# YOUNG DIAGRAMS AND SIMPLE CONSTITUENTS OF THE SPECHT MODULES 

Yoshimasa HIEDA and Yukio TSUSHIMA

(Received October 26, 2004, revised June 9, 2005)


#### Abstract

We discuss the simple constituents of Specht module $S^{\lambda}$ for the symmetric group $S_{n}$ defined over the field of $p$ elements. We firstly give an easier proof to the result in [6] which asserts that there exists a simple constituent of $S^{\lambda}$ with the shape of "a branch" of $\lambda$ (Theorem 3.3), and secondly give a sufficient condition for $\lambda$ to have a particular type branch as a constituent (Proposition 3.4).


## 1. Introduction

Let $n$ be a natural number and $p$ a prime. Let $S_{n}$ be the symmetric group on $n$ letters and $L$ a field of characteristic $p$. Given a partition $\lambda$ of $n$, we have an $L S_{n^{-}}$ module $S^{\lambda}$ called the Specht module corresponding to $\lambda$, which is not simple in general. However if the partition $\lambda$ is $p$-regular, the head of $S^{\lambda}$, denoted by $D^{\lambda}$, is simple and they cover all the non-isomorphic simple modules as $\lambda$ runs through the $p$-regular partitions of $n$.

One of the main concerns about the Specht modules is to have informations about the simple constituents of them. Especially, using information only on $\lambda$, we would like to describe a $p$-regular partition $\mu$ for which $D^{\mu}$ appears as a constituent of $S^{\lambda}$. For this purpose, it is useful to consider the operations on the patitions $\lambda$ introduced by James and Murphy [5], each of which is roughly interpreted as a rim hook removal followed by addition on the Young diagram corresponding to $\lambda$. We shall call each of the resulting partitions a branch of $\lambda$. The Jantzen-Schaper theorem tells that if $D^{\mu}$ is a constituent of $S^{\lambda}$, it follows that $\lambda=\mu$ or $\mu$ is obtained by making branches successively beginning with $\lambda$ (cf. [6, Corollary 1]). One of the authors showed that if $\lambda$ is $p$-regular, there is a $p$-regular branch $\mu$ of $\lambda$ such that $D^{\mu}$ is a constituent of $S^{\lambda}$ (cf. [6, Theorem 2]). And he gave some applications of the result in [7]. However the proof of the result cited above is rather long and complicated. In this paper we shall show a short proof to it and a result on simple constituents of the Specht modules as a byproduct of the proof.

[^0]
## 2. Preliminary results

A partition of the integer $n$ is a non-increasing sequence $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$ of non-negative integers whose sum is $n$. The Young diagram $[\lambda]$ associated with $\lambda$ is the set of the ordered pairs $(i, j)$ of integers, called the nodes of $[\lambda]$, with $1 \leq i \leq h$ and $1 \leq j \leq \lambda_{i}$, where $h$ denotes the largest number such that $\lambda_{h} \neq 0$. They are illustrated as arrays of squares. We denote by $\lambda^{\prime}$ the partition conjugate of $\lambda$, so [ $\left.\lambda^{\prime}\right]$ is the transposed diagram of [ $\lambda]$.

Let $c$ be a column number of [ $\lambda$ ] and $r$ a positive integer. Then $\lambda$ is said to be $r$ singular on column $c$ if there is an integer $i \geq 0$ such that $\lambda_{i+1}=\lambda_{i+2}=\cdots=\lambda_{i+r}=c$, and is $r$-regular on column $c$ if otherwise. We also say that $\lambda$ is $r$-singular if it is $r$ singular on some column, and is $r$-regular if otherwise. For the convenience of later arguments, we understand that every partition is $r$-regular on column 0 . We denote by $P(n)$ and $P(n)^{0}$ the sets of the partitions and $p$-regular partitions of $n$ respectively. The dominance order $\unlhd$ on $P(n)$ is defined as follows: given $\lambda, \mu \in P(n), \lambda \unlhd \mu$ if and only if $\sum_{1 \leq i \leq j} \lambda_{i} \leq \sum_{1 \leq i \leq j} \mu_{i}$ for all $j \geq 1$.

The $(i, j)$-hook of the Young diagram $[\lambda]$ consists of the $(i, j)$-node along with the $\lambda_{i}-j$ nodes to the right of it (called the arm of the hook) and the $\lambda^{\prime}{ }_{j}-i$ nodes below it. The length of the $(i, j)$-hook of $\lambda$ is $h_{i j}(\lambda):=\lambda_{i}+\lambda^{\prime}{ }_{j}+1-i-j$. An $(i, j)$ rim hook is a connected part of the rim of [ $\lambda$ ] of length $h_{i j}(\lambda)$ beginning at the node $\left(\lambda^{\prime}, j\right)$. We also call the integer $\lambda_{i}-j$ the arm length of the node $(i, j)$. Moreover, a hook of $[\lambda]$ is called a pillar if its arm length is zero.

Let $(b, c)$ is a node of $[\lambda]$ and suppose that $a<b$. We let $\lambda(a, b, c)$ be the partition of $n$ obtained from $\lambda$ by unwrapping the $(b, c)$-rim hook of [ $\lambda$ ] and wrapping the nodes back with the lowest nodes in the added rim hook lying on row $a$ (if the resulting partition fails to be a non-increasing sequence of integers, $\lambda(a, b, c)$ is not defined). We occasionally write $\lambda(a, b, c, g)$ if the highest node in the added rim hook lies in row $g$. We call here each $\lambda(a, b, c)$ a branch of $\lambda$ and set

$$
\Gamma_{\lambda}:=\left\{\lambda(a, b, c) ; v_{p}\left(h_{a c}(\lambda)\right) \neq v_{p}\left(h_{b c}(\lambda)\right)\right\}, \quad \Gamma_{\lambda}^{0}:=\Gamma_{\lambda} \cap P(n)^{0}
$$

where $v_{p}(m)$ denotes the largest integer $e$ such that $p^{e}$ divides the integer $m$.
A branch $\mu=\lambda(a, b, c)$ is called a pillar type branch if the rim hook which has been removed and the rim hook which has been added are both pillars. Suppose that $\mu=\lambda(a, b, c)$ is a pillar type branch and put $d:=\lambda_{a}+1, q:=h_{b c}(\lambda)$. Then $\mu$ is obtained by unwrapping the pillar of $q$ nodes from column $c$ and wrapping it back on column $d$ (with the lowest node on row $a$ ). Hence we sometimes write $\mu=\lambda(c \mid d, q)$ for simplicity. For $\lambda \in P(n)$, let $\mathrm{SC}\left(S^{\lambda}\right)$ be the set of simple constituents of the Specht module $S^{\lambda}$.

REMARK. Let $\lambda \in P(n)^{0}$. Then if $\mu=\lambda(a, b, c)$ is a pillar type branch of [ $\lambda$ ], we have $h_{b c}(\lambda) \leq p-1$. Hence $\mu$ lies in $\Gamma_{\lambda}$ if and only if $h_{a c}(\lambda)$ is divisible by $p$.

Now we list below some results for later use.

Theorem 2.1 ([2], [3]). Let $\lambda \in P(n)^{0}$. Then $S^{\lambda}$ is simple if and only if $v_{p}\left(h_{a c}(\lambda)\right)=v_{p}\left(h_{b c}(\lambda)\right)$ for all $a, b, c \geq 1$.

Theorem 2.2 (Carter and Payne [1]). Suppose that $\alpha:=\lambda(c \mid d, q)$ be a pillar type branch of $\lambda$ and let a be the row index of $[\lambda]$ such that $d=\lambda_{a}+1$. Put $e:=$ $v_{p}\left(h_{a c}(\lambda)\right)$. If $p^{e}>q$, we have

$$
\operatorname{Hom}_{G}\left(S^{\alpha}, S^{\lambda}\right) \neq 0 .
$$

In paricular, it follows that $D^{\alpha} \in \mathrm{SC}\left(S^{\lambda}\right)$ if $\alpha$ is $p$-regular.
REMARK. The above statement is slightly different from the corresponding theorem in [1], but can be deduced easily from it. In fact, if $\lambda$ and $\alpha$ are the same as above then with the languages in [1], $\lambda^{\prime}$ is obtained from $\alpha^{\prime}$ by raising $q$ nodes from row $d$ to row $c$, whence we have $\operatorname{Hom}_{G}\left(S^{\lambda^{\prime}}, S^{\alpha^{\prime}}\right) \neq 0$. The rest of the proof will be done by routine arguments, using that $S^{\lambda^{\prime}}$ is isomorphic to the $L$-dual of $S^{\lambda} \otimes S^{\left(1^{n}\right)}$ ([2, Theorem 8.15]).

Theorem 2.3 ([4, Theorem 6]). Let $\lambda, \mu$ be partitions of $n$ with $\lambda$ p-regular. Suppose that there is a number $k\left(1 \leq k \leq \lambda_{1}, \mu_{1}\right)$ such that the subdiagrams consisting of the first $k$ columns of $[\lambda]$ and $[\mu]$ are the same and that each has $m$ nodes. Let $[\widehat{\lambda}]$ ( $[\widehat{\mu}]$ resp.) be the subdiagram to the right of column $k$ of $[\lambda]$ ( $[\mu]$ resp.). Then the composition multiplicity of $D^{\lambda}$ in $S^{\mu}$ as $S_{n}$-modules equals the composition multiplicity of $D^{\hat{\imath}}$ in $S^{\hat{\mu}}$ as $S_{n-m}$-modules.

Proposition 2.4 (Jantzen-Schaper, cf. [6, Corollary 1]). Let $\lambda \in P(n)$ and let $\mu$ be a minimal element of $\Gamma_{\lambda}$ with respect to the dominance order. If $\mu$ is p-regular, $D^{\mu} \in \operatorname{SC}\left(S^{\lambda}\right)$.

Proposition 2.5 ([6, Proposition 3]). Let $\lambda \in P(n)^{0}$ and let $[\mu]$ be the diagram to the right of the first column of $[\lambda]$. If $S^{\mu}$ is simple, $\Gamma_{\lambda}$ has no $p$-singular partition.

## 3. Finding simple constituents of Specht modules

We shall show a short proof to Theorem 2 of [6] and a result on simple constituents of the Specht modules. First we show

Lemma 3.1. Let $\lambda \in P(n)^{0}$. If there is a pillar type branch $\mu=\lambda(a, b, c) \in \Gamma_{\lambda}$ such that $\mu$ is $p$-regular on column $c-1$, there is a pillar type branch $\tilde{\lambda}$ in $\Gamma_{\lambda}^{0}$.


Proof. We put $r:=h_{b c}(\lambda)(\leq p-1)$ and $f:=\lambda_{a}$. Note that $h_{a c}(\lambda)$ is a multiple of $p$ since $\mu \in \Gamma_{\lambda}$. We may assume that $\mu$ is $p$-singular, so $\mu$ is $p$-singular on column $f+1$ by the assumption. (In the above diagram a circle in a node indicates that the hook length at the node is divisible by $p$.)

Namely $a-\lambda^{\prime}{ }_{f+2} \geq p$, so $a-p+1>\lambda^{\prime}{ }_{f+2}$. Put $s_{1}:=a-p+1-\lambda^{\prime}{ }_{f+2}(\geq 1)$. Then $r-s_{1}=(p-1)-(a-r)+\lambda^{\prime}{ }_{f+2}=(p-1)-\left(\lambda^{\prime}{ }_{f+1}-\lambda^{\prime}{ }_{f+2}\right) \geq 0$, so $r \geq s_{1}$. Now let $\mu(1)=\lambda\left(c \mid f+2, s_{1}\right)$, which lies in $\Gamma_{\lambda}$ since $h_{a-p+1, c}(\lambda)$ is divisible by $p$. Note that $\mu(1)$ is $p$-regular on column $c-1$. If $\mu(1)$ is $p$-regular, we may take $\mu(1)$ as $\tilde{\lambda}$. Hence we may assume that $\mu(1)$ is $p$-singular, so $\lambda_{f+2}^{\prime} \neq 0$ and $\mu(1)$ is $p$-singular on column $f+2$. Namely $(a-p+1)-\lambda^{\prime}{ }_{f+3} \geq p$, so $a-2 p+2>\lambda^{\prime}{ }_{f+3}$. Put $s_{2}:=a-2 p+2-\lambda^{\prime}{ }_{f+3}(\geq 1)$. Then $s_{1}-s_{2}=(p-1)-\left(\lambda^{\prime}{ }_{f+2}-\lambda^{\prime}{ }_{f+3}\right) \geq 0$, so $s_{1} \geq s_{2}$. Now let $\mu(2)=\lambda\left(c \mid f+3, s_{2}\right)$, which lies in $\Gamma_{\lambda}$ since $h_{a-2 p+2, c}(\lambda)$ is divisible by $p$. Note that $\mu(2)$ is also $p$-regular on column $c-1$. By repeating similar arguments we finally obtain a $p$-regular pillar type branch $\mu(i)$ for some $i$, completing the proof of the lemma.

Lemma 3.2. Let $\lambda \in P(n)^{0}$. If there is a branch $\mu=\lambda(a, b, c) \in \Gamma_{\lambda}$ with $c \geq 2$ such that $\mu$ is $p$-singular on column $c-1$, there is a pillar type branch $\tilde{\lambda}$ in $\Gamma_{\lambda}^{0}$.

Proof. We may assume that $\mu$ is chosen so that $c$ is the smallest and put $r:=$ $\lambda^{\prime}{ }_{c-1}-\lambda^{\prime}{ }_{c}$. Note that the $(b, c)$-rim hook of $[\lambda]$ is a pillar if and only if $b>\lambda^{\prime}{ }_{c+1}$.

CASE I. $\quad r \leq p-2$.
As $\mu$ is $p$-singular on column $c-1, \lambda^{\prime}{ }_{c-1}-\lambda^{\prime}{ }_{c+1} \geq p-1$. Put $x:=\left(\lambda^{\prime}{ }_{c-1}-p+\right.$ 2) $-\lambda^{\prime}{ }_{c+1}$ and $y:=\lambda^{\prime}{ }_{c}-\left(\lambda^{\prime}{ }_{c-1}-p+2\right)$, so $x \geq 1$ and $r+y=p-2$.

SUBCASE (i) $\quad x+y \leq p-2$.
We have that $x \leq r$ from $x+y \leq p-2=r+y$. Now let $\gamma=\lambda(c-1 \mid c+1, x) \in \Gamma_{\lambda}$. If $\gamma$ is $p$-regular, we may take $\gamma$ as $\tilde{\lambda}$. Hence we may assume that $\gamma$ is $p$-singular.


Then by the minimality of $c, \gamma$ must be $p$-regular on column $c-2$ and there is a pillar type branch $\tilde{\lambda} \in \Gamma_{\lambda}^{0}$ by Lemma 3.1, as asserted. (In the above diagramas the boldface rim hooks will be removed to make $\mu$.)

SUBCASE (ii) $\quad x+y=p-1$.
We have $x=r+1$. As $\mu \in \Gamma_{\lambda}$, either $h_{a c}(\lambda)$ or $h_{b c}(\lambda)$ is divisible by $p$. Let $i=a$ or $i=b$ according as $h_{a c}(\lambda)$ is divisible by $p$ or not. Let furthermore $f=\lambda_{i}$ and $s_{i}=i-\lambda^{\prime}{ }_{f+1}$. Then we see that $i \leq \lambda^{\prime}{ }_{c+1}$ since $h_{i c}(\lambda)$ is divisible by $p$. Since $s_{i} \leq p-1$, we can make the pillar type branch $\gamma=\lambda\left(c \mid f+1, s_{i}\right) \in \Gamma_{\lambda}$. If $s_{i}+r<p$, $\gamma$ is $p$-regular on column $c-1$ and the assertion follows by Lemma 3.1. Now suppose that $s_{i}+r \geq p$ and put $t_{i}=s_{i}-(p-r-1)$, so $t_{i} \geq 1$. Also $\lambda_{f+1}^{\prime}=i-s_{i}<$ $i-(p-r-1)=i-p+r+1$. Note that $t_{i} \leq r$ since $r-t_{i}=p-1-s_{i} \geq 0$. Hence we can make the pillar type branch $\delta=\lambda\left(c-1 \mid f+1, t_{i}\right)$, which lies in $\Gamma_{\lambda}$ since $h_{i-p+r+1, c-1}(\lambda)=(r+1)+h_{i c}(\lambda)+(p-r-1)=h_{i c}(\lambda)+p$ is divisible by $p$. By the minimality of $c, \delta$ is $p$-regular on column $c-2$ and so there is a pillar type branch $\tilde{\lambda} \in \Gamma_{\lambda}^{0}$ by Lemma 3.1, as asserted.

CASE II. $\quad r=p-1$.
We use the same notation as in subcase (ii). Then $h_{i, c-1}(\lambda)$ is divisible by $p$, since $h_{i, c-1}(\lambda)=h_{i c}(\lambda)+p$. In the diagram below, we have $r=p-1$, so we can make the pillar type branch $\gamma=\lambda\left(c-1 \mid f+1, s_{i}\right) \in \Gamma_{\lambda}$. By the minimality of $c, \gamma$ is $p$-regular on column $c-2$ and the assertion follows by Lemma 3.1. This completes the proof of the lemma.


Now we are ready to give an alternative proof of the following theorem:
Theorem 3.3 ([6, Theorem 2]). Let $\lambda$ be a p-regular partition of $n$. If $S^{\lambda}$ is reducible, there is a p-regular branch $\tilde{\lambda} \in \Gamma_{\lambda}$ such that $D^{\tilde{\lambda}} \in \operatorname{SC}\left(S^{\lambda}\right)$.

Proof. Since $S^{\lambda}$ is reducible, there is a column number $c$ such that $v_{p}\left(h_{a, c}(\lambda)\right) \neq$ $v_{p}\left(h_{b, c}(\lambda)\right)$ for some $a, b$ with $1 \leq a, b \leq \lambda^{\prime}{ }_{c}$. Let $c$ be the largest number that satisfies the condition. Let $[\delta]$ be the subdiagram of [ $\lambda$ ] with column $c$ as the first column, $[\gamma]$ the remaining diagram and write $\lambda=(\gamma, \delta)$. Then every branch in $\Gamma_{\delta}$ is $p$-regular by Proposition 2.5. Hence, if $\widetilde{\delta}$ is a minimal element of $\Gamma_{\delta}$ with respect to the dominance order, $D^{\delta} \in \mathrm{SC}\left(S^{\delta}\right)$ by a direct consequence of the Jantzen-Schaper theorem (see Proposition 2.4). Put $\mu:=(\gamma, \widetilde{\delta}) \in \Gamma_{\lambda}$. If $\mu$ is $p$-singular on column $c-1$, then $c$ must be greater than 1 and there is a pillar type branch $\tilde{\lambda} \in \Gamma_{\lambda}^{0}$ by Lemma 3.2. Thus we have $D^{\tilde{\lambda}} \in \operatorname{SC}\left(S^{\lambda}\right)$ by the Carter and Payne theorem (see Theorem 2.2). So we may assume that $\mu$ is $p$-regular on column $c-1$. Then $\mu \in \Gamma_{\lambda}^{0}$ and we have $D^{\mu} \in \operatorname{SC}\left(S^{\lambda}\right)$ by Theorem 2.3. This completes the proof of the theorem.


Now a node $(b, c)$ is called a $\langle p, 1\rangle$-point of $[\lambda]$ with arm length one, if $h_{b c}(\lambda)=$ $p$ and $h_{\lambda^{\prime}, c}(\lambda)=1$.


Proposition 3.4. Suppose $p>2$ and that $S^{\lambda}$ is not simple. Let $\lambda$ be $a(p-1)$ regular partition of $n$. Then
(1) If [ $\lambda$ ] has no $\langle p, 1\rangle$-point with arm length one, we have $\Gamma_{\lambda}^{0}=\Gamma_{\lambda}$. Hence $D^{\mu} \in$ $\mathrm{SC}\left(S^{\lambda}\right)$ for any minimal element $\mu$ of $\Gamma_{\lambda}$ with respect to the dominance order.
(2) If $[\lambda]$ has a $\langle p, 1\rangle$-point with arm length one, there is a pillar type branch $\mu=$ $\lambda(c \mid d, q)$ such that $D^{\mu} \in \mathrm{SC}\left(S^{\lambda}\right)$ for some $c, d, q$ with $q \leq p-2$.

Proof. (1) The second half follows immediately from the first half and Proposition 2.4. So we need only prove the first half. Suppose the contrary and take a $p$ singular branch, say $\mu=\lambda(a, b, c, g)$, from $\Gamma_{\lambda}$.

CASE I. $\quad \mu$ is $p$-singular on column $c-1$ (hence $c \geq 2$ ).
Since $\lambda$ is $(p-1)$-regular, it follows that $\lambda^{\prime}{ }_{c-1}-p+2 \leq \lambda^{\prime}{ }_{c}$ and so $\left(\lambda^{\prime}{ }_{c-1}-p+\right.$ $2, c-1)$ is a $\langle p, 1\rangle$-point of [ $\lambda$ ] with arm length one, being contrary to the assumption.

CASE II. $\mu$ is $p$-singular on column $\lambda_{g-1}$ (hence $g \geq 2$ ).
As $\lambda$ is $(p-1)$-regular, we find easily that $\lambda_{g-1}=\lambda_{g}+1$. Let $f=\lambda_{g-1}$.
((1), Case II)

(2)


Then $\lambda^{\prime}{ }_{f-1}-\lambda^{\prime}{ }_{f+1} \geq p-1$, and the node $\left(\lambda^{\prime}{ }_{f-1}-p+2, f-1\right)$ is a $\langle p, 1\rangle$ point of $[\lambda]$ with arm length one, being contrary to the assumption. This completes the proof of (1).
(2) Let $(i, j)$ be a $\langle p, 1\rangle$-point of $[\lambda]$ with arm length one and $m:=\lambda^{\prime}{ }_{j+1}$. Then $i \leq m<\lambda^{\prime}{ }_{j}=i+p-2$ and $\lambda_{m}-1=\lambda_{m+1}$.

Now we assume that the above $(i, j)$ is chosen so that $j$ is the smallest. Let $m_{1}:=$ $\lambda^{\prime}{ }_{j+2}$ and $r:=h_{m+1, j}(\lambda)=i+p-2-m$. Then $m_{1}<i$ since the node $(i, j)$ has arm length one. Let $r_{1}:=i-m_{1}$. Then $r-r_{1}=(p-2)-\left(m-m_{1}\right) \geq 0$, so $r_{1} \leq r$. Therefore we can make the pillar type branch $\mu=\lambda\left(j \mid j+2, r_{1}\right) \in \Gamma_{\lambda}$. If $\mu$ is $p$ singular on column $j-1$, then $j$ must be greater than 1 and $\left(\lambda^{\prime}{ }_{j-1}-(p-2), j-1\right)$ is a $\langle p, 1\rangle$-point of $[\lambda]$ with arm length one, contradicting the minimality of $j$. Hence $\mu$ is $p$-regular on column $j-1$ and by Lemma 3.1, there is a pillar type branch in $\Gamma_{\lambda}^{0}$, whence the assertion follows by the Carter and Payne theorem.

Acknowledgement. The authors thank the referee for his/her careful reading of the manuscript.

## References

[1] R.W. Carter and M.T.J. Payne: On homomorphisms between Weyl modules and Specht modules, Math. Proc. Camb. Phil. Soc. 87 (1980), 419-425.
[2] G.D. James: The Representation Theory of Symmetric Groups, Lecture notes in Math. 682, Spriger-Verlag, Berlin, 1978.
[3] G.D. James: On a conjecture of Carter concerning irreducible Specht modules, Math. Proc. Camb. Phil. Soc. 83 (1978), 11-17.
[4] G.D. James: On the decomposition matrices of the symmetric groups, III, J. Alg. 71 (1981), 115-122.
[5] G. James and G. Murphy: The determinant of the Gram matrix for a Specht module, J. Alg. 59 (1979), 222-235.
[6] Y. Tsushima: On some simple constituents of the Specht modules of the symmetric groups, J. Alg. 243 (2001), 131-141.
[7] Y. Tsushima: On some $S_{R}(H)$-blocks for the symmetric groups, J. Alg. 270 (2003), 281-287.

Yoshimasa Hieda<br>Department of Industrial Systems Engineering: Natural Science Osaka Prefectural College of Technology<br>Neyagawa, Osaka 572-8572<br>Japan<br>e-mail: hieda@las.osaka-pct.ac.jp<br>Yukio Tsushima<br>Department of Mathematics<br>Osaka City University<br>Sumiyoshiku, Osaka 558-8585<br>Japan


[^0]:    2000 Mathematics Subject Classification. 20C30.

