ALGEBRAIC INDEPENDENCE OF THE VALUES OF POWER SERIES, LAMBERT SERIES, AND INFINITE PRODUCTS GENERATED BY LINEAR RECURRENCES

TAKA-AKI TANAKA

(Received January 5, 2004)

Abstract

In Theorem 1 of this paper, we establish the necessary and sufficient condition for the values of a power series, a Lambert series, and an infinite product generated by a linear recurrence at the same set of algebraic points to be algebraically dependent. In Theorem 4, from which Theorems 1-3 are deduced, we obtain an easily confirmable condition under which the values more general than those considered in Theorem 1 are algebraically independent, improving the method of [5].

1. Introduction and results

Let $\left\{a_{k}\right\}_{k \geq 0}$ be a linear recurrence of positive integers satisfying

$$
\begin{equation*}
a_{k+n}=c_{1} a_{k+n-1}+\cdots+c_{n} a_{k} \quad(k=0,1,2, \ldots), \tag{1}
\end{equation*}
$$

where c_{1}, \ldots, c_{n} are nonnegative integers with $c_{n} \neq 0$. We define a polynomial associated with (1) by

$$
\begin{equation*}
\Phi(X)=X^{n}-c_{1} X^{n-1}-\cdots-c_{n} . \tag{2}
\end{equation*}
$$

In this paper, we always assume that $\Phi(\pm 1) \neq 0$ and the ratio of any pair of distinct roots of $\Phi(X)$ is not a root of unity and that $\left\{a_{k}\right\}_{k \geq 0}$ is not a geometric progression.

In what follows, let

$$
f(z)=\sum_{k=0}^{\infty} z^{a_{k}}, \quad g(z)=\sum_{k=0}^{\infty} \frac{z^{a_{k}}}{1-z^{a_{k}}}, \quad h(z)=\prod_{k=0}^{\infty}\left(1-z^{a_{k}}\right)
$$

and let \mathbb{Q} and $\overline{\mathbb{Q}}$ denote the fields of rational and algebraic numbers, respectively. The author [5] proved the following theorem: Let $\alpha_{1}, \ldots, \alpha_{r}$ be algebraic numbers with $0<\left|\alpha_{i}\right|<1(1 \leq i \leq r)$ such that none of $\alpha_{i} / \alpha_{j}(1 \leq i<j \leq r)$ is a root of unity. Then the $3 r$ numbers $f\left(\alpha_{i}\right), g\left(\alpha_{i}\right), h\left(\alpha_{i}\right)(1 \leq i \leq r)$ are algebraically independent.

On the other hand, the author [4] obtained the necessary and sufficient condition for the numbers $f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{r}\right)$ to be algebraically dependent.

Definition 1. We say that the algebraic numbers $\alpha_{1}, \ldots, \alpha_{r}$ with $0<\left|\alpha_{i}\right|<1$ $(1 \leq i \leq r)$ are $\left\{a_{k}\right\}_{k \geq 0}$-dependent if there exist a non-empty subset $\left\{\alpha_{i_{1}}, \ldots, \alpha_{i_{t}}\right\}$ of $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$, roots of unity $\zeta_{1}, \ldots, \zeta_{t}$, an algebraic number γ with $\alpha_{i_{l}}=\zeta_{l} \gamma(1 \leq l \leq$ t), and algebraic numbers ξ_{1}, \ldots, ξ_{t}, not all zero, such that

$$
\sum_{l=1}^{t} \xi_{l} \xi_{l}^{a_{k}}=0
$$

for all sufficiently large k.
Remark 1. If the algebraic numbers $\alpha_{1}, \ldots, \alpha_{r}$ with $0<\left|\alpha_{i}\right|<1(1 \leq i \leq r)$ are $\left\{a_{k}\right\}_{k \geq 0}$-dependent, then the numbers $1, f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{r}\right)$ are linearly dependent over $\overline{\mathbb{Q}}$, namely $\sum_{l=1}^{t} \xi_{l} f\left(\alpha_{i_{l}}\right) \in \overline{\mathbb{Q}}$.

The author [4] proved that the numbers $f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{r}\right)$ are algebraically dependent if and only if the algebraic numbers $\alpha_{1}, \ldots, \alpha_{r}$ are $\left\{a_{k}\right\}_{k \geq 0}$-dependent. In this paper we establish the necessary and sufficient condition for the $3 r$ numbers $f\left(\alpha_{i}\right), g\left(\alpha_{i}\right), h\left(\alpha_{i}\right)(1 \leq i \leq r)$ to be algebraically dependent:

Theorem 1. Let $\left\{a_{k}\right\}_{k \geq 0}$ be a linear recurrence satisfying (1). Let $\alpha_{1}, \ldots, \alpha_{r}$ be algebraic numbers with $0<\left|\alpha_{i}\right|<1(1 \leq i \leq r)$. Then the numbers $f\left(\alpha_{i}\right), g\left(\alpha_{i}\right)$, $h\left(\alpha_{i}\right)(1 \leq i \leq r)$ are algebraically dependent if and only if the algebraic numbers $\alpha_{1}, \ldots, \alpha_{r}$ are $\left\{a_{k}\right\}_{k \geq 0}$-dependent.

Combining Theorem 1 and the above-mentioned result of [4], we immediately have the following:

Theorem 2. Let $\alpha_{1}, \ldots, \alpha_{r}$ be algebraic numbers with $0<\left|\alpha_{i}\right|<1(1 \leq i \leq r)$. If the numbers $f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{r}\right)$ are algebraically independent, then so are the numbers $f\left(\alpha_{i}\right), g\left(\alpha_{i}\right), h\left(\alpha_{i}\right)(1 \leq i \leq r)$.

Theorem 2 implies the following:
Theorem 3. Let $\alpha_{1}, \ldots, \alpha_{r}$ be algebraic numbers with $0<\left|\alpha_{i}\right|<1(1 \leq i \leq r)$. Then

$$
\begin{align*}
& \text { trans. } \operatorname{deg}_{\mathbb{Q}} \mathbb{Q}\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{r}\right), g\left(\alpha_{1}\right), \ldots, g\left(\alpha_{r}\right), h\left(\alpha_{1}\right), \ldots, h\left(\alpha_{r}\right)\right) \tag{3}\\
& \geq 3 \text { trans. } \operatorname{deg}_{\mathbb{Q}} \mathbb{Q}\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{r}\right)\right) .
\end{align*}
$$

The following is an example in which the equality of (3) holds:

Example 1. Let $\left\{a_{k}\right\}_{k \geq 0}$ be a linear recurrence defined by

$$
a_{0}=1, \quad a_{1}=2, \quad a_{k+2}=3 a_{k+1}+a_{k} \quad(k=0,1,2, \ldots)
$$

We put

$$
f(z)=\sum_{k=0}^{\infty} z^{a_{k}}, \quad g(z)=\sum_{k=0}^{\infty} \frac{z^{a_{k}}}{1-z^{a_{k}}}, \quad h(z)=\prod_{k=0}^{\infty}\left(1-z^{a_{k}}\right)
$$

Let α be an algebraic number with $0<|\alpha|<1$ and let $\omega=e^{2 \pi \sqrt{-1} / 3}=(-1+\sqrt{-3}) / 2$. Since $a_{2 k} \equiv 1(\bmod 3)$ and $a_{2 k+1} \equiv 2(\bmod 3)$ for any $k \geq 0$, the numbers $\alpha, \omega \alpha$, and α^{3} are not $\left\{a_{k}\right\}_{k \geq 0}$-dependent. Therefore the numbers $f(\alpha), f(\omega \alpha), f\left(\alpha^{3}\right), g(\alpha), g(\omega \alpha)$, $g\left(\alpha^{3}\right), h(\alpha), h(\omega \alpha), h\left(\alpha^{3}\right)$ are algebraically independent by Theorem 1 . Noting that $f(\alpha)+f(\omega \alpha)+f\left(\omega^{2} \alpha\right)=0, g(\alpha)+g(\omega \alpha)+g\left(\omega^{2} \alpha\right)=3 g\left(\alpha^{3}\right)$ and $h(\alpha) h(\omega \alpha) h\left(\omega^{2} \alpha\right)=$ $h\left(\alpha^{3}\right)$, we see that

$$
\begin{aligned}
& \text { trans. } \operatorname{deg}_{\mathbb{Q}} \mathbb{Q}\left(f(\alpha), f(\omega \alpha), f\left(\omega^{2} \alpha\right), f\left(\alpha^{3}\right)\right)=3, \\
& \text { trans. } \operatorname{deg}_{\mathbb{Q}} \mathbb{Q}\left(g(\alpha), g(\omega \alpha), g\left(\omega^{2} \alpha\right), g\left(\alpha^{3}\right)\right)=3, \\
& \text { trans. } \operatorname{deg}_{\mathbb{Q}} \mathbb{Q}\left(h(\alpha), h(\omega \alpha), h\left(\omega^{2} \alpha\right), h\left(\alpha^{3}\right)\right)=3,
\end{aligned}
$$

and

$$
\begin{aligned}
& \text { trans. } \operatorname{deg}_{\mathbb{Q}} \mathbb{Q}\left(f(\alpha), f(\omega \alpha), f\left(\omega^{2} \alpha\right), f\left(\alpha^{3}\right),\right. \\
& \\
& \left.\quad g(\alpha), g(\omega \alpha), g\left(\omega^{2} \alpha\right), g\left(\alpha^{3}\right), h(\alpha), h(\omega \alpha), h\left(\omega^{2} \alpha\right), h\left(\alpha^{3}\right)\right)=9 .
\end{aligned}
$$

As shown in the example above or in Remark 4 of [5], it seems complicated to state the necessary and sufficient condition for the values of the Lambert series $g(z)$ and the infinite product $h(z)$ at $\left\{a_{k}\right\}_{k \geq 0}$-dependent algebraic numbers $\alpha_{1}, \ldots, \alpha_{r}$ to be algebraically independent. In Theorem 4 below we establish an easily confirmable condition under which such values are algebraically independent.

Definition 2. We say that the algebraic numbers $\alpha_{1}, \ldots, \alpha_{r}$ with $0<\left|\alpha_{i}\right|<1$ $(1 \leq i \leq r)$ are strongly $\left\{a_{k}\right\}_{k \geq 0}$-dependent if there exist a non-empty subset $\left\{\alpha_{i_{1}}, \ldots\right.$, $\left.\alpha_{i_{t}}\right\}$ of $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}, N$-th roots of unity $\zeta_{1}, \ldots, \zeta_{t}$, an algebraic number γ with $\alpha_{i_{l}}=$ $\zeta_{l} \gamma(1 \leq l \leq t)$, and algebraic numbers ξ_{1}, \ldots, ξ_{t}, not all zero, such that

$$
\sum_{l=1}^{t} \xi_{l} \zeta_{l}^{m a_{k}}=0, \quad m=1, \ldots, N-1, \quad \text { g.c.d. }(m, N)=1,
$$

for all sufficiently large k.
It is clear that, if the algebraic numbers $\alpha_{1}, \ldots, \alpha_{r}$ with $0<\left|\alpha_{i}\right|<1(1 \leq i \leq r)$ are strongly $\left\{a_{k}\right\}_{k \geq 0}$-dependent, then they are $\left\{a_{k}\right\}_{k \geq 0}$-dependent.

The following theorem is more precise than Theorem 2 above.
Theorem 4. Let $\left\{a_{k}\right\}_{k \geq 0}$ be a linear recurrence satisfying (1). Let $\alpha_{1}, \ldots, \alpha_{r}$ be algebraic numbers with $0<\left|\alpha_{i}\right|<1(1 \leq i \leq r)$. Suppose that the algebraic numbers $\alpha_{1}, \ldots, \alpha_{r}$ are not strongly $\left\{a_{k}\right\}_{k \geq 0}$-dependent. Assume further that $\alpha_{1}, \ldots, \alpha_{\rho}(\rho \leq r)$ are not $\left\{a_{k}\right\}_{k \geq 0}$-dependent or equivalently that the numbers $f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{\rho}\right)$ are algebraically independent. Then the numbers $f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{\rho}\right), g\left(\alpha_{1}\right), \ldots, g\left(\alpha_{r}\right), h\left(\alpha_{1}\right), \ldots$, $h\left(\alpha_{r}\right)$ are algebraically independent.

Using Theorem 4, we have an example in which the strict inequality of (3) holds:
Example 2. Let $\left\{a_{k}\right\}_{k \geq 0}$ be a linear recurrence defined by

$$
a_{0}=1, \quad a_{1}=3, \quad a_{k+2}=3 a_{k+1}+a_{k} \quad(k=0,1,2, \ldots)
$$

We put

$$
f(z)=\sum_{k=0}^{\infty} z^{a_{k}}, \quad g(z)=\sum_{k=0}^{\infty} \frac{z^{a_{k}}}{1-z^{a_{k}}}, \quad h(z)=\prod_{k=0}^{\infty}\left(1-z^{a_{k}}\right) .
$$

Let α be an algebraic number with $0<|\alpha|<1$ and let $\omega=e^{2 \pi \sqrt{-1} / 3}=(-1+\sqrt{-3}) / 2$. Since $a_{2 k} \equiv 1(\bmod 3)$ and $a_{2 k+1} \equiv 0(\bmod 3)$ for any $k \geq 0$, the numbers $\alpha, \omega \alpha, \omega^{2} \alpha$ and α^{3} are not strongly $\left\{a_{k}\right\}_{k \geq 0}$-dependent and the numbers $\alpha, \omega \alpha$ and α^{3} are not $\left\{a_{k}\right\}_{k \geq 0}$-dependent. Therefore the numbers $f(\alpha), f(\omega \alpha), f\left(\alpha^{3}\right), g(\alpha), g(\omega \alpha), g\left(\omega^{2} \alpha\right)$, $g\left(\alpha^{3}\right), h(\alpha), h(\omega \alpha), h\left(\omega^{2} \alpha\right), h\left(\alpha^{3}\right)$ are algebraically independent by Theorem 4 with $\rho=$ 3 and $r=4$. Noting that $\omega f(\alpha)-(\omega+1) f(\omega \alpha)+f\left(\omega^{2} \alpha\right)=0$, we see that

$$
\begin{aligned}
& \text { trans. } \operatorname{deg}_{\mathbb{Q}} \mathbb{Q}\left(f(\alpha), f(\omega \alpha), f\left(\omega^{2} \alpha\right), f\left(\alpha^{3}\right)\right)=3 \\
& \text { trans. } \operatorname{deg}_{\mathbb{Q}} \mathbb{Q}\left(f(\alpha), f(\omega \alpha), f\left(\omega^{2} \alpha\right), f\left(\alpha^{3}\right)\right. \\
& \left.\qquad g(\alpha), g(\omega \alpha), g\left(\omega^{2} \alpha\right), g\left(\alpha^{3}\right), h(\alpha), h(\omega \alpha), h\left(\omega^{2} \alpha\right), h\left(\alpha^{3}\right)\right)=11,
\end{aligned}
$$

and so

$$
\begin{aligned}
& \text { trans. } \operatorname{deg}_{\mathbb{Q}} \mathbb{Q}\left(f(\alpha), f(\omega \alpha), f\left(\omega^{2} \alpha\right), f\left(\alpha^{3}\right)\right. \\
& \left.\qquad g(\alpha), g(\omega \alpha), g\left(\omega^{2} \alpha\right), g\left(\alpha^{3}\right), h(\alpha), h(\omega \alpha), h\left(\omega^{2} \alpha\right), h\left(\alpha^{3}\right)\right) \\
& >3 \text { trans. } \operatorname{deg}_{\mathbb{Q}} \mathbb{Q}\left(f(\alpha), f(\omega \alpha), f\left(\omega^{2} \alpha\right), f\left(\alpha^{3}\right)\right) .
\end{aligned}
$$

2. Lemmas

Let $F\left(z_{1}, \ldots, z_{n}\right)$ and $F\left[\left[z_{1}, \ldots, z_{n}\right]\right]$ denote the field of rational functions and the ring of formal power series in the variables z_{1}, \ldots, z_{n} with coefficients in a field F, respectively, and F^{\times}the multiplicative group of nonzero elements of F. Let $\Omega=\left(\omega_{i j}\right)$
be an $n \times n$ matrix with nonnegative integer entries. Then the maximum ρ of the absolute values of the eigenvalues of Ω is itself an eigenvalue (cf. Gantmacher [1, p.66, Theorem 3]). If $\boldsymbol{z}=\left(z_{1}, \ldots, z_{n}\right)$ is a point of \mathbb{C}^{n} with \mathbb{C} the set of complex numbers, we define the transformation $\Omega: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ by

$$
\begin{equation*}
\Omega \boldsymbol{z}=\left(\prod_{j=1}^{n} z_{j}^{\omega_{1 j}}, \prod_{j=1}^{n} z_{j}^{\omega_{2 j}}, \ldots, \prod_{j=1}^{n} z_{j}^{\omega_{n j}}\right) \tag{4}
\end{equation*}
$$

We suppose that Ω and an algebraic point $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, where α_{i} are nonzero algebraic numbers, have the following four properties:
(I) Ω is non-singular and none of its eigenvalues is a root of unity, so that in particular $\rho>1$.
(II) Every entry of the matrix Ω^{k} is $O\left(\rho^{k}\right)$ as k tends to infinity.
(III) If we put $\Omega^{k} \boldsymbol{\alpha}=\left(\alpha_{1}^{(k)}, \ldots, \alpha_{n}^{(k)}\right)$, then

$$
\log \left|\alpha_{i}^{(k)}\right| \leq-c \rho^{k} \quad(1 \leq i \leq n)
$$

for all sufficiently large k, where c is a positive constant.
(IV) For any nonzero $f(\boldsymbol{z}) \in \mathbb{C}\left[\left[z_{1}, \ldots, z_{n}\right]\right]$ which converges in some neighborhood of the origin, there are infinitely many positive integers k such that $f\left(\Omega^{k} \boldsymbol{\alpha}\right) \neq 0$.

We note that the property (II) is satisfied if every eigenvalue of Ω of absolute value ρ is a simple root of the minimal polynomial of Ω.

Lemma 1 (Tanaka [4, Lemma 4, Proof of Theorem 2]). Suppose that $\Phi(\pm 1) \neq 0$ and the ratio of any pair of distinct roots of $\Phi(X)$ is not a root of unity, where $\Phi(X)$ is the polynomial defined by (2). Let

$$
\Omega=\left(\begin{array}{ccccc}
c_{1} & 1 & 0 & \cdots & 0 \tag{5}\\
c_{2} & 0 & 1 & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
\vdots & \vdots & & \ddots & 1 \\
c_{n} & 0 & \cdots & \cdots & 0
\end{array}\right)
$$

and let $\beta_{1}, \ldots, \beta_{s}$ be multiplicatively independent algebraic numbers with $0<\left|\beta_{j}\right|<1$ $(1 \leq j \leq s)$. Let p be a positive integer and put

$$
\Omega^{\prime}=\operatorname{diag}(\underbrace{\Omega^{p}, \ldots, \Omega^{p}}_{s}) .
$$

Then the matrix Ω^{\prime} and the point

$$
\boldsymbol{\beta}=(\underbrace{1, \ldots, 1}_{n-1}, \beta_{1}, \ldots, \underbrace{1, \ldots, 1}_{n-1}, \beta_{s})
$$

have the properties (I)-(IV).
Lemma 2 (Kubota [2], see also Nishioka [3]). Let K be an algebraic number field. Suppose that $f_{1}(\boldsymbol{z}), \ldots, f_{m}(\boldsymbol{z}) \in K\left[\left[z_{1}, \ldots, z_{n}\right]\right]$ converge in an n-polydisc U around the origin and satisfy the functional equations

$$
f_{i}(\Omega \boldsymbol{z})=a_{i}(\boldsymbol{z}) f_{i}(\boldsymbol{z})+b_{i}(\boldsymbol{z}) \quad(1 \leq i \leq m),
$$

where $a_{i}(\boldsymbol{z}), b_{i}(\boldsymbol{z}) \in K\left(z_{1}, \ldots, z_{n}\right)$ and $a_{i}(\boldsymbol{z})(1 \leq i \leq m)$ are defined and nonzero at the origin. Assume that the $n \times n$ matrix Ω and a point $\alpha \in U$ whose components are nonzero algebraic numbers have the properties (I)-(IV) and that $a_{i}(z)(1 \leq i \leq m)$ are defined and nonzero at $\Omega^{k} \boldsymbol{\alpha}$ for all $k \geq 0$. If $f_{1}(\boldsymbol{z}), \ldots, f_{m}(\boldsymbol{z})$ are algebraically independent over $K\left(z_{1}, \ldots, z_{n}\right)$, then the values $f_{1}(\boldsymbol{\alpha}), \ldots, f_{m}(\boldsymbol{\alpha})$ are algebraically independent.

Lemma 2 is essentially due to Kubota [2] and improved by Nishioka [3].
In what follows, C denotes a field of characteristic 0 . Let $L=C\left(z_{1}, \ldots, z_{n}\right)$ and let M be the quotient field of $C\left[\left[z_{1}, \ldots, z_{n}\right]\right]$. Let Ω be an $n \times n$ matrix with nonnegative integer entries having the property (I). We define an endomorphism $\tau: M \rightarrow M$ by

$$
f^{\tau}(z)=f(\Omega z) \quad(f(z) \in M)
$$

and a subgroup H of L^{\times}by

$$
H=\left\{g^{\tau} g^{-1} \mid g \in L^{\times}\right\} .
$$

Lemma 3 (Kubota [2], see also Nishioka [3]). Let $f_{i} \in M(i=1, \ldots, h)$ satisfy

$$
f_{i}^{\tau}=f_{i}+b_{i}
$$

where $b_{i} \in L(1 \leq i \leq h)$, and let $f_{i} \in M^{\times}(i=h+1, \ldots, m)$ satisfy

$$
f_{i}^{\tau}=a_{i} f_{i}
$$

where $a_{i} \in L^{\times}(h+1 \leq i \leq m)$. Suppose that a_{i} and b_{i} have the following properties:
(i) If $c_{i} \in C(1 \leq i \leq h)$ are not all zero, there is no element g of L such that

$$
g-g^{\tau}=\sum_{i=1}^{h} c_{i} b_{i}
$$

(ii) a_{h+1}, \ldots, a_{m} are multiplicatively independent modulo H.

Then the functions $f_{i}(1 \leq i \leq m)$ are algebraically independent over L.

Let $\left\{a_{k}\right\}_{k \geq 0}$ be a linear recurrence satisfying (1) with the conditions stated in the beginning of this paper. We define a monomial

$$
\begin{equation*}
P(\boldsymbol{z})=z_{1}^{a_{n-1}} \cdots z_{n}^{a_{0}} \tag{6}
\end{equation*}
$$

which is denoted similarly to (4) by

$$
\begin{equation*}
P(z)=\left(a_{n-1}, \ldots, a_{0}\right) z \tag{7}
\end{equation*}
$$

Let Ω be the matrix defined by (5). It follows from (1), (4), and (7) that

$$
P\left(\Omega^{k} \boldsymbol{z}\right)=z_{1}^{a_{k+n-1}} \cdots z_{n}^{a_{k}} \quad(k \geq 0)
$$

In what follows, let \bar{C} be an algebraically closed field of characteristic 0 .
Lemma 4 (Tanaka [5]). Suppose that $G(\boldsymbol{z}) \in \bar{C}\left[\left[z_{1}, \ldots, z_{n}\right]\right]$ satisfies the functional equation of the form

$$
G(\boldsymbol{z})=\alpha G\left(\Omega^{p} \boldsymbol{z}\right)+\sum_{k=q}^{p+q-1} Q_{k}\left(P\left(\Omega^{k} \boldsymbol{z}\right)\right),
$$

where $\alpha \neq 0$ is an element of \bar{C}, Ω is defined by (5), $p>0, q \geq 0$ are integers, and $Q_{k}(X) \in \bar{C}(X)(q \leq k \leq p+q-1)$ are defined at $X=0$. If $G(z) \in \bar{C}\left(z_{1}, \ldots, z_{n}\right)$, then $G(z) \in \bar{C}$ and $Q_{k}(X) \in \bar{C}(q \leq k \leq p+q-1)$.

Lemma 5 (Tanaka [5]). Suppose that $G(\boldsymbol{z})$ is an element of the quotient field of $\bar{C}\left[\left[z_{1}, \ldots, z_{n}\right]\right]$ satisfying the functional equation of the form

$$
G(\boldsymbol{z})=\left(\prod_{k=q}^{p+q-1} Q_{k}\left(P\left(\Omega^{k} \boldsymbol{z}\right)\right)\right) G\left(\Omega^{p} \boldsymbol{z}\right)
$$

where Ω, p, q, and $Q_{k}(X)$ are as in Lemma 4. Assume that $Q_{k}(0) \neq 0$. If $G(z) \in$ $\bar{C}\left(z_{1}, \ldots, z_{n}\right)$, then $G(\boldsymbol{z}) \in \bar{C}$ and $Q_{k}(X) \in \bar{C}^{\times}(q \leq k \leq p+q-1)$.

3. Proof of Theorems $\mathbf{1}$ and 4

Proof of Theorem 1. If the algebraic numbers $\alpha_{1}, \ldots, \alpha_{r}$ are $\left\{a_{k}\right\}_{k \geq 0}$-dependent, then the numbers $f\left(\alpha_{i}\right), g\left(\alpha_{i}\right), h\left(\alpha_{i}\right)(1 \leq i \leq r)$ are algebraically dependent, since so are the numbers $f\left(\alpha_{i}\right)(1 \leq i \leq r)$ by Remark 1 . Conversely, if the algebraic numbers $\alpha_{1}, \ldots, \alpha_{r}$ are not $\left\{a_{k}\right\}_{k \geq 0}$-dependent, then by Theorem 4 with $\rho=r$ the numbers $f\left(\alpha_{i}\right), g\left(\alpha_{i}\right), h\left(\alpha_{i}\right)(1 \leq i \leq r)$ are algebraically independent. This completes the proof of the theorem.

Proof of Theorem 4. Suppose on the contrary that the numbers $f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{\rho}\right)$, $g\left(\alpha_{1}\right), \ldots, g\left(\alpha_{r}\right), h\left(\alpha_{1}\right), \ldots, h\left(\alpha_{r}\right)$ are algebraically dependent. There exist multiplicatively independent algebraic numbers $\beta_{1}, \ldots, \beta_{s}$ with $0<\left|\beta_{j}\right|<1(1 \leq j \leq s)$ such that

$$
\begin{equation*}
\alpha_{i}=\zeta_{i} \prod_{j=1}^{s} \beta_{j} e_{i j} \quad(1 \leq i \leq r) \tag{8}
\end{equation*}
$$

where $\zeta_{1}, \ldots, \zeta_{r}$ are roots of unity and $e_{i j}(1 \leq i \leq r, 1 \leq j \leq s)$ are nonnegative integers (cf. Nishioka [3, Lemma 3.4.9]). Take a positive integer N such that $\zeta_{i}^{N}=1$ for any $i(1 \leq i \leq r)$. We can choose a positive integer p and a nonnegative integer q such that $a_{k+p} \equiv a_{k}(\bmod N)$ for any $k \geq q$. Let $y_{j \lambda}(1 \leq j \leq s, 1 \leq \lambda \leq n)$ be variables and let $\boldsymbol{y}_{j}=\left(y_{j 1}, \ldots, y_{j n}\right)(1 \leq j \leq s), \boldsymbol{y}=\left(\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{s}\right)$. Define

$$
\begin{aligned}
& f_{i}(\boldsymbol{y})=\sum_{k=q}^{\infty} \zeta_{i}^{a_{k}} \prod_{j=1}^{s} P\left(\Omega^{k} \boldsymbol{y}_{j}\right)^{e_{i j}} \quad(1 \leq i \leq \rho), \\
& g_{i}(\boldsymbol{y})=\sum_{k=q}^{\infty} \frac{\zeta_{i}^{a_{k}} \prod_{j=1}^{s} P\left(\Omega^{k} \boldsymbol{y}_{j}\right)^{e_{i j}}}{1-\zeta_{i}^{a_{k}} \prod_{j=1}^{s} P\left(\Omega^{k} \boldsymbol{y}_{j}\right)^{e_{i j}}} \quad(1 \leq i \leq r),
\end{aligned}
$$

and

$$
h_{i}(\boldsymbol{y})=\prod_{k=q}^{\infty}\left(1-\zeta_{i}^{a_{k}} \prod_{j=1}^{s} P\left(\Omega^{k} \boldsymbol{y}_{j}\right)^{e_{i j}}\right) \quad(1 \leq i \leq r),
$$

where $P(\boldsymbol{z})$ and Ω are defined by (6) and (5), respectively. Letting

$$
\boldsymbol{\beta}=(\underbrace{1, \ldots, 1}_{n-1}, \beta_{1}, \ldots, \underbrace{1, \ldots, 1}_{n-1}, \beta_{s})
$$

we see by (8) that

$$
f_{i}(\boldsymbol{\beta})=\sum_{k=q}^{\infty} \alpha_{i}^{a_{k}}, \quad g_{i}(\boldsymbol{\beta})=\sum_{k=q}^{\infty} \frac{\alpha_{i}^{a_{k}}}{1-\alpha_{i}^{a_{k}}}, \quad h_{i}(\boldsymbol{\beta})=\prod_{k=q}^{\infty}\left(1-\alpha_{i}^{a_{k}}\right) .
$$

Hence the values $f_{1}(\boldsymbol{\beta}), \ldots, f_{\rho}(\boldsymbol{\beta}), g_{1}(\boldsymbol{\beta}), \ldots, g_{r}(\boldsymbol{\beta}), h_{1}(\boldsymbol{\beta}), \ldots, h_{r}(\boldsymbol{\beta})$ are algebraically dependent. Let

$$
\Omega^{\prime}=\operatorname{diag}(\underbrace{\Omega^{p}, \ldots, \Omega^{p}}_{s}) .
$$

Then $f_{1}(\boldsymbol{y}), \ldots, f_{\rho}(\boldsymbol{y}), g_{1}(\boldsymbol{y}), \ldots, g_{r}(\boldsymbol{y}), h_{1}(\boldsymbol{y}), \ldots, h_{r}(\boldsymbol{y})$ satisfy the functional equa-
tions

$$
\begin{aligned}
& f_{i}(\boldsymbol{y})=f_{i}\left(\Omega^{\prime} \boldsymbol{y}\right)+\sum_{k=q}^{p+q-1} \zeta_{i}^{a_{k}} \prod_{j=1}^{s} P\left(\Omega^{k} \boldsymbol{y}_{j}\right)^{e_{i j}}, \\
& g_{i}(\boldsymbol{y})=g_{i}\left(\Omega^{\prime} \boldsymbol{y}\right)+\sum_{k=q}^{p+q-1} \frac{\zeta_{i}^{a_{k}} \prod_{j=1}^{s} P\left(\Omega^{k} \boldsymbol{y}_{j}\right)^{e_{i j}}}{1-\zeta_{i}^{a_{k}} \prod_{j=1}^{s} P\left(\Omega^{k} \boldsymbol{y}_{j}\right)^{e_{i j}}}
\end{aligned}
$$

and

$$
h_{i}(\boldsymbol{y})=\left(\prod_{k=q}^{p+q-1}\left(1-\zeta_{i}^{a_{k}} \prod_{j=1}^{s} P\left(\Omega^{k} \boldsymbol{y}_{j}\right)^{e_{i j}}\right)\right) h_{i}\left(\Omega^{\prime} \boldsymbol{y}\right)
$$

where $\Omega^{\prime} \boldsymbol{y}=\left(\Omega^{p} \boldsymbol{y}_{1}, \ldots, \Omega^{p} \boldsymbol{y}_{s}\right)$. By Lemmas 1 and 2 the functions $f_{1}(\boldsymbol{y}), \ldots, f_{\rho}(\boldsymbol{y})$, $g_{1}(\boldsymbol{y}), \ldots, g_{r}(\boldsymbol{y}), h_{1}(\boldsymbol{y}), \ldots, h_{r}(\boldsymbol{y})$ are algebraically dependent over $\overline{\mathbb{Q}}(\boldsymbol{y})$. Hence by Lemma 3 at least one of the following two cases arises:
(i) There are algebraic numbers $b_{1}, \ldots, b_{\rho}, c_{1}, \ldots, c_{r}$, not all zero, and $F(\boldsymbol{y}) \in \overline{\mathbb{Q}}(\boldsymbol{y})$ such that

$$
F(\boldsymbol{y})=F\left(\Omega^{\prime} \boldsymbol{y}\right)
$$

$$
\begin{equation*}
+\sum_{k=q}^{p+q-1}\left(\sum_{i=1}^{\rho} b_{i} \zeta_{i}^{a_{k}} \prod_{j=1}^{s} P\left(\Omega^{k} \boldsymbol{y}_{j}\right)^{e_{i j}}+\sum_{i=1}^{r} \frac{c_{i} \zeta_{i}^{a_{k}} \prod_{j=1}^{s} P\left(\Omega^{k} \boldsymbol{y}_{j}\right)^{e_{i j}}}{1-\zeta_{i}^{a_{k}} \prod_{j=1}^{s} P\left(\Omega^{k} \boldsymbol{y}_{j}\right)^{e_{i j}}}\right) . \tag{9}
\end{equation*}
$$

(ii) There are rational integers $d_{i}(1 \leq i \leq r)$, not all zero, and $G(\boldsymbol{y}) \in \overline{\mathbb{Q}}(\boldsymbol{y}) \backslash\{0\}$ such that

$$
\begin{equation*}
G(\boldsymbol{y})=\left(\prod_{k=q}^{p+q-1} \prod_{i=1}^{r}\left(1-\zeta_{i}^{a_{k}} \prod_{j=1}^{s} P\left(\Omega^{k} \boldsymbol{y}_{j}\right)^{e_{i j}}\right)^{d_{i}}\right) G\left(\Omega^{\prime} \boldsymbol{y}\right) . \tag{10}
\end{equation*}
$$

Let M be a positive integer and let

$$
\boldsymbol{y}_{j}=\left(y_{j 1}, \ldots, y_{j n}\right)=\left(z_{1}^{M^{j}}, \ldots, z_{n}^{M^{j}}\right) \quad(1 \leq j \leq s),
$$

where M is so large that the following two properties are both satisfied:
(A) If $\left(e_{i 1}, \ldots, e_{i s}\right) \neq\left(e_{i^{\prime} 1}, \ldots, e_{i^{\prime} s}\right)$, then $\sum_{j=1}^{s} e_{i j} M^{j} \neq \sum_{j=1}^{s} e_{i^{\prime} j} M^{j}$.
(B) $F^{*}(\boldsymbol{z})=F\left(z_{1}^{M}, \ldots, z_{n}^{M}, \ldots, z_{1}^{M^{s}}, \ldots, z_{n}^{M^{s}}\right) \in \overline{\mathbb{Q}}\left(z_{1}, \ldots, z_{n}\right), G^{*}(\boldsymbol{z})=G\left(z_{1}^{M}, \ldots, z_{n}^{M}\right.$, $\left.\ldots, z_{1}^{M^{s}}, \ldots, z_{n}^{M^{s}}\right) \in \overline{\mathbb{Q}}\left(z_{1}, \ldots, z_{n}\right) \backslash\{0\}$.
Then by (9) and (10), at least one of the following two functional equations holds:

$$
\begin{equation*}
F^{*}(\boldsymbol{z})=F^{*}\left(\Omega^{p} \boldsymbol{z}\right)+\sum_{k=q}^{p+q-1}\left(\sum_{i=1}^{\rho} b_{i} \zeta_{i}^{a_{k}} P\left(\Omega^{k} \boldsymbol{z}\right)^{E_{i}}+\sum_{i=1}^{r} \frac{c_{i} \zeta_{i}^{a_{k}} P\left(\Omega^{k} \boldsymbol{z}\right)^{E_{i}}}{1-\zeta_{i}^{a_{k}} P\left(\Omega^{k} \boldsymbol{z}\right)^{E_{i}}}\right), \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
G^{*}(\boldsymbol{z})=\left(\prod_{k=q}^{p+q-1} \prod_{i=1}^{r}\left(1-\zeta_{i}^{a_{k}} P\left(\Omega^{k} \boldsymbol{z}\right)^{E_{i}}\right)^{d_{i}}\right) G^{*}\left(\Omega^{p} \boldsymbol{z}\right) \tag{12}
\end{equation*}
$$

where $E_{i}=\sum_{j=1}^{s} e_{i j} M^{j}>0(1 \leq i \leq r)$. By Lemmas 4, 5, and the property (B), at least one of the following two properties are satisfied:
(i) For any $k(q \leq k \leq p+q-1)$,

$$
\begin{align*}
& \sum_{i=1}^{\rho} b_{i} \zeta_{i}^{a_{k}} X^{E_{i}}+\sum_{i=1}^{r} \frac{c_{i} \zeta_{i}^{a_{k}} X^{E_{i}}}{1-\zeta_{i}^{a_{k}} X^{E_{i}}} \\
& =\sum_{i=1}^{\rho} b_{i} \zeta_{i}^{a_{k}} X^{E_{i}}+\sum_{i=1}^{r} c_{i} \sum_{h=1}^{\infty}\left(\zeta_{i}^{a_{k}} X^{E_{i}}\right)^{h} \in \overline{\mathbb{Q}} \tag{13}
\end{align*}
$$

(ii) For any $k(q \leq k \leq p+q-1)$,

$$
\begin{equation*}
\prod_{i=1}^{r}\left(1-\zeta_{i}^{a_{k}} X^{E_{i}}\right)^{d_{i}}=\gamma_{k} \in \overline{\mathbb{Q}}^{\times} \tag{14}
\end{equation*}
$$

Suppose first that (11) is satisfied with $c_{i}=0(1 \leq i \leq r)$. Let $S=\{i \in\{1, \ldots, \rho\} \mid$ $\left.b_{i} \neq 0\right\}$ and let $\left\{i_{1}, \ldots, i_{t}\right\}$ be a subset of S such that $E_{i_{1}}=\cdots=E_{i_{t}}$ and $E_{i_{1}}<E_{j}$ for any $j \in S \backslash\left\{i_{1}, \ldots, i_{t}\right\}$. Then by (13)

$$
\sum_{l=1}^{t} b_{i_{l}} \zeta_{i_{l}}^{a_{k}}=0 \quad(q \leq k \leq p+q-1)
$$

and hence

$$
\sum_{l=1}^{t} b_{i_{l}} \zeta_{i_{l}}^{a_{k}}=0 \quad(k \geq q)
$$

since $a_{k+p} \equiv a_{k}(\bmod N)$ for any $k \geq q$. By the property (A), $E_{i_{1}}=\cdots=E_{i_{t}}$ implies $\left(e_{i_{1} 1}, \ldots, e_{i_{1} s}\right)=\cdots=\left(e_{i_{t} 1}, \ldots, e_{i_{t} s}\right)$. Putting $\gamma=\prod_{j=1}^{s} \beta_{j} e_{i_{1} j}$, we have $\alpha_{i_{l}}=\zeta_{i_{l}} \gamma$ ($1 \leq l \leq t$) by (8). Therefore the algebraic numbers $\alpha_{1}, \ldots, \alpha_{\rho}$ are $\left\{a_{k}\right\}_{k \geq 0}$-dependent, which contradicts the assumption.

Secondly suppose that (11) is satisfied with c_{1}, \ldots, c_{r} not all zero. Let $T=\{i \in$ $\left.\{1, \ldots, r\} \mid c_{i} \neq 0\right\}$ and let $\left\{i_{1}, \ldots, i_{u}\right\}$ be a subset of T such that $E_{i_{1}}=\cdots=E_{i_{u}}$ and $E_{i_{1}}<E_{j}$ for any $j \in T \backslash\left\{i_{1}, \ldots, i_{u}\right\}$. Let m be any integer with $0 \leq m \leq N-1$ such that g.c.d. $(m, N)=1$. By Dirichlet's theorem on arithmetical progressions, there exists a prime number P_{m} such that $P_{m} \equiv m(\bmod N)$ and $P_{m}>\max _{1 \leq i \leq r} E_{i}$. Since $P_{m} E_{i_{1}}$ is not divided by any E_{j} with $j \in T \backslash\left\{i_{1}, \ldots, i_{u}\right\}$, the term $\sum_{l=1}^{u} c_{i_{l}}\left(\zeta_{i_{l}}^{a_{k}} X^{E_{i_{1}}}\right)^{P_{m}}$ must
vanish in (13). Hence

$$
\sum_{l=1}^{u} c_{i_{l}} \zeta_{i_{l}}^{m a_{k}}=0 \quad(q \leq k \leq p+q-1)
$$

and so the algebraic numbers $\alpha_{1}, \ldots, \alpha_{r}$ are strongly $\left\{a_{k}\right\}_{k \geq 0}$-dependent, which contradicts the assumption.

Finally suppose that (12) is satisfied. Taking the logarithmic derivative of (14), we get

$$
\sum_{i=1}^{r} \frac{-d_{i} E_{i} \zeta_{i}^{a_{k}} X^{E_{i}-1}}{1-\zeta_{i}^{a_{k}} X^{E_{i}}}=0 \quad(q \leq k \leq p+q-1)
$$

and so

$$
\sum_{i=1}^{r} \frac{d_{i} E_{i} \zeta_{i}^{a_{k}} X^{E_{i}}}{1-\zeta_{i}^{a_{k}} X^{E_{i}}}=\sum_{i=1}^{r} d_{i} E_{i} \sum_{h=1}^{\infty}\left(\zeta_{i}^{a_{k}} X^{E_{i}}\right)^{h}=0 \quad(q \leq k \leq p+q-1)
$$

Therefore the algebraic numbers $\alpha_{1}, \ldots, \alpha_{r}$ are strongly $\left\{a_{k}\right\}_{k \geq 0}$-dependent also in this case by the same way as above. This completes the proof of the theorem.

References

[1] F.R. Gantmacher: Applications of the Theory of Matrices, Interscience, New York, 1959.
[2] K.K. Kubota: On the algebraic independence of holomorphic solutions of certain functional equations and their values, Math. Ann. 227 (1977), 9-50.
[3] K. Nishioka: Mahler Functions and Transcendence, Lecture Notes in Mathematics 1631, Springer-Verlag, Berlin, 1996.
[4] T. Tanaka: Algebraic independence of the values of power series generated by linear recurrences, Acta Arith. 74 (1996), 177-190.
[5] T. Tanaka: Algebraic independence results related to linear recurrences, Osaka J. Math. 36 (1999), 203-227.

Department of Mathematics Keio University
Hiyoshi 3-14-1, Kohoku-ku Yokohama 223-8522, Japan e-mail: takaaki@math.keio.ac.jp

