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Abstract
The Morse-Novikov numberMN ( ) of a smooth link in the three-dimen-

sional sphere is by definition the minimal possible number ofcritical points of a reg-
ular circle-valued Morse function on the link complement (the term regular means
that the Morse function must have nice behaviour in a tubular neighbourhood of ).
Novikov homology provides lower bounds forMN ( ). In the present paper we
introduce the notion of twisted Novikov homology, which allows to obtain better
lower bounds forMN ( ) than the usual Novikov homology. Our twisted Novikov
homology is a module over the Novikov ringZ(( )) but it contains the information
coming from the non abelian homological algebra of the groupring of the funda-
mental group of the link complement. Using this technique we prove that the Morse-
Novikov number of the knot C (the connected sum of copies of the Conway
knot) is not less than2 5 for every positive integer . We prove also thatMN ( C)
is not greater than2 . The same estimates hold for the Morse-Novikov numbers of
the connected sum of copies of the Kinoshita-Terasaka knot.

1. Introduction

Let be an oriented link, that is, a embedding of disjoint union of the ori-
ented circles in 3. The link is calledfibred if there is a fibration : = 3

1 behaving “nicely” in a neighborhood of (see Definition 2.5).If is not fibred, it
is still possible to construct a Morse map : 1 behaving nicely in a neighbor-
hood of ; such a map has necessarily a finite number of criticalpoints. The minimal
number of critical points of such map is an invariant of the link, calledMorse-Novikov
numberof and denoted byMN ( ); it was first introduced and studied in [21]. This
invariant can be studied via the methods of theMorse-Novikov theory, in particular the
Novikov inequalities [17] provide the lower estimates for the numberMN ( ). This
inequalities can be considered asfibering obstructionsfor the link.

Recall that if a knot is fibred, then its Alexander polynomialis monic
(see [25], 10.G.9 or [1], Ch. 8, P.8.16). So the Alexander polynomial provides another
fibering obstruction for knots, which is sufficiently powerful as to detect all non-fibred
knots among the knots with6 10 crossings (Kanenobu’s theorem, see [12]). There are
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non-fibred knots with 11 crossings having the trivial Alexander polynomial, for exam-
ple the Kinoshita-Terasaka knot and the Conway knot (we shall study these knots in
details in the present paper, see Section 5).

It is not difficult to prove that the Alexander polynomial of aknot is monic if
and only if the Novikov homology of vanishes, so the fibering obstruction provided
by the Novikov homology is equivalent to the one coming from the Alexander poly-
nomial. The advantage of the Novikov homology is that it can give computable lower
bounds forMN ( ) in the case of non-fibred knots (see [21] for examples of knots
with arbitrarily large Morse-Novikov number).

Both the Alexander polynomial and the Novikov homology above areabelian in-
variants, that is, they are calculated from the homology of the infinite cyclic covering
of . More information is provided by thenon-abeliancoverings, although the cor-
responding invariants are more complicated.

Several non-abelian versions of the Alexander polynomial were developed in 90s
(see the papers by X.S. Lin [16], M. Wada [27], T. Kitano [15], and Kirk-Liv-
ingston [14]). According to M. Wada’s definition the twisted Alexander polynomial of
a link is a rational function in one or several commuting variables. It is associated
to a representation of 1( 3 ) to ( ) (where is a commutative ring), and
it is through this representation that the non-abelian invariants come into play. In the
recent preprint [10] by H. Goda, T. Kitano, and T. Morifuji, itwas shown that if a
knot is fibred, then the twisted Alexander invariant is monic.

In the present paper we develop a version of the Novikov homology, which we
call twisted Novikov homology. This part (Section 3) may be of independent interest
for the Morse-Novikov theory. The twisted Novikov homology which we define is a
module over the ringZ(( )) associated to a representation of the fundamental group,
thus it allows to keep track of the non-abelian homological algebra associated to the
group ring of the fundamental group of the considered space.As we shall show in this
paper there are efficient tools for computing the twisted Novikov homology of the link.
Theorem 4.2 gives a lower bound for the Morse-Novikov numberMN ( ) in terms of
the twisted Novikov homology.

We show that the twisted Novikov homology is additive with respect to the con-
nected sum of knots. We apply these techniques to study the Morse-Novikov numbers
of the knots KT C, whereKT is the Kinoshita-Terasaka knot [13],C is the Con-
way knot [3], and stands for the connected sum of copies of theknot . We
prove that

MN ( KT) = MN ( C) >
2

5

The computation of the twisted Novikov homology for these knots was done with the help of
Kodama’s KNOT program (available at http://www.math.kobe-u.ac.jp/˜kodama/knot.html).
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Applying the techniques of the papers [7], [8] we prove that

MN ( KT) = MN ( C) 6 2

We recall the corresponding notions and results from [5], [7] and [8] in Section 2.
In Section 7 we introduce and study theasymptotic Morse-Novikov numberof a

knot.
The final section of the paper contains a discussion about necessary and sufficient

condition for a link to be fibred.
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2. Heegaard splitting for sutured manifold

The basic Morse theory gives a relationship of a Morse map and a handle de-
composition for a manifold. In this section, we review the notion of Heegaard split-
ting for sutured manifold introduced in [7] and [8], and reveal the relationship with
circle-valued Morse maps. Moreover, we present some properties which are used to
determine Morse-Novikov numbers.

In this section, we assume that a link is always non-split.
Here, we recall the definition of a sutured manifold which wasdefined by

D. Gabai [5].

DEFINITION 2.1. A sutured manifold( ) is a compact oriented 3-dimensional
manifold together with a set ( ) of mutually disjoint annuli () and tori

( ). In this paper, we treat the case ( ) = . The core curves of ( ),say ( ),
are called thesutures. Every component of ( ) = cl( ( )) is oriented, and

+( ) ( ( ) resp.) denotes the union of the components whose normal vectors point
out (into resp.) . Moreover, the orientation of ( ) is coherentwith respect to the
orientations of ( ).

We say that a sutured manifold ( ) is aproduct sutured manifoldif ( ) is
homeomorphic to ( [0 1] [0 1]) with +( ) = 1 ( ) = 0 ( ) =

[0 1], where is a compact surface.
Let be an oriented link in 3, and let be a Seifert surface of . Set =

( ) ( ( ) = cl( 3 ( ))), then ( ) = ( ( ( )) ( ( ))) has a
product sutured manifold structure ( [0 1] [0 1]). We call ( ) aproduct
sutured manifoldfor . Thus is homeomorphic to [0 1], and then we denote
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by +( ) ( ( ) resp.) the surface 1 ( 0 resp.). Let

( ) = cl( ( ) ) cl( ( ) )

with ( ) = ( ). We call ( ) acomplementary sutured manifoldfor . In this
paper, we call this asutured manifoldfor short.

Here we denote by ( ) a regular neighborhood of in .
In [2], the notion of compression body was introduced by A. Casson and C. Gor-

don. It is a generalization of a handlebody, and important todefine a Heegaard split-
ting for 3-manifolds with boundaries.

DEFINITION 2.2. A compression body is a cobordism rel between surfaces

+ and such that = + [0 1] 2-handles 3-handles and has no
2-sphere components. We can see that if = and is connected, isobtained
from [0 1] by attaching a number of 1-handles along the disks on 1
where corresponds to 0 .

We denote the number of these 1-handles by ( ).

These notions enable us to define a Heegaard splitting for sutured manifold.

DEFINITION 2.3 ([7]). ( ) is a Heegaard splitting for ( ) if
(i) are connected compression bodies,
(ii) = ,
(iii) = + = + , = +( ) and = ( ).

DEFINITION 2.4 ([8]). Set ( ) = min ( ) (= ( )) ( ) is a Heegaard
splitting for the sutured manifold of . We call ( ) thehandle numberof .

Handle numbers of Seifert surfaces are studied in [7] and [8].
In order to state the relationship between the handle numberand the Morse-

Novikov number, we recall some definitions on circle-valuedMorse map according
to [21].

DEFINITION 2.5 ([21]). Let be a link. A Morse map : 1 is said to be
regular if there is a diffeomorphism

: 2

where is a neighbourhood of in3, such that

( ) = for = 0
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A link is called fibred if there is a regular Morse map :3 1 without
critical points.

For a regular Morse map we denote by ( ) the set of all critical points of in-
dex and by ( ) the cardinality of ( ). We say that a Morse map : 1 is
minimal if it is regular and for every the number ( ) is minimal possible among
all regular maps homotopic to .

We defineMN ( ) as the number of critical points of the minimal Morse map.

DEFINITION 2.6. A regular Morse map : 1 is said to bemoderateif it
satisfies the all of the following:
(i) 0( ) = 3( ) = 0;
(ii) all critical values corresponding to critical points of the same index coincide;
(iii) 1( ) is a connected Seifert surface for any regular value 1.

Theorem 2.7 ([21]). Every link has a minimal Morse map which is moderate.

Corollary 2.8. (1) Let be a moderate map, then 1( ) = 2( ).
(2) Let be a regular Morse map realizingMN ( ), thenMN ( ) = 1( ) + 2( ).
(3) MN ( ) = 2 min ( ) is a Seifert surface for .

We denote by ( ) the minimum handle number among all Seifert surfaces of .
Note that is a fibred if and only if ( ) = 0.

Thus we know that the handle number and Morse-Novikov number are same es-
sentially, that is,

MN ( ) = 2 ( )

We shall finish this section with some remarks on the behaviorof the invariant
introduced above with respect to connected sum and plumbing. Let us denote the
operation of plumbing. For a Seifert surface of a link , we setMN ( ) = 2 ( ).
Conjecture 6.3 in [21] says that

MN ( 1 2) MN ( 1) + MN ( 2)

This conjecture follows from Theorem A in [8] in the case of non-split links. In the
recent paper [11] by M. Hirasawa and L. Rudolph, the authors prove the conjecture in
general case.

Let 1 and 2 be knots in 3. Let 1 2 denote their connected sum. The fol-
lowing natural question is due to M. Boileau and C. Weber:

Is it true that MN ( 1 1) = MN ( 1) + MN ( 2) ?
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As far as we know this question is still unanswered, and we know only that

(1) MN ( 1 2) 6 MN ( 1) + MN ( 2)

3. Twisted Novikov homology

Let be a commutative ring, put

= [ 1] = (( )) = [[ ]][ 1]

The ring is isomorphic to the group ring [Z], via the isomorphism sending
to the element 1 Z. The ring is then identified withthe Novikov completion
of [Z]. In the case when is a field, is also a field. When =Z, the ring

is PID. We shall need in this paper only the particular cases when = Z, or
is a field. Let be a CW complex; let =1 , and let : Z be a homo-
morphism. Let : ( ) be a map such that (1 2) = ( 2) ( 1) for ev-
ery 1, 2 . Such map will be called aright representationof . The homomor-
phism extends to a ring homomorphismZ[ ] , which will be denoted by the
same symbol . The tensor product (where is considered as a representation

(1 )) induces a right representation : ( ). The composition
of this right representation with the natural inclusion gives a right represen-
tation : ( ) Let us form a chain complex

(2) ( ; ) = ( )

Here is the universal cover of , ( ) is a module overZ[ ], and is a right
Z -module via the right representation . Then (2) is a chain complex of free left
modules over , and the same is true for its homology. The modules

( ; ) = ( ( ; ))

will be called -twisted Novikov homologyor simply twisted Novikov homology
if no confusion is possible. When these modules are finitely generated (this is the case
for example for any homotopy equivalent to a finite CW complex) we set

( ; ) = rk ( ( ; )) ( ; ) = t.n. ( ( ; ))

where t.n. stands for thetorsion numberof the -module, that is the minimal possible
number of generators of the torsion part over .

The numbers ( ; ) and ( ; ) can be recovered from the canonical de-
composition of ( ; ) into a direct sum of cyclic modules. Namely, let

( ; ) =
=1

( )
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where ( ) are non-zero non-invertible elements of and( )
+1

( ) . (Such decom-
position exists since is a PID.) Then = ( ; ) and = ( ; ). It is not
difficult to show that we can always choose( ) , .

When is the trivial 1-dimensional representation, we obtain the usual Novikov
homology, which can be also calculated from the infinite cyclic covering ¯ associated
to , namely

( ; ) = ( ¯) for = 1: (1 )

If is a field the numbers ( ; ) vanish (for every right representation ),
and the module ( ; ) is a vector space over the field .

4. Novikov-type inequalities for knots and links

Now we shall apply the algebraic techniques developed in theprevious section to
the topology of knots and links. Let 3 be an oriented link and put =3 .
Let denote 1( ). There is a unique element 1( Z) such that for every
positively oriented meridian of a component of , we have ( ) = 1. We shall
identify the cohomology class with the corresponding homomorphism Z.

Let : ( ) be any right representation of (where =Z or is a
field). The next theorem follows from the main theorem in [18]. See also Theorem 8.1
of the present paper.

Theorem 4.1. Let : 1 be a regular Morse map. There is a free chain
complexN over such that
1. for every the number of free generators ofN in degree equals ( );
2. (N ) ( ; ).

We shall denote ( ) by ( ). The numbers ( ) and ( )
will be denoted by and (we omit the cohomology class in the notation since it
is determined by the orientation of the link).

The next theorem follows from Theorem 4.1 by a simple algebraic argument.

Theorem 4.2. Let : 1 be any regular map. Then

( ) >
1

( ) + ( ) + 1( )(3)

for every

Corollary 4.3. If is fibred, then ( ) = 0, and ( ) = ( ) = 0 for
every representation and every .
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Proposition 4.4. The twisted Novikov numbers satisfy the following relations:

( ) = ( ) = 2( ) = 0 for = 0 > 3(4)

1( ) = 2( )(5)

Proof. According to Theorem 3.3 of [21] there is a regular map: 1

such that has only critical points of indices 1 and 2 and1( ) = 2( ). Using
Theorem 4.2 we deduce (4). As for the point (5) it follows fromthe fact that the Euler
characteristics of the chain complexN is equal to 0.

In view of the preceding theorem the non-trivial part of the Novikov inequalities
is as follows:

1( ) >
1

1( ) + 1( ) ;(6)

2( ) >
1

1( ) + 1( )(7)

Let us consider some examples and particular cases.
1. = Z and is the trivial 1-dimensional representation. The chaincomplex

( ; ) is equal to the chain complex (¯ ), where ¯ is the infinite cyclic

covering of associated to the cohomology class . Thus the twisted Novikov ho-
mology in this case coincides with the Novikov homology for links studied in [21].
Theorem 4.2 and Proposition 4.4 in this case are reduced to Proposition 2.1 and the
formulas (2)–(6) of [21].

2. is a field. In this case the Novikov ring (( )) is also a field, andthe tor-
sion numbers ( ) vanish for every and every representation . The Novikov in-
equalities have the simplest possible form:

1( ) >
1

1( ) 6 2( )

3. Now we shall investigate the twisted Novikov homology for the connected
sum of knots. Let 1, 2 be oriented knots in 3, and put = 1 2. We have:

1( 3 ) = 1( 3
1) 1( 3

2)

where is the infinite cyclic group generated by a meridian of (see [1], Ch. 7,
Prop. 7.10). In particular the groups1( 3

1), 1( 3
2) are naturally embedded

into 1( 3 ), and some meridian element 1( 3 ) is the image of some
meridian elements 1 1( 3

1), 2 1( 3
2). Now let

1 : 1( 3
1) ( ) 2 : 1( 3

2) ( )
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be two right representations. Assume that1( 1) = 2( 2). Form the product represen-
tation 1 2: 1( 3 ) ( ).

Theorem 4.5. ( 1 2) ( 1 1) ( 2 2)

Proof. The complement is the union of two subspaces1, 2 with hav-
ing the homotopy type of (for = 1, 2). The intersection1 2 is homeomor-
phic to the twice punctured sphere =2 . The universal covering of is
therefore the union of two subspaces, which have the Novikovhomology respectively
equal to ( 1 1) and ( 2 2). The intersection of these two subspaces has the
same Novikov homology as , and this module vanishes. Then a standard application
of the Mayer-Vietoris sequence proves the result sought.

Corollary 4.6. Denote by the connected sum of copies of the knot . Let
: 1( 3 ) ( Z) be a representation. Let : 1( 3 ) ( Z) be

the product of copies of representations . Then

1( ) = 1( )

Proof. This follows from the purely algebraic equality:

t.n.( ) = t.n.( )

where is any finitely generated module over a principal idealdomain, and
stands for the direct sum of copies of .

5. The Kinoshita-Terasaka and Conway knots: lower bounds for the Morse-
Novikov numbers

The Kinoshita-Terasaka knotKT was introduced in the paper [13], and the Con-
way knot C was discovered by J. Conway much later [3]. These two knots are very
much alike (see the figures below), and many classical invariants have the same value
for these knots. Still these knots are different, as was proved by R. Riley in [24], and
they can be distinguished by the twisted Alexander polynomials (see [27]).

These knots are not fibred. Indeed, for a fibred knot the degreeof its Alexander
polynomial equals to twice the genus of the knot, and the Alexander polynomial is
trivial for both knots. In this section, we prove the following:

Theorem 5.1. There is a right representation : 1( 3 C) (5 Z) such that

1(C ) = 0.

By Corollary 4.6, this theorem implies
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Fig. 1. The Kinoshita-Terasaka knotKT

Fig. 2. The Conway knotC

(8) MN ( C) >
2

5
for every

Proof. The Wirtinger presentation for the group1( 3 C) has 11 generators
and 11 relations:

1 = 10 2
1

10 2 = 1
9 3 9 3 = 1

6 4 6 4 = 1
7 5 7(9)

5 = 11 6
1

11 6 = 1
4 7 4 7 = 1

2 8 2 8 = 11 9
1

11(10)

9 = 1
7 10 7 10 = 8 11

1
8 11 = 5 1

1
5(11)

DEFINITION 5.2. A map : 1 2 between two groups will be calledanti-
homomorphismif ( ) = ( ) ( ) for every 1.

There is an antihomomorphism :1( 3 C) (5) given by the following for-
mulas:

( 1) = ( 5) = ( 6) = ( 11) = (253) ( 2) = (234)(12)
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( 3) = ( 7) = (123) ( 4) = (135) ( 8) = (142)(13)

( 9) = (145) ( 10) = (345)(14)

The image of is contained in the subgroup (5). The group (5) acts by permutation
of coordinates on the freeZ-moduleZ5 and we obtain therefore a right representation

: 1( 3 C) (5 Z). The twisted Novikov homology 1( C; ), can be computed
from the freeZ(( ))-chain complex

0
1

1
2

2

where rk 0 = 5, rk 1 = 55 = rk 2. The generators of 1 correspond to , 16 6

11, the generators of 2 correspond to the eleven relations (9)–(11), and the matrixof

2 is obtained by the Fox calculus using these relations. The Novikov homology in de-
gree zero always vanishes, therefore the homomorphism1 is epimorphic. We deduce
that the rank of 2 is not more than 50. The determinant of the 50 50-minor of the
matrix of 2 obtained from the matrix by omitting the last five columns andthe last
five rows, is equal to1

5 29 + 14 28 15 27 + 16 26 19 25 + 10 24 + 5 23 24 22

+ 34 21 32 20 + 34 19

24 18 + 5 17 + 10 16 19 15 + 16 14 15 13 + 14 12 5 11

This polynomial is a non-invertible element ofZ(( )), since the leading coefficient
is 5 = 1. Therefore the torsion part of the twisted Novikov homology in dimen-
sion 1 is not zero, and1(C; ) 0. By Corollary 4.6 we deduce the inequality (8).

By using the Kodama’s KNOT program, we can show that the Kinoshita-Terasaka
knot KT has also a right representation :1( 3 KT) (5 Z) such that

1(KT ) = 0.

6. The Kinoshita-Terasaka and Conway knots: upper bounds for the Morse-
Novikov numbers

In this section, we show that bothMN (KT) and MN (C) are less than or equal
to 2. ThereforeMN ( KT) = MN ( C) 6 2 by the inequality (1).

Here we use the minimal genus Seifert surfaces forKT and C, which were found
in [6]. See Figs. 3 and 4. Since the proofs are same, we consider only the Conway
knot C.

1This computation is provided by the Kodama’s KNOT program, and also verified independently
with the help of MAPLE.
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Fig. 3. The Kinoshita-Terasaka knotKT

Fig. 4. The Conway knotC

Fig. 5.

Since the Hopf band is a fiber surface, we may calculate the handle number of
the Seifert surface illustrated in left-hand Fig. 5 by Theorem B in [8]. We call this
Seifert surface, and denote by ( ) the sutured manifold for . Further, we name

+( ) and ( ), and let be an arc properly embedded in as in Fig. 5. (We
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abbreviate ( ) to , and to its core circles.) Then, (+( ) ) becomes
a compression body with ( ) = 1. By using Lemma 2.4 in [7], we canobserve
that cl( ) is a compression body such that = ( ) and ( ) = 1.
Hence we have ( ) 1, namely,MN (C) 2. This completes the proof.

7. Asymptotic Morse-Novikov number of a knot

Let 3 be an oriented knot. Let denote the connected sum of copies
of . Observe that

MN ( 1 ) + MN ( 2 ) > MN ( 1 + 2)

therefore the sequence

( ) =
MN ( )

converges to some number (see [22], B.1, Ex. 98). This numberwill be called asymp-
totic Morse-Novikov number of and denoted by ( ).

Corollary 7.1. The asymptotic Morse-Novikov numbers of Kinoshita-Terasaka
knot KT and of the Conway knotC satisfy

2

5
6 (KT) (C) 6 2

8. Detecting fibred knots

In the previous sections we gave the estimates for the Morse-Novikov numbers
of regular maps arising from linear representations of the fundamental group. In the
present section we explore an approach which starts from themost general form of the
Novikov homology and which should give the best possible lower bounds, although
the corresponding invariants can be more difficult to compute.

Let us recall first the construction of the Novikov completion of a group with

respect to a homomorphism : Z. Set = Z and denote by the abelian
group of all functions Z. Equivalently, is the set of all formal linear combi-
nations = (not necessarily finite) of the elements of with integral coef-

ficients. For and R set

supp( ) = = 0 ( )>

Set

(15) = supp( ) is finite for every R
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Then has a natural structure of a ring, containing as a subring.

Theorem 8.1. Let be an oriented link in 3. Let : 1 be a regular
Morse map. Then there is a chain complexN of free finitely generated -modules
(the Novikov complex), such that
1. the number of free generators in each degree equals( ),
2. there is a chain homotopy equivalence

: N S ( )

(whereS ( ) stands for the singular chain complex of the universal covering of
).

The analog of this theorem for the case of Morse maps : 1 of closed
manifolds to a circle was first proved in [18]. The manifold has a non-empty
boundary, so the results of [18] can not be applied directly.Nevertheless one can show
that the proof of the main theorem of [18] works also in the present case.

REMARK 8.2. In the paper [18], we worked with the convention that thefunda-
mental group acts on the universal covering on the right. Theorem 8.1 above is the
translation of the results of [18] to the language of the leftmodules.

Corollary 8.3. Let be an oriented link in 3. If is fibred, then

S ( ) = 0

Conjecture 8.4. An oriented link is fibred if and only if

(16) S ( ) = 0

REMARK 8.5. It is known that for the general problem of fibering of an arbitrary
closed manifold over a circle the vanishing of the Novikov homology is a condition
which is only necessary but not in general sufficient. When this condition is fulfilled
there is a secondary obstruction to fibering, which lies in the Whitehead group of the
Novikov ring (see the paper [20] of A. Ranicki and A. Pajitnov). For the case of
closed manifolds of dimension> 6 the vanishing of this secondary obstruction is suf-
ficient for the existence of the fibration (see [4], [19], [23], [20]).

However, combining the main theorem of [20] with the classical theorem of Wald-
hausen [28] (the Whitehead group of the link group vanishes)one can show that this
secondary obstruction vanishes in the case of knots and links in 3. Thus in the case
of links the total obstruction to fibering provided by the Novikov complex is reduced
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to the Novikov homology, and this gives the motivation for Conjecture 8.4.

The Novikov ring is a complicated algebraic object, and the verification of the
condition (16) is certainly a difficult algebraic task. The twisted Novikov homology
as introduced and studied in the previous sections providesan effectively computable
tools for evaluating the Novikov homology, and as we have seen in many examples,
the twisted Novikov homology is often sufficient to compute the Morse-Novikov num-
ber. Thus we are led to the following problem.

Problem 8.6. Is it true that vanishing of the -twisted Novikov homology for
every right representation implies the condition (16) ?

A natural and a very interesting question would be to investigate the relations be-
tween the Problem 8.6 and the Problem 1.1 of [9], which asks whether the informa-
tion contained in the twisted Alexander polynomials for all (2 F)-representations
(whereF is a field) is sufficient to decide whether a link is fibred.

ADDED IN PROOF. After this paper was accepted for publication, J.-Cl. Sikorav
informed that Conjecture 8.4 had been solved affirmatively in [26].
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