polynomials angd is an even polynomial. In fadty || is increasing outside
[—M, M] with respect tojt|. Now we have

Claim 1. v:R — R® is an embedding
Claim 2. The knot type determined hy is ambient isotopic to K

Proof of Claim 1. As the restriction off to [N, N] belongs toN(¢, €) by (1),
¥ is an embedding inside-{N, N]. Thus ¥ : R — R® is an immersion. It remains to
show thaty is injective, i.e., ¥ (t1) # ¥ (t2) Vi #t; € R. ¢ is an embedding inside
[—N, N] so is injective also there. Now, if bothi, t; € (—o0, —M) or both € (M, 00),
¥(t) #Z ¥(ty) as f/, g andh’ are never zero in these intervals. Alsotife (—oo, M)
andt, € (M, o0) thena(t;) < —a(M) and «(ty) > a(M). Also we havef(t;) < 0 and
f(t2) > 0 ande < a(M) by usingy|[-n,nj € N(¢, €) we obtainy(t1) Z v (t2).
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Lett; € (—oo, —N) andt; € [-M, M], then

¥ (t) — v (@)1 = Iy ) = Iy @)
>(2R—¢€)—(R+¢)
= R—2e.

Hence v (1) # ¥ (t2). Similarly we can show that if; € (N,00) andt; € [—-M, M]
then alsoyr(t;) # ¥ (t2). This completes the proof of Claim 1. ]

Proof of Claim 2. We definé: R x | — R3 as

F(s. 1) = (1 —t)g(s) + 1y (9).

Clearly F(s,0) = ¢(s) and F(s, 1) = ¥(s). We must show that for eache (0, 1) the
map F(s) defined ask(s,t) as above is an embedding. Now, insideN, N] we have

1A=+t — ol = || —t(d — V)l
=t — vl

< €.

Similarly we have||(1—t)¢'+ty'—¢'|| < € inside [N, N]. Thus (I=t)p+tyy € N(¢, €)
and hence is an embedding insideN, N]. Also for eacht € (0, 1) F/ = (1-t)¢’+ty’
is never zero outside-{M, M]. By a similar argument used in the proof of Claim 1
we can show that eack; is an embedding. Thus the above mBp R x | — RS
defines an isotopy between the embeddipgand ¢ and hence the kndf is ambient
isotopic to the knot type determined hy. This completes the proof of Claim 2.[]

Thus, we have shown that the knBt, which is strongly invertible, can be rep-
resented by a polynomial embeddingt) = (f(t), g(t), h(t)) where f and h are odd
polynomials andg is an even polynomial. This completes the proof of the th@ore

]

Theorem 3.2. Every faithfully strongly negative amphicheir@per) knot can be
represented by a polynomial embedding— (f(t), g(t), h(t)) from R to R3 where
f(t), g(t) and Kt) are odd poynomials

Proof. Let K be a faithfully strongly negative amphicheiral knot. By Re-
mark 2.11,K can be represented by a smooth embeddingR — R3 defined as
o(t) = (a(t), ,B(t) y(t)) wherew«, B8 and y are smooth odd functions. Let us assume
that the mapp: R — R2? defined asp(t) = (x(t), B(t)) is a generic immersion, i.e.,
defines a regular projection d&f. Since, there are only finitely many double points in
the image of¢ and the embeddingl has an asymptotic behaviour at infinity, we can
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choose an interval§A, A] such thaté([—A, A]) contains all the double points and
the derivativesy’, 8’ and y’ are positive everywhere outside the intervalA, A]. Let
[—M, M] be an interval containing the interval-|A, A] such that¢([—M, M]) is con-
tained in a ball of radiuR with |[p(—M)| = |[¢(M)]| = R and «(M), B(M), y(M) >

0. Let [N, N] be an interval such thap([—N, N]) is contained in a ball of radius
2R with |¢(=N)|I| = ll¢(N)| = 2R. By scaling we can assume that the intervals
[—M, M] and [—N, N] are sufficiently smallM < N = 1. So we have|¢]| is in-
creasing outside-f{M, M] with respect to|t| and in fact we can assume that > 1,

B > 1 andy’ > 1 outside M, M]. Consider the restriction op to the interval
[-N,N] i.e.,

Plion.ny: [-N, N] — R3.

Since the set of embeddings from a compact, Hausdorff mdnif® any manifold
forms an open set in the set of all smooth maps with @fetopology, there exists
€0 > 0 such thatyy € N(¢, o) = ¥ : [N, N] — R® is an embedding, where

(I N, €0) =1v: sup {lv(t)—o®l,

te[—N,N]

v't)— ')} <eof-

Let € < min{fa(M), R/2, €0}. For thise, let ¥, = (f1, g1, hy) be an €/2)-Taylor ap-
proximation of ¢ = («, B, y) inside [-N, N]. Clearly fi, g1 and h; are odd poly-
nomials. Also as we are iiC! topology f; > 1—¢€/2,9; > 1—¢€/2, h} > 1—
€/2, inside N, —M] U [M, N]. Now, for any§ € (0, €/2), we can choose a posi-
tive integern large enough so thap(t) = (fi(t) + (§/(2n + )", ga(t) + (5/(2n +
2L hy(t) + (8/(2n + DY) = (f(t), g(t), h(t)) (say) is ane-C! approximation of
¢ inside [-N, N] and f’ > 0, g > 0 andh’ > 0 outside N, N] and f, g andh are
odd polynomials. Infact|y| is increasing outside-{M, M] with respect to|t|. Now
using a similar argument as in Theorem 3.1 we can check thewfiolg:
(1) v: R — R3is an embedding.
(2) The knot type determined by is ambient isotopic tK.

This completes the proof of the theorem. ]

4. Examples

(1) In Fig. 2 we had seen a polynomial representation of figeight knot by
three odd polynomials demonstrating that this knot is falth strongly negative
amphicheiral. We have another representation of figuret éigbt by two odd and one
even polynomials, given by — (t(t? — 4)(t? — 2), (t? — 0.2)(t? — 4)(t? — 8), t(t? —
(2.05))(t? — (1.5)%)(t? — 0.25)) which verifies that this knot is strongly invertible als
A 3D plot of this knot, using Mathematica, is shown in Fig. 3,tla end.

(2) The knot % which is a torus knot of type (&) is represented by — (t(t? —
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15), (t? — 4)(t? — 10)(t2 — 36)(t> — 15), t(t> — 16)(t> — 9)(t> — (2.5)?)(t> — (4.4)?)) demon-
strating that it is strongly invertible and its 3D plot is shoin Fig. 4.

(3) The knot @ is reprented by an embedding given by three odd polynommts—a
(t(t? — 45), —t(t? — 8)(t? — 35)(t? — 53), t(t? — 1)(t? — 9)(t? — 36)(t% — 49)({t? — (7.4)?))
demonstrating that it is faithfully strongly negative angbteiral. Its 3D plot is shown
in Fig. 5.

(4) The torus knot of type (3) is represented by — (t(t? — 45)t% — 20), t(t? —
5)(t? — 36)(t% — 49), (t? — 1)(t% — 9)(t? — (7.1)%)(t? — (6.5)%)) showing that this knot is
strongly invertible, shown in Fig. 6.

(5) The knot 8; shown in Fig. 7 is represented by— (t(t? — 45)t° — 24), —t(t> —
8)(t?—35)(t>—53), t(t>— 1)(t% — 9)(t> — (7.2)?)(t? — 36) (> — 49) (t%> — (5.4)%)(t> — (0.80Y))
verifying that it is faithfully strongly negative amphichnal.

5. Conclusion

To find a nice method for proving that a given knot is non inbéet has been a
problem of interest for a long time. The simplest non in@etiknot known is ;.
If we can produce an argument, by elementary algebra, thatifhpossible to repre-
sent this knot by a polynomial embeddings using two odd pmtyials and one even
polynomial. Then by our theorem it will prove that is is notosigly invertible. Since
this knot is hyperbolic, it also proves that it is not inveléi. We may then be able to
generalize our method for detecting invertibility foyperbolic knotsat least.



RRRRRRRR




POLYNOMIAL REPRESENTATION OFKNOTS 633

Fig. 2. Shastri’s figure eight knot
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Fig. 4. Strongly invertible representation of 5
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Fig. 5. Faithfully strongly negative amphicheiral reprtsgion
of 63
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Fig. 6. Strongly invertible representation of, @ torus knot
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Fig. 7. Faithfully strongly negative amphicheiral reprtsgion
of 817
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