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Abstract
On the basis of Brylinski's work, we introduce a notion of &@uwiant smooth
Deligne cohomology group, which is a generalization of baftdinary smooth
Deligne cohomology and ordinary equivariant cohomologging the cohomology
group, we classify equivariant circle bundles with conimettand equivariant gerbes
with connection.

1. Introduction

The notion ofsmooth Deligne cohomology grou a generalization of that of the
cohomology group with coefficients i in such a way that it incorporates information
of differential forms [7, 11, 13, 15]. For a non-negativeeiger N fixed, the smooth
Deligne cohomology grougd™ M, F(N)) of a smooth manifold is defined to be
the hypercohomology of the complex of sheav&sV) on M given by
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whereT is the sheaf of germs of smooth functions with values in thie cincle T =
{z € C| |z] = 1}, and A? is the sheaf of germs of smooth differentigl -forms with
values inR.

The usefulness of smooth Deligne cohomology groups wouldvést understood
by means of their geometric interpretations. Recall théofdhg geometric interpreta-
tions of ordinary cohomology groups of low degree.

Proposition 1. Let M be a smooth manifold.
(a) (Kostant[21], Weil [28]) The isomorphism classes of princig@tbundles(Hermi-
tian line bundle¥ over M are classified byZ*(M, T) = H*(M, 7).
(b) (Giraud [16]) The isomorphism classes of gerbes owvér are classified by
H?*(M,T) = H3(M, 7).

In the above, a “gerbe” means gerbe with bandT [7, 16]. We remark that a
class in H>(M,T) = H3(M,Z) admits the other geometric interpretations. (See [15,
19, 23] for example.) We also remark that an interpretatibmahomology groups of
the degree equal or greater than four requires notions dfehigerbes [8, 9, 14, 27].
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A geometric interpretation of smooth Deligne cohomologgugrs is obtained as a
generalization of Proposition 1.

Proposition 2 (Brylinski [7]). Let M be a smooth manifold.
(a) The isomorphism classes of princig@tbundles with connection ovewl  are clas-
sified by HY(M, F(1)).
(b) The isomorphism classes of gerbes with connective steicod curving overM
are classified byH?(M, F(2)).

When a Lie groupG acts on a smooth manifai , one often corsidquiv-
ariant cohomology groups to include information of the groaction. The standard
definition of equivariant cohomology groups is the Borel stonction [1], that is,
HY(M,Z) = H"(EG x¢ M, Z). However, to obtain an equivariant generalization of
Proposition 1, we consider the other cohomology.

In the case that a Lie grou¢  acts on a smooth manifdld , we hasienpli-
cial manifold ([12, 26])G* x M ={G” x M},>0. The family of sheave$T,, ,},>0
gives rise to asimplicial sheaf[10] over G* x M, whereT;, ,, is the sheaf of germs
of T-valued smooth functions ow” x M . We denote the hypercohomotafgthis
simplicial sheaf byH™ G* x M, T). Note that, ifG is compact, then there is an iso-
morphismH™ G* x M, T) = H2*Y(M, Z) for m > 1.

Proposition 3 (Brylinski [6]). Let G be a Lie group acting on a smooth mani-
fold M.
(@) The isomorphism classes 6f -equivariant princifiabundles overM are classi-
fied by HY(G* x M, T).
(b) The isomorphism classes aff -equivariant gerbes ower aressiflad by
H?(G* x M, T).

The purpose of the present paper is to formulate “equivasamooth Deligne co-
homology groups” which allow one to have an equivariant galimtion of Propo-
sition 2. Fundamental ideas in the formulation come fromliBski's paper [6]. Let
G* x M be the simplicial manifold associated to the group actionGobn M. On
each pieceG” x M of this simplicial manifold, we introduce a coempbf sheaves
F(N)Grxm by

1
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In the above, we denote by, the sheaf of germs of relative differential -forms on
G? x M with respect to the fibratiom G”xM — G?xpt , wheret is the manifold
consisting of a single point. The familfF(N)grxum},>0 gives rise to a complex of

simplicial sheavesF(N) on G* x M.
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DerniTion 1. Let G be a Lie group acting on a smooth manifaiti . We define
the equivariant smooth Deligne cohomology groif’(G* x M, F(N)) to be the hy-
percohomology of the complex of simplicial sheavB&N) on G* x M.

When G is a finite group, the equivariant smooth Deligne coHogy group
above coincides with th®eligne cohomology group for the orbifoltf /G introduced
by Lupercio and Uribe [22].

Now we state our generalization of Proposition 2 and Proijposi3.

Theorem 1. Let G be a Lie group acting on a smooth manifaifi
(@) The isomorphism classes 6f -equivariant princifabundles withG -invariant
connection overM are classified By'(G* x M, F(1)).
(b) The isomorphism classes @ -equivariant gerbes with  -iavarconnective
structure andG -invariant curving oveM  are classified B§#(G* x M, F(2)).

By virtue of this classification, we can extract various mmfiation of equiv-
ariant gerbes with connection (i.€ -invariant connectsteucture andG -invariant
curving) from knowledge of cohomology groups. For example, obtain obstruction
classes for an ordinary gerbe with connection to being egaimt (Corollary 5.18). In
[17], a similar cohomological method is applied to a studyrefationships between
G-equivariant gerbes with connection ovéf and gerbes withnection over the
guotient spaceM /G

The organization of this paper is as follows.

In Section 2, we define the smooth Deligne cohomology grouqd, raview its ba-
sic properties.

In Section 3, we introduce the equivariant smooth Deligndoocmlogy group
H"(G* x M, f(N)). For this aim, we define the simplicial manifold®* x M  and ex-
plain the hypercohomology of a simplicial sheaf. @ech cohomology description is
also explained.

In Section 4, we study the equivariant smooth Deligne coHogyogroup in rela-
tions with ordinary smooth Deligne cohomology, ordinaryiegriant cohomology, and
the group of invariant differential forms. In addition, wertstruct a homomorphism to
equivariant de Rham cohomology.

In Section 5, we first give the classification of equivariamingipal T-bundles
with connection. For this aim, we give the “simplicial” fotdation of equivariant prin-
cipal T-bundles, following the paper [6]. We next give the notionegjuivariant gerbes
with connection. (To save the pages, we drop the definitiogerbe itself. We refer
the reader to [7, 8].) Then we state the classification of weqjisint gerbes with con-
nection by using the equivariant smooth Deligne cohomaol&pme results on equiv-
ariant gerbes with connection are derived as simple agjaditaof results in Section 4.
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ConvenTions.  Throughout this paper, we make a convention that a “smoath-m
ifold” means a paracompact smooth manifold modeled on a dtatfslocally convex
topological vector space. We also assume the existence aftdign of unity. Exam-
ples of such a manifold cover not only all the finite dimensioemooth manifolds,
but also a sort of infinite dimensional manifolds. (The maspartant example of the
infinite dimensional case would be the loop space of a finiteedisional smooth man-
ifold. See [7] for detail.)

We also make a convention that a “Lie group” means a Lie grobpse under-
lying smooth manifold is of the type above. When a Lie graup tsamn a smooth
manifold M, we assume that the action is smooth. We denote dtienaby juxtaposi-
tion: we writegx € M forg € G andx € M . We always denote bye G the unit
element of the Lie group.

2. Review of smooth Deligne cohomology

This section is devoted to recalling ordinary smooth Dedignohomology
groups [7, 11, 13, 15].

2.1. Smooth Deligne cohomology groups.Let M be a smooth manifold. We
denote byT,, the sheaf of germs of smooth functions with valuesTir= {u € C |
lul = 1}. For a non-negative integer , we denote Af, the sheaf of germs of
R-valued smoothy -forms o

Derinimion 2.1 ([7]). Let N be a non-negative integer.
(a) We define thesmooth Deligne complef(N), to be the following complex of
sheaves o/ :

1
wdlos g

. d d
F(N)y: Ty, Al A2,

A% 0 cee

where the sheal’,, is located at degree 0 in the complex.
(b) The smooth Deligne cohomology groui”(M, F(N)y) is defined to be the hy-
percohomology group of the smooth Deligne complex.

We often omit the subscripts &,,, A%, and F(N)uy.

Remark 1. LetZ(N)y be a complex of sheaves given by

ZNYy: 7~ 40 5 Al AN 0

where we regard@. as a constant sheaf ovéf . The smooth Deligne cohomology of-
ten refers to the hypercohomology?” M(Z(N)%). Since Z(N)} is quasi-isomorphic
to F(N — 1) under a shift of degree, we havé? M(Z(N)%) = HP~Y(M, F(N — 1)).
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The smooth Deligne complex fits into the following short exsequences of com-
plexes of sheaves om

@ 0—>{E—>A1—>---—>AQ{}—>.7:(N)—Q’>{0—)---—)0—>AN+1}—>0,

cl

@ 0= {0—>Al> 5 AV > F(N) > (T 0 — 0 > Q

where A, is the sheaf of germs of closefl -forms an . By the Poincarérlar,
7], there exists a quasi-isomorphism

{T-0—...—-0—(T—> Al—> —>Aé\|’},
whereT means the constant sheaf on

Proposition 2.2 ([7]). Let N be a positive integer.
(@ If 0< p < N, then H?(M, F(N)) is isomorphic toH?(M, T).
(o) If p=N, then HY(M, F(N)) fits into the following exact sequences

0—s HY(M,T) — HY(M, F(N)) -5 AN*{(M)y —> 0,
0— ANWM)/AN M)y — HN(M, F(N)) — HN*Y(M,Z) — 0,

where A?(M), is the group of closed integra} -forms oW

(c) If N < p, then H?(M, F(N)) is isomorphic toH?”(M,T) = H’*Y(M, 7).
Proof. By the Poincaré lemma, we can take"'{**, d) as a resolution ofoY**.

Since M is assumed to admit a partition uniyf is soft [7] and we have

0, (O=<p<N),
H’(M,0— ---— 0— AN =1 AN*Y M)y, (p=N),
HP*Y (M, R), (N < p).

By the long exact sequence associated with (1), we have teoiphism in (a) and
the first exact sequence in (b). Similarly, by a computatioa, obtain

AN(M)/dANH (M), (p=N)

r 1 .. Ny = ’ ’

H’(M,0— A" — — A") { 0. N < p)
where dAY (M) is the image ofd AY~1(M) — AY(M). Thus, the long exact se-
guence associated with (2) gives the second exact sequerfbg and the isomorphism
in (c). O

It is easy to see thaH°(M, F(0)) = HO(M, T) is identified with C* (1, T), the
group of T-valued smooth functions om
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Fig. 1. The filtration of F(N)g

2.2. Relative Deligne cohomology groups.Let 7 : E — B be a smooth fibra-
tion with fiber 7. The sheafi}; of germs ofp -forms onB is naturally a module over
Ry = AOB, so that the inverse image she;afléj; is a 7 'R -module. For a posi-
tive integer p , we define a subsheBfA} of A% by setting FPAL = 7 1Al @, -1,
A%? whereA% " is regarded as & 'R,-module through the natural homomorphism
7R, — R,.

For an open subsdf C E , the groupfA%(U) consists of thosgy -form& on
U satisfyinguy, - --ty,_,.,0 = 0 for tangent vectord;, ..., V, ,+« atx € U such that
m.V; = 0. If {x;} and {y;} are systems of local coordinates®f afd respdygtive
then theg -formw has a local expression

a)=Z Z fra(x, y)dxip Ao Adxi, Adyj A Adyj,

rEp it
J1sedg—r
As is clear, we have a filtratiod? > F'A% > F?A% > ... D FiA% > 0. Thus,
the smooth Deligne comple®(N) = F(N)g on E admits a filtration

F(N) D FY¥F(N) > F2F(N) > --- > FNF(N) > 0

associated to the fibratiom E — B . (see Fig. 1.)

The relative Deligne complexF(N) is defined byF(N) = F(N)/FYF(N). When
we denote byAl, = A7/F'A‘ the sheaf of germs ofelative differentialg -formswith
respect to the fibratiom E — B , the relative Deligne compleiV) is expressed as

1
f(N) l 27/jld|Og Al d 2 d d N

Arel Arel e Al 0
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We call the hypercohomology grougd™ E(J-:(N)) the relative Deligne cohomol-
ogy [7, 8]. Clearly, if B consists of a single point, theﬁ:(N) = F(N), so that
H™(E,F(N))= H"(E, F(N)).

The relative Deligne complex fits into the following shortaex sequences of com-
plexes of sheaves oA  similar to (1) and (2):

@ 0={T=A

_rle|—>"'—>Az\e]|,c|}—>7'T(N)—d>{0—>“'—>0—>AN+1}—>0,

rel,cl

(4) 0—>{O—)AE‘€I—>_)AN}—>\F_(N)—>{E—>O—>—>O}—>O,

rel

where AL, , is the sheaf of germs of closed relatiye -forms &h . By thetiteda

version of the Poincaré lemma [7], there exists a quasisphism

T T —>0> >0 > {T— Ay~ — Aol

wherer T = 71T, is the inverse image of the shed@f, underr :E — B .
We can obtain the following properties of the relative De#igcohomology by the
same method as that used in the proof of Proposition 2.2.

Proposition 2.3. Let N be a positive integer.
(@ If 0< p < N, then H?(E, F(N)) is isomorphic toH?(E, 7717T).
(o) If p=N, then HY(E, F(N)) fits into the exact sequences

0— HY(E,n Y1) — HY(E, F(N)) = AV E)era — HYYE, 7 1T),
HY(E,Z) — AY(E)/dAY YE)w — HY(E, F(N)) —» H"*YE, Z) — 0.

(c) If N < p, then HP(E, ]-T(N)) is isomorphic toH?(E,T) = HP*Y(E, Z).
For computations ofi™ K, 'T},), the next lemma is useful.

Lemma 2.4. Letrw: E — B be a smooth fibration with fibeFr . There exists a
spectral sequence converging to a graded quotienH8{E, = 1T ,) with its E,-term
given by

Ey?=H?(B, T, xt H!(F, T)),

where H?(F, T) is the sheaf onB associated with the presheaf given by thgrassi
ment of H4(x~1(V), T) to an open se¥ C B .

Proof. The proof is essentially the same as that of a lemma7]n(1.6.9
Lemma, p.59). By virtue of the fibratom E — B , we have the Lerayecsp
tral sequence [7], that is, a spectral sequence converging graded quotient of
H™(E,n~1T) with its Ep-term given by E5Y = HP(B, H?). Here H? is the sheaf
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associated with the presheaf given by the assignment to an sptV c B of the
group H? @~X(V), #—1T). Now we prove that the shed xt H?(F,T) is naturally
isomorphic toH4. For this aim, it suffices to show th&(V) xt H(x~X(V), T) is
naturally isomorphic toH? #~(V), #'T) for a sufficiently small contractible open
setV C B. Let{U,},eo be a good cover off . If we take and fix a local triv-
jalization 77X(V) ~ V x F, then {V x U,}eeu iS a good cover ofr (V). We
can see thail(V) xt Hi(x~%(V),T) is the g th cohomology of theCech complex
[To....c; (V. I) X7 F(Uge N -+ N Uy, T). BecauseH? A~Y(V), #~1T) is computed
from the same complex, we obtain the natural isomorphism. U

3. Equivariant smooth Deligne cohomology

We formulate equivariant smooth Deligne cohomology grobpse. As is men-
tioned, basic ideas in the formulation come from Brylinskiaper [6].

3.1. Simplicial manifolds associated to group actions. First of all, we intro-
duce a certairsimplicial manifold[26] associated to a manifold with a group action.

Let G be a Lie group acting on a smooth manifald by left. Then vaweha
simplicial manifold G* x M ={G? x M},=o, Where the face mapg& G’ x M —
G?xM, (i=0,...,p+1) are given by

(g27"‘7g17+17 x)a l :0
0i(g1s > 8p+1.X) = 1 (81, .-+, 8i-1, &i&i+1 &i+2 -+, &p+3X), i =1, ..., p
(g1, - -5 8ps &p+1X), i=p+1,

and the degeneracy maps G? x M — GP**x M, (i =0,..., p) by

Sl'(glv .. '7g117x) = (glv <5 8 €, 8i+l, - --7g177x)'
These maps obey the following relations:

(5) 9;00; =9j_109;, (i <])

(6) sios; = sjr108, (i <j),
sj—108, (i <)J),

@) 9 os; = {id, (i=j,j+1),
sjodis, (> j+1).

To a simplicial manifold, we can associate a topologicalcepealled therealiza-
tion [12, 15, 26]. The realization of;* x M is identified with the hompyoquotient
([AD: IG* x M| = EG xg M, where EG is the total space of the universal bundle
for G. This can be seen by the fact thatG is obtained as the atialivof G* x G,
where G acts on itself by the left translation.
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Note that the classifying spad®G  is also obtained as thezeg@mih of G* x pt,
wherept is the space consisting of a single point on whi@¢h  acts thwisVe denote
by 7: G* x M — G* x pt the map of simplicial manifolds given by the projection
w:GP x M — GP x pt.

3.2. Definition of equivariant smooth Deligne cohomology. In order to de-
fine equivariant smooth Deligne cohomology groups, we lyriekplain the notion of
a sheaf on a simplicial manifolda simplicial sheaf for short) and its cohomology
group [10].

Let G* x M be the simplicial manifold associated to an action of a groupG
on a smooth manifolds . We definesimplicial sheafon G* x M to be a family of
sheavesS*® = {S”},>0, whereS” is a sheaf onG” x M such that there are homomor-
phismsd;: 871S? — SP*1 and s :s5; 1871 — SP obeying the same relations as (5),
(6) and (7).

For eachp , let’”* be an injective resolution of the sh§&fon G? x M.

s s 5
SPes PO 2y qpt 0o yp2_°0

We denote this by** , and call an injective resolution of thepdioml sheafS*. The
homomorphism; : 8,.‘181’ — &7*1 induces a homomorphisiy Tt G€ x M, [P )
['(GP*™ x M, 1P*%9). Combining these homomorphisms, we define a homomorphism
3:T(GPx M, I79) — T'(GP*1x M, IP*19) by § = Zﬁg(—l)faj. This homomorphism
satisfiesd 0 3 =0, because of (5).

Now the hypercohomology of the simplicial she§f is defined to be the coho-
mology of the double complexl(Gf x M, I/ ,9,8 ). This cohomology groupns i
dependent of the choice of an injective resolutior . The pedelence is shown by
the same method as in the case of ordinary hypercohomologyd#&viote the coho-
mology by H* G* x M, S*).

The notion of a complex of simplicial sheaves and of its hgpeomology group
are defined in a similar fashion.

Derinmion 3.1.  LetG be a Lie group acting on a smooth maniféid
(a) We define a complex of simplicial sheaveB(N)g.xy On G* x M by
the family of the smooth Deligne complekF(N)grxu}p=0. The homomorphisms
3;: 07X F(NYGramt — F(N)grasy andsi 157 2 F(N)grawy — F(N)grxu are the nat-
ural ones.
(b) As a subcomplexF(N)g-xu, We define a complex of simplicial sheaves
FYF(N)Gexm on G* x M by the family{ FYF(N)Grxum} p=0, Where FXF(N)grxu is the
subcomplex ofF(N)grxu associated to the fibratiom G?” x M — G” x pt.
(c) We define a complex of simplicial sheav$N)c-xn on G* x M by the family
{F(N)Grxm}p=0, Where F(N)gr«u is the relative Deligne complex with respect to the
fibrationw : G? x M — GP? x pt.
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Note that the complex of simplicial sheavéf{N)G.XM can also be given by the
quotient F(N)gexm = F(N)Gexu/FF(N)Gesu- 3
As is clear, if G is a discrete group, theR(N)gsxmu = F(N)Goxm-

DeriniTion 3.2. Let G be a Lie group acting on a smooth manifald . We
define theG-equivariant smooth Deligne cohomology groop M to be the hyper-
cohomology groupH™ G°* x M, ]-:(N)G.XM) of the complex of simplicial sheaves
}:(N)G.XM onG®* x M.

From now on, we omit the subscripts 0f(N)gixu, F(N)cexm, €tc. We also
write H"™(G* x M, F(0)) = H" (G* x M, T).

Remark 2. For a finite groupG , the hypercohomology™ G*(x M, F(N)) =
H"(G* x M,F(N)) is introduced in the work of Lupercio and Uribe [22] as the
Deligne cohomology group for the orbifolt! /G.

By definition, the hypercohomologyf™ G{ x M, ]-:(N)) is given in the following
way. Let7*** be an injective resolution of(N), that is, I"** is an injective resolu-
tion of the complex of sheave&(N) on G' x M :

5 5 5 5
. d . d d d ) d

11,1‘0 Il,l,l I 1IN  ~ 5 Il,l N+l _— o
5 5 5 5

7i00 4o g4 o4 iov 4o giova Lo

d d d d d
T Al AR 0
We define a triple complexk(-/, 3,8, d) by
(8) K"*=T(G" x M, 1)

On @,,...; K"/*, the total coboundary operator is defined by 9= — (§1) +
(=1)*/d on the componenk’/* . The cohomology of this total complexis G* %

3.3. Cech cohomology description. It is possible to compute the equivariant
smooth Deligne cohomology by means ofC&ch cohomology. For this purpose, we
recall the notion of an open cover of the simplicial manifaid x M.
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Derinimion 3.3 ([5, 6]). We define an open cover of the simplicial mamifal® x
M by a family of open covers(* = {t/")} .o such that:
1. U = (UD)mean is an open cover o6” x M ;
2. the index se®l”) forms a simplicial se®(* = {A)} .o; and
3. we haved; ¢4} c Ué’_’&,,ﬂ)) ands; U%)) c Us(’z;ﬂ)

For an open covei/* = {UP)},.o of G* x M, we define a triple complex
(K'i* 3,8,d) by

© kot= T r(ufnenuf Faym).
) J

0 g
Uy U
0 i

where we write}:(N)["] for the sheaf located at degrde in the complE_KN).
The coboundary operatoy K*/* — K™*Li* is given byd =Y 5(—1)d;, the
§: Kk — K'*1k is the Cech coboundary operator, agd K'/* — K% s in-
duced by the coboundary operawr F(N)¥ — F(N)¥. From the triple complex,
we obtain the total complex by putting” U*, F(N)) = @B, K"/*, where the
total coboundary operator is defined By o= -+ (61) =+ ("*4§ on the component
K'i* We denote byH"(U*, F(N)) the cohomology of the total complex.

As in the case of ordinary sheaf cohomology, there existsr@riaal homomor-

phism H™(U*, ]-T(N)) — H™(G* x M, F(N)). This induces an isomorphism
lim B (WU*, F(N)) — H™(G* x M, F(N)),

where the direct limit is taken over the ordered set of opereof G* x M .
When each open covét”) is agood cover[4, 7] of G” x M, we calli{* a good
coverof G* x M.

Lemma 3.4. If U4* is a good cover ofG* x M, then there exists a natural iso-
morphismH™(U*, F(N)) = H"(G* x M, F(N)).

Proof. Becgusél(l’) is a good cover olG” x M for eacp , we have an isomor-
phism H(U®P, F(N)) = HI(G? x M, F(N)). Using the spectral sequence associated
with the filtration F?K =@,., K*** and that associated Wit K = @, K",
we obtain the isomorphism in the lemma.

izp

We give an example of an open cover [6]. liét= {U,}.cor be an open cover of
M.Forp=0,1, ... we pU'Ql(I’) = 9P*1 \We define face mapé; AP _ P and
degeneracy mapg 2" — AP+ py

8[(&0, e a[l+1) = (a07 e 7af7 MR a[l+1)7
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Si(a()a"'va]?) = ((XO, "'7ai7ai7"'7a17)'

The open covet/(") = {Uéﬁ,))}au,)ggup) is inductively defined by

ulf) = ﬂa Usaon)-

4. Properties of equivariant smooth Deligne cohomology grps

We study some general properties of the equivariant smoetigie cohomology
group H™ G* x M, F(N)) in relations with other cohomology groups. Throughdust
section,G denotes a Lie group acting on a smooth maniféld

4.1. Relation to smooth Deligne cohomology.

Proposition 4.1. There exists a spectral sequence converging to a graded quo-
tient of H™(G* x M, F(N)) with its E,-term given by

EDY = HP(HY(G* x M, F(N)), 9),
the pth cohomology group of the complex
HY(M, F(N)) —= HY(G x M, F(N)) - HY(G? x M, F(N)) — - ..

Proof. This spectral sequence is given by the filtratiohk @:W Kix* of
the triple complex (8). Then thé&i-terms areE)? = HY(G? x M, F(N)), and the
differential dy: E? — E*™% is dy = 9 = Y " (—1) a7. Becausek"/* is zero unless
i, j, k > 0, the spectral sequence converges to the graded quaofieft’*?(G* x
M, F(N)) with respect to the filtration. 0O

Corollary 4.2. If G = {e}, then H"(G* x M, J-:(N)) = H™(M, F(N)).

Proof. The natural identificatioG” x M #  implies that? = E¢ for all p
andg . It is easy to see that = 0 if p is even, andd; = id if p is odd. Thus, the
spectral sequence degenerate€atand gives the result. ]

Note that we can identify thé&,-term Eé"o of the spectral sequence in Proposition
4.1 with the differentiable cohomology [20] af  with coeficits in theG -module
HO(M, T):

p,0 D
E}" = Hpo\ (G, HO(M, T)).

A condition onG allows us to express the othEBs-terms in a similar fashion.
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Lemma 4.3. If G is discrete then we can identify thé&,-term E5¢ of the spec-
tral sequence inProposition 4.1with the group cohomology of degrge  with coeffi-
cients in the smooth Deligne cohomologlf (M, F(N)) regarded as aG -moduie

EZ = Hfou(G, HI(M, F(N))).

In particular, we have
EY! = HI(M, F(N))® = {c € HY(M, F(N)) | g*c = ¢ for all g € G}.

Proof. BecauseG is discrete, we had&N) = F(N) and E? = H%(G? x
M, F(N)) = C§oup(G, HY(M, F(N))). The identification of the differentiat; with the
coboundary operator on the group cochains establishesthma. O

Remark 3. In general, we haveEg'q C Hi(M,F(N))¢ for any Lie groupG .
However, whenG is not discrete, it happens ttiag'q does not coincide with
HY(M, F(N))°. In fact, whenG =SU (2) acts oiM =SU (2) by the left transla-
tion, a G -invariant integral 3-form o is a class m?(M, F(2))° which does not
belong to E9°2.

4.2. Relation to equivariant cohomology. We study a relation between the
equivariant smooth Deligne cohomology and the ordinaryivegiant cohomology via
H™(G* x M,T) = H"(G* x M, F(0)).

We denote byEG xgM the topological space obtained by the quotie®@x M
under the diagonal action @f , whefeG s the total space of tlieetsal G -bundle
EG — BG. As in [1], we define theequivariant cohomology groud/}(M, Z) by
H(M,Z) = H"(EG xg M, Z), where the latter is the ordinary (singular) cohomology
with coefficients inZ.

Notice the following short exact sequence of simplicialales onG*® x M :

0 7 R exp2ry/—1 T 0.

where Z is the constant simplicial sheaf, ar®l is given by the sheaf of germs of
R-valued functions on eactt” x M . Thus, by the associated longt eeaience, we
have a homomorphism

H™(G* x M,T) — H"™YG* x M, 7).

Lemma 4.4([6]). If G is compactthen there is a natural isomorphis#™ (G*® x
M,T) = H*YM,Z) for m > 0.
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Proof. We have an exact sequence
H™(G* x M,R) - H™(G* x M, T) - H™Y(G* x M,Z) - H"YG* x M, R).

It is proved by Dupont [12] that there exists a natural isgphism H” G* x M,7Z) =
H"(|G* x M|,7Z). Since |G* x M| = EG xg M, the lemma will follow from the
vanishing of H™ G* x M, R) for m > 0.

There is a spectral sequence converging to a graded quofigd?*?(G* x M, R)
with its E;-term given by

C*(G" x M,R), (¢=0),

E} = HI(GP x M. R) = { 0 @>0)

Here we used the fact th& is soft, which is a consequence of the existence a par-
tition of unity on G? x M. This spectral sequence degenerateg.atand we have
HP(G* x M,R) = EP°,

Now, sinceG is compact, we have an invariant measige Gon . \Wposep
that the measure is normalized. Ffire EP° we definef € Ef_l‘o by

fler, ..., gp—1,x) = f(g 81, ..., 8p—1,x)dg.
geG

If 3f=0, then f =3 f. Hence we haveEL® = H?(G* x M,R) =0 for p > 0. [

As a generalization of (4), we consider a short exact sequeficcomplexes of
simplicial sheaves oG x M

(10) 0— {0—>Arle|—> ---—>Aﬁ\é|}—> ]-:(N)—> (T-0—...—>0—0
Composing the induced homomorphism
H™(G* x M, F(N)) — H™(G* x M, T)

with the homomorphismH™ @ x M,T) — H™YG* x M,Z) = HZ*M,Z), we
obtain a homomorphism to the equivariant cohnomology group

H"(G* x M, F(N)) — HZI"N(M., 7).
Lemma 4.5. If G is compactthen H"(G* x M,0 — AL, — ... — AN) is
AY(M)S, m=1
A"(M)S JdA"Y(M)C, 1 <m < N,

AN(M)C JdAN=Y(M)C, m = N,
0, otherwise
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where A?(M)C is the group ofG -invariantp -forms o, and Al’(M)g is the group
of G-invariant closedp -forms o/

Proof. Because the shedf,, is soft on eachG' x M , the group of our interest
is computed as the cohomology of the double complex*( 9, d), where

LiJ = AN(G' x M), 1<j<N,
o, otherwise

We compute this cohomology by the spectral sequence asstorth the filtration
FPL = @jzp L*J. By using an invariant measure @@ , we obtain

AP(M)®, ¢ =0,

EP,fI = HI(L*P -
! (L27.9) { 0, g >0

Thus, E59 =0 for ¢ > 0, andEg"O is the p th cohomology of the complex
0— AYM)° L A2m)° L L AV M) — 00— ...
The spectral sequence degenerategatand we proved the lemma. ]

Proposition 4.6. Suppose thatG is compact ard  is a positive integer.
(a) The groupHN(G* x M, F(N)) fits into the exact sequence

HE (M, Z)

\

AN(M)C JdAN-Y(M)C — HN(G* x M, F(N)) = HY*™ (M, Z) - 0.
(b) If m > N, then H™(G* x M, F(N)) = HZ* (M, Z).

Proof. These are straight consequences of the long exacieseg associated
with (10) and the lemmas above. [l

4.3. Relation to invariant differential forms. We have the following short ex-
act sequence of complexes of simplicial sheaves, which isrenglization of (3):

(11) 0= {T — Arlel_) ---—>AZLC|}—>}:(N)${O—> o> 0> AV >0,

rel,cl

By the relative Poincaré lemma [7], we have a quasi-isoimerp

T T—>0> >0 > {T— Ay~ — Aol
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where the simplicial sheat—'T on G* x M is the inverse image of the simplicial
sheafT on G* x pt under the projectiom G* x M — G* x pt.

Proposition 4.7. Suppose thalv _is a positive integer.
(@) f 0<m < N, then H"(G* x M, F(N)) = H"(G* x M, = ~'T).
(b) The groupHN(G* x M, F(N)) fits into the exact sequence

0— HY(G* x M, 7~'T) =~ HY(G* x M, F(N)) —

AN+1(M)g

\

HY*Y(G* x M, n7T).

Proof. By the relative version of the Poincaré lemma, weat@g]’v“l, d) as a

resolution oféﬁ‘e’l’j. By a direct computation, we obtain

o} (0<m < N),

m . N+1y —
H"(G*xM,0—» ---—>0—> A )_{AN”(M)S, (m = N).

Llrel,cl

Now the long exact sequence associated with (11) leads tprisosition. U

4.4. A map to equivariant de Rham cohomology. For the smooth Deligne co-
homology groupH™ ¥, F(N)), there exists a homomorphism to the de Rham coho-
mology groupHggl(M). This is given by taking the de Rham cohomology class of
the image of the homomorphisech H" M( F(N)) — AQ”(N) induced by (1). As an
equivariant analogy, we here construct a homomorphism fiteenequivariant smooth
Deligne cohomologyH" M, ]?(N)) to equivariant de Rham cohomology.

As is known, we can formulate “equivariant de Rham cohomplggoups” by

various models. The model that we employ is the followingmioal model.

DeriniTion 4.8.  We define theequivariant de Rham cohomology grobpg the to-
tal cohomology of the double compled{ G{x M ,d,d ).

Remark 4. By the extended de Rham theorem proved by Bott, Shulman and
Stasheff [3] (see also [12]), the equivariant de Rham coltogyointroduced above is
isomorphic to the equivariant cohomology with coefficiemsR:

H"(A*(G* x M), d,d) = H!(M,R).

The method of constructing a map to the equivariant de Rhamoroology group
is to extend the image of the homomorphism HY G*(x M, F(N)) — AN*Y(M)§
induced by (11). As the part of the “equivariant extensiong¢ use the image of the
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0 0
FIF(N) —2> (0= --- > 0— FIAN*Y
FIN) —=1{0— --- > 0— A"}

FIN) —2—>{0— ... > 0— AN

0 0.
Fig. 2. The homomorphism of short exact sequences
homomorphism
B: HY(G* x M, F(N)) — H"*YG* x M, F*F(N))
induced by the short exact sequence of complexes of sirapktieaves
(12) 0 — FY¥F(N) — F(N) — F(N) —> 0.

Since G? x M is assumed to admit a partition of unity for egch , itasyeto see
that H” (G* x M, FYF(N)) is the m th cohomology of the double complek(, 3, d)
given by

FAI(G'x M), (1<j<N),
0, otherwise

(13) LY = {
Proposition 4.9. There exists a homomorphism
T: HY(G® x M, F(N)) —> HY*YA*(G* x M), d, d).

Proof. Consider the homomorphism of short exact sequentemaplexes of
simplicial sheaves oi*x M  given in Fig. 2. The homomorphismdgehe following
commutative diagram:

(14) HY(G* x M, F(N)) < ANL()G

lﬂ 3

HY"Y(G* x M, FYF(N)) ——> HV*Y(G* x M,0— - .- — 0— AN,
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The cohomologyHV*{(G* x M,0— --- — 0— AN+ is

rel
Ker{d: FIAN™Y(G x M) — FAN*Y(G? x M)}.

Now, for a classc € HY G* x M, F(N)), we denote byF© the G -invariant v + 1)-
form on M obtained by applyingé H G* x M, F(N)) — AN*Y(M)C. Proposi-
tion 4.7 implies thatd F@ = 0. BecauseHV*(G* x M, FYF(N)) is the total coho-
mology of (13), we represemt ¢ (& HV*YG* x M, FYF(N)) by

(FO . FMy e FIANG x M) @ --- @ FAYG" x M)

such thatd F¢-Y+(—1ydF® =0 fori =2 ..., N andd F") = 0. By the commutative
diagram, we have) F© = ¢FY, Hence we obtain anN + 1)-cocycle of the double
complex @* G* x M )d,d):

(FO FO  F®™ 0)e AV M) D AN(G x M) & --- & A°%(GN* x M).

It is straightforward to check that the equivariant de Rhamhmornology class rep-
resented by the N + 1)-cocycle above is independent of thacehof the rep-
resentative of 8 { ). Thus, we obtain the homomorphism by pgttic ) =
[(FO FO F®) 0). O

5. Equivariant circle bundles and gerbes

In this section, we classify equivariant princip@tbundles with connection and
equivariant gerbes with connection, by using equivarianb@h Deligne cohomology
groups. Essential ideas here also come from Brylinski'sep4f).

We denote byG a Lie group acting on a smooth manifeid

5.1. Equivariant circle bundle with connection. As usual, aG -equivariant
principal T-bundle overM is defined to be a princip@tbundle P — M together
with a lift of the G -action onM to that o by bundle isomorphisrsllowing [6],
we first reformulate this definition by using the simpliciahnifold G* x M .

For a principalT-bundle P — M , we define a principdl-bundledP — G x M
by 0P =933P ®9d;P®~L. Similarly, for aT-bundle Q — G x M , we define &-bundle
900 - G?>x M by 390 = B0 ® 83"Q®—1 ® 05Q. By the relation (5), theT-bundle
0P — G2 x M is canonically isomorphic to the trivial-bundle G?> x M) x T —
G?>x M.

Lemma 5.1. For a principal T-bundle P overM, the following notions are
equivalent
1. a lift of the G -action onM to that onP by bundle isomorphisms
2. a sectionos € I'(G x M, dP) such thatdc = 1 on G? x M, where we putdo =
dgo ® ;0% ® 050.
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Proof. Letwr :P — M be a principall-bundle with a lift of theG -action o/
to that onP by bundle isomorphisms. By definition, we have

93P = {(g.x, P) € G x M x P | x =x(p)},
3P = {(g,x,p) € Gx M x P|gx=n(p)

Using the lift of the G -action, we define a bundle isomorphismd;P — 07 P by
o(g, x, p) = (g, x, gp). The inversepo™! gives rise to the sectionr . Sincgigs)p =
81(g2p) holds forgi, g2 € G and p € P, we haved;g o 0 = 970, SO thatdo = 1.
By performing this construction conversely, we can obtailifteof the G-action from
a sectionc \G x M — 9P such thale =1. ]

Theorem 5.2 (Brylinski [6]). The isomorphism classes of -equivariant princi-
pal T-bundles overM are classified by *(G* x M, T).

The proof of this theorem can be seen in that of Theorem 5.6.
Next, we reformulate the notion of an invariant connectionam equivariant prin-
cipal T-bundle. We denote the Lie algebra 6f By and the natural contraction by

(1):g®Hom(g, v-1R) - V—1R.

DeriniTion 5.3. Let P — M be aG -equivariant-bundle, andé a connec-
tion on P (which is not necessarily -invariant). We define acfion u: M —
Hom(g, v—1R) by (X|u(x)) = 6(p;X*), wherep € P, is a point on the fiber of
x, and X* € T, P is the tangent vector generated by the infinitesimabraaf X € g
on P.

Since the left action ofG onP commutes with the right actionTobn P, the
map u is well-defined. We call the above map  thement[2].

For a connectiord on a principdl-bundle P onM , we denote by the in-
duced connectionjt ® 9;6%~* on 9P =93P ® 9} PO,

Lemma 5.4. Let P - M be aG -equivarianfl-bundle 0: G x M — 9P the
induced sectionand 6 a connection o  which is not necessalily -invariant. &or
tangent vectogX @ V € T,G & T M, the value of thel-form o*(36) is

(15) (07(30)) (8. x); g X ® V) = (6 — g70)(x; V) — (X|n(gx))-

Proof. By the help of the bundle map d5P — 07P used in the proof of
Lemma 5.1, we evaluate the value of the 1-form at the tangectov to give

(07(30)) (8. x); X ® V)
= (956 — 0"310)((8. x. )i X BV & V)
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= 350((g, x, p); g X ®V @ V) — 370((g, x, gp); s X ® V @ (g X" +gV))
= (0 — g"0)(p; V) — (g70)(p; X*),

whereV € T, P is a lift of the tangent vectoV € T.M . Rewriting the last expressio
we obtain the result. ]

We denote by d i € AY(G? x M) = A4(GP x M)/FA9(G? x M) the relative
differential form represented by € AY G x M ).

Lemma 5.5. A connectiond on & -equivariant principdl-bundle P — M is
G-invariant if and only if[6*(86)]rel = 0 i V=1 AYG x M)l

Proof. Whené is aG -invariant connection, the expression (dfglies that the
1-form o*(@6) belongs tov/—1 FIAYG x M). Thus, as an element i’ =1 AYG x
M), the 1-form is equal to zero. The converse is apparent. [l

Theorem 5.6. The isomorphism classes 6f -equivaridivbundles overM  with
G-invariant connection are classified by *(G* x M, F(1)).

Proof. First, for an equivariarif-bundle with connectionK,6 ) oveM , we de-
fine a cohomology class i} (G* x M, F(1)). Letu* = {{P)} be a sufficiently fine
open cover ofG* x M so that we can take local sectignsU®) — Pl 0. We define
a cochain

by setting
17) Sar = Sag Saroass
1
(18) 0y = anS§9,
(19) (08)a = oly® La-
In the last line, we putds.) = dGsiu@ © 055 ). The cochain is closed in

Clu*, 7(1)), and defines a class iHX(G* x M, F(1)). It is straight to verify that
the class is independent of the choice of the local sectiows af the open cover.
We can also verify that the cohomology class is identical tfee other equivariant
T-bundle with connection isomorphic taP(6 ). Notice that thenmrphism classes
of G-equivariantT-bundles with connection constitute a group by the congdhgirod-

uct ® on T-bundles. It is direct to see that the assignment Ro¢( ) of tsscin

HY(G* x M, (1)) induces a homomorphism of groups.
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Second, we show the injectivity of the homomorphism. If thecycle is a
coboundary, then we obtain a glob&l -invariant section Pof chsthats*6 = 0.
Trivializing P by this section, we see that the lift of theé 4act on M to that on
P >~ M x T is trivial. Hence, £, 6 ) is isomorphic to the trivial equivantaT-bundle
with the trivial connection. _

Finally, we show the surjectivity. As a part of a cocycleéﬁ(bl', F(1)), we have
a cocycle (. 01) € CHUO, F(1)). By the standard method, we can construct-a
bundle P with a connectiof from the cocycle @ . By using  and,(& can
construct a global section G x M — P  which makeB,f ) infb -equivdrian

]

We can directly generalize the proof above to obtain thesidiaation of equivari-
ant principal T-bundles withflat connection.

Corollary 5.7. The isomorphism classes @ -equivariafitbundles over M
with G-invariant flat connection are classified By*(G* x M, F(N)), where N is an
integer such thatv > 1.

Theorem 5.6 allows us to have a generalization of some eesifiltHattori and
Yoshida [18].

Corollary 5.8. Let G be a Lie group acting on a smooth manifold, and P a
principal T-bundle overM equipped with a connectién
(a) There exists two obstruction classes far, ) to being G -equivariant. The first
obstruction class belongs t&/X(G x M, ]-:(1)), and the second obstruction class to
Hou(G, H(M, T)).
(b) Suppose tha{P, 8) admits a lift of theG -action omM by bundle isomorphisms
preserving the connection. Such liftings atg to automorphisms dfP, 6), in one to
one correspondence witHglroup(G, HO(M, T)).

Proof. By the spectral sequence in Proposition 4.1, we oldai exact sequence
0— E;’o — HYG* x M, ]-:(1)) — Eg‘l — Eé‘o.

Recall that @, 0 ) is classified bg{* = HY(M, F(1)). BecauseEy ' = Ker{d;: ES' —
E>Y, the first obstruction belongs t61* = HY(G x M, F(1)). Clearly, the second
obstruction belongs t&3° = H2,, (G, H%(M, T)). Thus (a) is proved. The (b) is also
clear by E;° = HY, (G, HO(M, T)). O

Note that whenG is a finite group, Corollary 5.8 (b) was shownStyarpe as the
classification of orbifold group actions onta (1) gauge fie2d][
It would be worth while deriving the moment M — Hom(/—1R) in a con-
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text of the equivariant smooth Deligne cohomology groupt fiebe the Lie algebra
of G, g* the dual space of, and( | ) :g ® g* — R the natural contraction. By the
(co)adjoint, the Lie groupG  acts on an elemefk g* by (X| Ad, f) = (Ad, X| f).

Lemma 5.9. There exists an isomorphism
(20) HX(G* x M, F'FQ1)) = {f: M — g* | f(gx) = Ad, f(x) for all g € G}.
Proof. SinceF!A? is soft onG? x M for eactpy , we have
H2(G* x M, F*F(1)) =Ker{d: FIAYG x M) - FAYG? x M)).

Let « be an element iF'AY(G x M). Note that for any tangent vectof € T,M  we
havea (g, x );V ) = 0. By a computation, we can see that the cocyahelition da =0
is equivalent to the following conditions:

a((g2, x); g2X) = a((g182, x); g182X),
a((g1, g2x); g1X) = a((g1, g2x); 81X g2),

where a tangent vector at € G is expressedgads € T,G by an eleXient
T.G = g. Thus, the isomorphism (20) is induced by the assignmeni tof the
map f:M — g* defined by(X|f £) =« (¢, x )X ). Clearly, the inverse homo-
morphism is given by the assignment 1 M. — g* of the 1-forma defined by
a((g. x);gX @ V) = (X| f(x)). [

Recall that the exact sequence of complexes of simpliciabgs
0— FY¥(1) — F(1) — F(1)— 0
induces a homomorphism
B: HY(G* x M, F(1)) — HAG" x M, F*F(1)).

Lemma 5.10. Let (P, 6) be a G -equivariantT-bundle with connection ove,
and c € HY(G* x M, F(1)) the cohomology class that classifie®, ). The images(c)
is identified with the mag—1/(2r+/—1)}u: M — g* under (20).

Proof. We use the same notations as in the proof of TheoremVie6represent
the classc € HY(G* x M, F(1)) by the Cech cocycle (16) inC1(U*, F(1)). Regard-
ing it as a cochain irffl(LI', F(1)), we compute the coboundary. Then the non-trivial
components are

96, — dlogg. € AYUY),

1
27/ —1
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where 86, = 3;6;. ) — 83605 ,- By the definition of6} and g, , we obtain

1 1
361 — dlogg, = *(30)|,0 € FIAYUWY).
e L v (e)
Now (15) and (20) complete the proof. U

We remark that the computation in the proof above is esdbnttee same as that
performed in [6] to obtain the equivariant Chern class Bf{ ).

5.2. Equivariant gerbe with connection. The notion of equivariant gerbes
(with connection) [6] is defined in a fashion similar to thenplicial formulation of
equivariant principall-bundles (with connection). To save pages, we follow teakin
ogy in [7, 8], and drop including the definition of gerbe ifsel

As in the case of principall-bundles, for a gerb&€ over M we define a gerbe
dC over G x M by settingdC = 35C ® 9;C®~1. Similar notations will be used in the
sequel.

Derinimion 5.11 ([6]). A G-equivariant gerbes defined to be a gerb@ over M
together with the following data:
(1) a global objectR e ' ¢ x M, 3C);
(2) an isomorphismy 9R — 1 of global objects in the trivial gerbe oves? x M
which satisfiesdy =1 oG x M.

In the definition above, we regard the trivial gerbe 0@ x M as the sheaf of
categories of principall-bundles. So the global objedt means the trivialT-bundle
(G?x M) xT — G?x M.

Derinimion 5.12 ([6]). A G -equivariant gerbeC( R, ) is said to betrivial if we
have a global objec € I' M,C) and an isomorphismy R — dP o0& x M  such
thatdn =¥ onG? x M. The data P, ) is called amquivariant objectof (C, R, V).

Theorem 5.13(Brylinski [6]). The isomorphism classes 6f -equivariant
gerbes overM are classified b§?(G* x M, T).

The proof of this theorem can be seen in that of Theorem 5.16.

Derinmion 5.14 ([6]). Let C, R, ¥) be aG -equivariant gerbe oved
(&) A G-invariant connective structuren (C, R, V) is defined to be a connective
structure Co onC with an elementDy € T'(G x M, (3 Co)e(R)) such that the iso-
morphismv, carries) Dy to the relatively trivial connection od.
(b) A G-invariant curving for the G -invariant connective structure () is de-



332 K. Gowmi

fined to be a curvingk for Co such thadK e/(Dre) = O.

Here we make some remarks on the definition above. A coneestiucture Co
on C induces a connective structufe CdECo®3d; Co®* on aC, and a curvingk
for Co induces a curvingk 83K ®9;K®~* for 3 Co. From the connective structure,
we obtain therelative connective structurby setting

(9 Co)el(P) = (3 Co)(P )/ F'A*

for a local objectP € T" {U,dC) given on an open se/ ¢ G x M . We denote by
[Vlrel € T'(U, (3 Co)el(P)) =T'(U, (3 Co)(P))/ FAY(U) the element represented 8y ¢
I'(U, 3 Co(P)). For @ Co) the relative curving

(@K )re1: T(U, (3 Coel(P)) = A*(U)rel

is defined by §K i([Vlre) = [(0K)(V)]rel-
When aG -equivariant gerbe is equipped withGa -invariant eative structure
and aG -invariant curving, we simply call it @ -equivariantrige with connection.

Derinimion 5.15. A G -equivariant gerbe with connectio@, Co, K, R, Drel, V) iS
said to be trivial if we have a global objedk € TI' M(C), an elementV €
'(M, Co(P)) and an isomorphisn) R( Dy) — (0P,[0V]re) such thatk ¥V ) = 0
anddn =y .

Theorem 5.16. The isomorphism classes & -equivariant gerbes with connec
tion over M are classified byf2(G* x M, F(2)).

Proof. First, we assign &ech cocycle to an equivariant gerbe with connection
(C,Co, K, R, Dret, ¥). LetU* = {U?)} be a sufficiently fine open cover af* x M
For each open set/(?), we take an object?, € T (?,C) and an elemenV, e
r(UO, Co(P,)). We also take isomorphisms, : Po, = Po, 0N UL, andv, :R —
(0P)o = 03 Pasie) ® 05 Py on UM, We use below the following notations:

(au)aoal = aE)k“?’o(oro)("o(m) ® 3f“§@i)al(a1)v
(8V)a = 85 Vi) ® 35 V(e

(3v)a = 35Vag@) ® 8;1)58;(;])' ® 95 Viy(a)-

Then we define &ech cochain

fO(oO{lo(z . _ 3 IV(QZ.E)@
(21) 0(3(-0&1’ 8Bagay S CZ(Z/[., .7:(2)) = 5 KO. 1 lﬁB KLlOée
62,  wl,  he K002g K101 g 200



EQUIVARIANT SMOOTH DELIGNE COHOMOLOGY 333

by setting

Jooosor = Uagas © Uagary © Yo

6 = (”aoal)*val - Vaov

62 = K(Va),
gotootl = U;Ol o (8u)ao(¥1 o Uotlv
wi = [(3V)alrel — (o)« Drer,

he = Yo (30);1.

By computations, we can verify that the cochain is indeed ayde. We can
also verify that the cohomology class represented by thegabeds independent of
all the choices made, and is identical for the other equavarigerbe with con-
nection isomorphic to d, Co, K, R, D, ¥). Then the assignment of the class to
(C,Co, K, R, Drei, ) induces a homomorphism from the isomorphism classes of
G-equivariant gerbes with connection ®2(G* x M, F(2)), where the group multi-
plication on the isomorphism classes is given by the prodf@i@erbes [7].

Second, we show that the homomorphism is injective. We ssmpioat the cocycle
assigned tod, Co, K, R, D, ¥) is a coboundary. Without loss of generality, we can
assume that the cocycle is zero. Then we hafg. k. 62 ,,. 62) = 0 € C3UO, F(2)).
This implies that €, Co, K) is trivial: we have a global objedt’ € T' M, C) and an
elementV’ e I' (4, Cof’ )) such thak V( )= 0. Similarly, becaugg,, = 1, there is
an isomorphismy R — 3P’ . It is direct to see that = 0 andh, =1 lead to the
rest of the conditions for the equivariant gerbe with comioacto be trivial.

Finally, we show that the homomorphism is surjective. Sgppthat a class in
H?(G* x M, ]-:(2)) is given. We represent it by €ech cocycle as in (21). Then
we can construct a gerbe with connectiofl, Co, K) from the cocycle condition
DO(£,6%,6%) = 0 in C3U®O, F(2)), where D is the coboundary operator on
C2UD, F(2)). (see [7] for the detailed construction.) The conditid(f, 6%, 62) —
DW(g, wh) = 0 in C3UWD, F(2)) implies that we have a global obje® € T' G (x
M, dC) and an elemenDy € I'(G x M, (0 Co}el(R)) such that §K i(Drel) = 0. By
using the conditiord ¢, 1)+ D® (k) = 0 in C1(U®@, F(2)), we obtain a global isomor-
phismy» :0R — 1 which carriesd Dre to the relatively trivial connection od. This
isomorphism satisfiegy = 1 by the rest of the condition () = ICRU®, F(2)).

O

A similar proof establishes the following corollary.
Corollary 5.17. The isomorphism classes 6f -equivariant gerbes with flat con

nection overM are classified bi%(G* x M, F(N)), where N is an integer such that
N > 2.
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By using a result in Section 4, we obtain the gerbe version afblary 5.8.

Corollary 5.18. Let G be a Lie group acting on a smooth manifald, and
(C, Co, K) a gerbe with connection ove¥
(@) There are three obstruction classes f@#, Co, K) to being G -equivariant. The
first obstruction class belongs t#H?(G x M, F(2)). The second and third ob-
struction classes are represented by cohomology classe§Y{{G? x M, F(2)) and
Hgo, (G, H(M, T)) respectively.
(b) Suppose that we can maké, Co, K) into a G -equivariant gerbe with connection
over M. The isomorphism classes of sugh -equivariant gerbigs s@nnection are
in one to one correspondence with a subgraif? contained iINH2(G* x M, F(2))
which fits into the following exact sequence

HOHYG* x M, F(2)), 9) —> Hgou(G, H'(M, T)) — piy2 —

HYHYG* x M, F(2)).0) — Hiou(G, HA(M. T)).
Proof. By the spectral sequence in Proposition 4.1, we haeeekact sequences

0— FHG* x M, F(2)) —= H*G* x M, F(2))— E%?2—0,

0 EZP FHHG® x M, F(2)) — EL* —0.
Recall that ¢, Co, K ) is classified byE>? = H2(M, F(2)). Thus, by means of the first
exact sequence above, it suffices to understand when an relém&®? survives into
E%2 Note thatE%? = Ex? = Ker{ds: Eg? — ES°) and Ex? = Ker{dy: Ex? — E37).
Hence we have three obstruction classes belonging to ttenvob groups

EX? = HYG x M, F(2)),
E5' = Ker{di: EZY — EJYY/Im{di: ETY — EFY),
E3® = E3%1m(dy: EX' — E3O).

Since B2 = HY(G?x M, F(2)) and E3° = H3, (G, H(M, T)), we have (a). The first
exact sequence above also implies that there is a one to onesgondence between
FH(G* x M, F (2)) and the set of isomorphism classes(®f -equivariantegerith

connection whose underlying gerbes with connection &r€¢, K ). By expressing the

second short exact sequence in termsEgfterms, we obtain (b). [l

Remark 5. Let G =SU (2] be the grougU (2) with the discrete topology. We
consider the action o6 o SU (2) S by the left translation. By computations,
we haveE;* = EZ' = 0 for the spectral sequence in Proposition 4.1. Thus, the ob

struction class for a gerbe with connection o classified by anSU (2) -invariant
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class in H3(S3, F(2)) = A3(5%) to being SU (2) -equivariant belongs t&3° =
Hg,oup(SU(2)5,’ﬂ‘). A detailed description of the obstruction class is givenBrylin-
ski [7].

When G is a finite group, the choice of the ways of making a gerlie @onnec-
tion over M into G -equivariant was intensively studied by leaf24, 25] as the clas-
sification of orbifold group actions on B-fields. In [22], Leyzio and Uribe performed
the classification by using the Deligne cohomology grouptifier orbifold M /G , which
coincides with the equivariant smooth Deligne cohomologyug in the case oG fi-
nite.

As Corollary 5.18 indicates, we can “twist” & -equivarianerige with con-
nection by a group 2-cocycle with coefficients in th@ -modu# (M, T): let
(C,Co, K, R, D, ) be aG -equivariant gerbe with connection ovdr , andG x
G x M — T a smooth function which defines a group 2-cocygle €
Z&oup(G. H(M, T)). If we replace the isomorphisnt  of principatbundles byyy ,
then C, Co, K, R, Dy, ¥y) is also an equivariant gerbe with connection.

By using the other result in Section 4, we have the next campll

Corollary 5.19. Let G be a Lie group acting on a smooth manifald .df is
compact then anyG -equivariant gerbe ove  admitsGa -invariant cortivecstruc-
ture and aG -invariant curving.

Proof. Recall the homomorphisl2(G* x M, F(2)) — H*G* x M, T). Since
G is assumed to be compact, the homomorphism is surjectivertyyoBition 4.6 (a).
Now the corollary follows from Theorem 5.13 and Theorem 5.16 O

For a gerbe with connectiorC(Co, K) over M , we have a closed 3-for@ €
A3(M) called the 3curvature It is proved by Brylinski [7] that a closed 3-form
Q e A3(M) is the 3-curvature of a gerbe with connection if and only ifsitintegral,
namelyQ belongs to the kernel of the mag(M)y — H3(M, T) induced from (1).

Corollary 5.20. Let G be a Lie group acting on a smooth manifalf
(a) For a G-equivariant gerbe with connectiofC, Co, K, R, Dy, V) over M, the
3-curvature Q@ € A3(M)q of (C,Co, K) is G-invariant.
(b) A G-invariant closed 3-fornt2 € A3(M)fI is the 3-curvature of aG -equivariant
gerbe with connection if and only ®2 belongs to the kernel led homomorphism
A3(M)§ — H3(G* x M, n~'T) induced from(11).

Proof. By Proposition 4.7 (b), we have an exact sequence

HAG* x M, F(2)) -5 A3M)G — H3(G* x M, T).
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Since the 3-curvature ofC(Co, K) is obtained as the image undér of the class in
H?(G* x M, F(2)) that classifiesd, Co, K, R, Dy, V), the exact sequence above di-
rectly leads to the corollary. [l

As is seen in Proposition 4.9, the image of the homomorphBmH2(G* x
M, F(2) - H3G* x M, FYF(2) provides the “equivariant extension part” for the
3-curvature of an equivariant gerbe with connection. By heb.10, we can think of
it as a “moment” associated with the equivariant gerbe withnection. The image of
B is used in [17] to study a relationship betwe€n -equivargerbes with connection
over M and gerbes with connection over the quotient spd¢é
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