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Abstract
We present a class of knots associated with labelled genericimmersions of in-

tervals into the plane and compute their Gordian numbers and4-dimensional invari-
ants. At least 10 % of the knots in Rolfsen’s table belong to this class of knots. We
call them track knots. They are contained in the class of quasipositive knots. In this
connection, we classify quasipositive knots and strongly quasipositive knots up to
ten crossings.

1. Introduction

Several classes of knots are closely related to generic immersions of compact
1-manifolds into the plane. The class of track knots we shallpresent subsequently
is a partial generalization of the class of divide knots. A divide is the intersection
of a plane curve with the unit disk inR2, provided the plane curve is transverse
to the unit circle. The concept of knots associated with divides is due to Norbert
A’Campo and emerged from the study of isolated singularities of complex plane curves
(see [1]). In [2] and [3], A’Campo specified some properties of divide knots, includ-
ing fiberedness and a Gordian number result. Mikami Hirasawagave an algorithm for
drawing diagrams of divide links and extended the Gordian number result to certain
arborescent links (see [9]). A large extension of the class of divide links was intro-
duced by William Gibson and Masaharu Ishikawa [8]. They keptthe Gordian number
result, too. Tomomi Kawamura [11] and Ishikawa independently proved the quasiposi-
tivity of these links of free divides.

Borrowing from all these, we propose a new construction of knots associated with
labelled generic immersions of intervals into the plane.

Let be the image of a generic immersion of the interval [0 1] into the plane. In
particular, has no multiple points apart from a finite numberof transversal double
points, none of which is the image of 0 or 1. Further we enrich ,as follows (see
Fig. 1 for an illustration).
(i) A small disk around each double point of is cut into four regions by . Label
each of these regions by a sign, such that the sum of the four signs is non-negative.
There are four types of patterns of signs around a double point, called and .
They are shown in Fig. 2. If the tangent space at a double pointof is
the set ( ) R2 ( ( ))2 = ( ( ))2 , then we may represent patterns
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Fig. 2. Patterns of signs

of four signs at by one of the following symbols:

1 1 2 3 1 2 3

An index at a symbol means that the corresponding pattern hasto be turned
counter-clockwise by the angle ( 2).

For example, 1 stands for the pattern+
+−

−
.

Henceforth we shall use these symbols.
(ii) Specify a finite number of different points1 2 on the edges of (i.e.
on the connected components of {double points}, such that 1 2 is
simply connected, but not necessarily connected. is greater than or equal to the num-
ber of double points of .

A labelled generically immersed interval in the plane will always be denoted
by .

The following algorithm associates a knot diagram, hence a knot in the 3-space,
to a labelled generically immersed interval .
(1) Draw a parallel companion of . In other words, replace by the boundary
of a small band following . Join the two strands with an arc at both end points of

and orient the resulting plane curve clockwise, in regard ofthe small band (see
Fig. 3).
(2) At each double point of , place over- and under-crossingsaccording to the signs
of the four regions, as shown in Fig. 4.



TRACK KNOTS 259

Fig. 3.
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Fig. 4.

The characters a, b, c and d stand for ‘above,’ ‘between,’ ‘conventional’ and ‘dou-
ble,’ respectively. ‘Conventional’ crossings appear in the visualization of links of di-
vides, see Hirasawa [9].
(3) Add a full twist to the band at each specified point of , in a manner that gives
rise to two positive crossings (see Fig. 4).

The knot diagram arising from by these three steps will be denoted by ( ),
the corresponding knot by ( ).

DEFINITION. A track knot is a knot which can be realized as a knot associated
with a labelled generically immersed interval . If it can be realized without any dou-
ble point of type , then we call it aspecial track knot.

REMARK. We observe that the classes of track knots and special trackknots are
closed under connected sum. The connected sum operation corresponds to the gluing
of two labelled immersed intervals along end points. This isnot true for knots of free
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divides; the connected sum of the free divide knot 52 (in Rolfsen’s numbering [16])
with itself is not a free divide knot.

2. Slice and Gordian numbers

Let be an oriented link with components in3 = 4. The slice num-
ber ( ) of is the maximal Euler characteristic among all smooth, oriented sur-
faces in 4 which are bounded by and have no closed components. The surfaces
in consideration need not be connected. If is a knot, the 4-genus ( ) is defined
as (1 2)(1 ( )). The clasp number ( ) of a link is the minimal number of
transversal double points of generically immersed disks in4 with boundary . We
will also be concerned with the Gordian number ( ), which is the minimal number
of crossing changes needed to transform into the trivial link with components.
The following two inequalities relate these numbers:

(1) ( ) ( )
1

2
(1 ( ))

They can be shown by purely geometrical arguments, see Kawamura [10].
Gordian numbers and 4-dimensional invariants of track knots are easy to deter-

mine. Let be a track knot associated with a labelled generically immersed inter-
val . Further let , , and be the numbers of double points of withpat-
terns of signs of type , , and , respectively.

Theorem 1. The clasp number and the4-genus of equal +2 . If is zero,
then the Gordian number and the ordinary genus of equal+ 2 , too.

Corollary. Both the clasp number and the4-genus are additive under connected
sum of track knots. Moreover, the Gordian number is additive under connected sum of
special track knots.

REMARK. The connected sum of a knot with its mirror image always bounds
an embedded disk in 4, thus the clasp number and the 4-genus are not additive un-
der connected sum of knots in general. It is still a conjecture that the Gordian number
is additve under connected sum of knots (see M. Boileau and C.Weber [5]).

Proof of Theorem 1. We first show that the 4-genus of does not exceed
+ 2 . If = = 0, then is clearly slice, i.e. bounds a disk in4. Indeed,

the band following provides an immersed disk in3 with boundary . At each
double point of type we may push a part of the band into˚ 4 to get an embedded
disk. But then, at each double point of type , we add one handleto the band, as
Fig. 5 (c) suggests. Similarly, we add two handles to the bandat each double point of
type , see Fig. 5 (d). This creates an embedded surface in4 of genus + 2 with
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Fig. 5.

boundary . If = 0, it is an embedded surface in3.
We remark that the spots where we add handles to the band can beinterpreted as

clasp singularities of the immersed band. Therefore the clasp number of does not
exceed + 2 , either. Next, we show that the Gordian number of does not exceed

+ 2 , provided is zero. If = = 0, then is the unknot since it bounds
an embedded disk in3. On a knot diagram level, double points of type differ from
double points of type only by one crossing change, see Fig. 4.Similarly, double
points of type differ from double points of type by two crossing changes. Hence
we conclude ( ) + 2 .

We still have to prove that +2 is a lower bound for the four numbers in ques-
tion. If we prove ( ) + 2 , then we are done, thanks to (1). For this purpose
we need the slice-Bennequin inequality. Let be the diagram of an oriented link .
The writhe ( ) is the number of positive minus the number of negative crossings
of the diagram . Smoothing at all crossings produces a union of Seifert circles.
Let ( ) be their number.

Theorem (Slice-Bennequin Inequality).

( ) ( ) ( )

The slice-Bennequin inequality was first established for closed braid diagrams by
Lee Rudolph [17]; the proof of the general case can be found inRudolph [18] and
Kawamura [10]. A ‘3-dimensional’ version of the inequality(concerning Seifert sur-
faces) was proved by Daniel Bennequin [4].

Now let us compute ( ( )) and ( ( )) for the knot diagram of the labelled
generically immersed interval .
(1) ( ( )) = 2 + 4 + 2 , where is the number of specified points on .
(2) Each double point and each specified point of gives rise toa small Seifert cir-
cle, see Fig. 6. Moreover, each connected component of 1 2 gives
one Seifert circle. The number of connected components of 1 2 be-
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Fig. 6.

c

Fig. 7.

ing 1 + ( + + + ), we conclude

( ( )) = + + + + + 1 + ( + + + ) = 2 + 1

Thus the slice-Bennequin inequality yields ( ) 1 2 4 and ( ) =
(1 2)(1 ( )) + 2 .

REMARKS. (i) If we renounce twisting the band at some specified points, then
the statements of Theorem 1 are no longer true. The labelled immersed interval (with-
out specified points) of Fig. 7 has one double point of type andgives the unknot.
(ii) The statement of Theorem 1 about the Gordian number can be extended for track
knots with = 1. However, if 2, then the Gordian number may be greater than

+ 2 . E.g. the knots 946 and 10140 are slice track knots (see Table 2) and their
Gordian numbers are certainly not zero.

3. The knots 10131 and 10148

The knot 10131 is the track knot corresponding to the labelled immersed interval
of Fig. 8. Its 4-genus and Gordian number equal 1. The latter is declared unknown in
Akio Kawauchi’s table of knots [12]. It is a curious fact thatwe can see the unknot-
ting operation on its minimal diagram both in Rolfsen’s and Kawauchi’s table.

The knot 10148 is not a genuine track knot; it corresponds to a labelled immersed
interval with too little specified points, see Fig. 9. Copying the first part of the proof
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of Theorem 1, we see that its 4-genus is 1 at most. Since the knot 10148 is already
known not to be slice, we conclude that its 4-genus is 1. This entry in Kawauchi’s ta-
ble of knots has been corrected a few years ago, see [13]. However, we cannot decide
whether its Gordian number is 1 or 2.

4. The HOMFLY polynomial and quasipositivity

The HOMFLY polynomial ( ) Z[ 1 1] of an oriented link is defined
by the following two requirements (see [7]):
1. Normalization: ( ) = 1, where stands for the regular diagram consisting of
one trivial circle.
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2. Relation: (1 ) +( ) ( ) = ( ). Here +, and denote
regular diagrams which coincide outside a standard disk anddiffer, as in Fig. 10, in-
side this disk.

Writing ( ) = ( )
= ( ) ( ) , with ( )( ), ( )( ) = 0, as a Laurent poly-

nomial in one variable , we define its range in as [ ( ) ( )]. H.R. Morton gave
some bounds for ( ) and ( ) in terms of the writhe and the number of Seifert cir-
cles of a diagram of .

Theorem (Morton [14]). For any diagram of an oriented link

( ) ( ( ) 1) ( ) ( ) ( ) + ( ( ) 1)

The first inequality is tailor-made for track knots.

Theorem 2. 2 ( ) ( ) for any track knot .

Proof. Choose a track knot diagram of . The proof of Theorem 1 tells us
that ( ) = (1 2)(1 ( )+ ( )), which is exactly half the lower boundin Morton’s
theorem.

Theorem 2 draws our attention to quasipositive knots. A quasipositive knot is
a knot which can be realized as the closure of a quasipositivebraid. A quasipositive
braid is a product of conjugates of a positive standard generator of the braid group.
The slice-Bennequin inequality being an equality for closed quasipositive braid dia-
grams, we see that Theorem 2 is true both for track knots and for quasipositive knots.

Theorem 3. Track knots are quasipositive.

We adopt the pattern of Takuji Nakamura’s proof of strong quasipositivity of pos-
itive links (see [15]). Any planar knot diagram gives rise toa system of Seifert cir-
cles with signed arcs, where each arc stands for a crossing joining two Seifert circles,
as shown in Fig. 11. The sign of an arc tells us whether the crossing is positive or
negative.

DEFINITION. A knot diagram isquasipositiveif its set of crossings can be parti-
tioned into single crossings and pairs of crossings, such that the following three con-
ditions are satisfied.
(1) Each single crossing is positive.
(2) Each pair of crossings consists of one positive and one negative crossing joining
the same two Seifert circles.
(3) A pair of crossings does not separate other pairs of crossings. More precisely, go-
ing from one crossing of a pair to its opposite counterpart along a Seifert circle, one
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Fig. 12. A pair of crossings

cannot meet only one crossing of a pair.

EXAMPLES.
Positive knot diagrams are obviously quasipositive.
Track knot diagrams are quasipositive: negative arcs are incident with a small

Seifert circle corresponding to a double point of type , or . They can be paired
with neighbouring positive crossings of the same small Seifert circle (see Fig. 12). At
this point, it is essential that 1 2 is simply connected. This guarantees
that pairs of crossings do not get entangled (see Fig. 11).

Quasipositive braid diagrams are quasipositive.

Lemma. A quasipositive knot diagram represents a quasipositive knot.

Proof. Any link diagram can be deformed into a braid representation, i.e. a sys-
tem of concentric Seifert circles, by a finite sequence of bunching operations or con-
centric deformations of two types, without changing the writhe and the number of
Seifert circles of the link diagram. This algorithm is due toShuji Yamada, see [20].
We shall explain these two deformations and their effect on quasipositive knot dia-
grams.

First of all, we may consider only knot diagrams which have anoutermost Seifert
circle 1, i.e. one that contains all the other Seifert circles. This corresponds to choos-
ing a point on the sphere2 appropriately.

If 1 contains a maximal Seifert circle2 with the opposite orientation of1, then
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we apply a concentric deformation of type I to2, as shown in Fig. 13.
If 1 contains maximal Seifert circles with the same orientationas 1 only, then

we apply a concentric deformation of type II to any of these maximal Seifert circles,
say to 2, as shown in Fig. 14.

In the next step, we consider maximal Seifert circles inside2, and so on. This al-
gorithm clearly ends in a braid representation. Now we observe that concentric defor-
mations of both types preserve the quasipositivity of knot diagrams in the above sense.
They merely introduce new pairs of crossings, which do not get entangled. Fig. 15
and 16 show how a positive crossing (or a pair of crossings, respectively) gets more
‘conjugated’ by new pairs of crossings after a concentric deformation.

Thus, starting with a quasipositive knot diagram, we end up with a quasipositive
braid diagram, which clearly represents a quasipositive knot.

Theorems 2 and 3 reduce the number of potential track knots. In the following,
we consider prime knots up to 10 crossings. Looking at Kawauchi’s table of knots,
we see that 60 of 249 prime knots up to 10 crossings satisfy theinequality 2 ( )
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( ). Among these 60 knots, 42 have positive diagrams:

31 51 52 71 72 73 74 75 815 819

91 92 93 94 95 96 97 99 910 913 916 918 923 935 938 949

1049 1053 1055 1063 1066 1080 10101 10120

10124 10128 10134 10139 10142 10152 10154 10161

REMARKS. (i) Since knots are always listed up to mirror image, we mustbe
more precise: ‘a knot satisfies the inequality ’ means ‘either or its mirror im-
age ! satisfies the inequality ’
(ii) The 4-genus of the knot 1051 is not known. However, it is known not to be slice,
hence the inequality 2 (1051) (1051) = 0 is not satisfied.

According to the result of Nakamura [15] and Rudolph [18], positive knots are
strongly quasipositive, i.e. they can be realized as the closure of a braid which is a
product of positive embedded bands of the form

= ( 2) 1( 2) 1

where is the i-th positive standard generator of the braid group. The remaining
18 knots are listed in Table 1, except for the knot 10132, which is not quasiposi-
tive. Alexander Stoimenow already pointed out that the quasipositivity of the knot
10132 would imply the quasipositivity of its untwisted 2-cable link, together with
a violation of Morton’s inequality, which is a contradiction (see [19]). Table 1 con-
tains one strongly quasipositive, non-positive knot: 10145. It is non-positive since it is
non-homogeneous (see P.R. Cromwell [6]). The other 16 knotsare not strongly quasi-
positive since their 4-genus is smaller than their genus. Inparticular, they are non-
positive. So in Table 1 we list all quasipositive, non-positive prime knots up to 10
crossings in Rolfsen’s numbering, together with a quasipositive braid representation,
the 4-genus and the ordinary genus . In the second column a b and A B
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Table 1. Quasipositive, non-positive prime knots up to 10 crossings

Knot quasipositive braid representation
820 (abAbaBA)(baB) 0 1
821 (abA)b(Abba) 1 2
945 a(Bcb)b(bacB) 1 2
946 (abbcBBA)(bacB) 0 1

10126 aa(aaabAAA)b 1 3
10127 abbb(bAbbaB) 2 3
10131 a(aaBCbdBcbAA)(BcbdcBCb)d(Bcb) 1 2
10133 aab(bDCbcdB)(bCBcACbcdCBcaCbcB)(bCBcaCbcB)1 2
10140 (abbbcBBBA)b(Cbc) 0 2
10143 a(BBBaaabbb) 1 3
10145 (abA)cd(abA)(bcB)(bcdCB)(cdC)b 2 2
10148 ab(bbacBB)(cbC) 1 3
10149 a(bbCbccBB)a(bcccB) 2 3
10155 (abA)(ABcbCba)(bcB) 0 3
10157 a(Baab)b(baaB) 2 3
10159 a(BBaabb)(baB) 1 3
10166 (abcBA)(acbA)(Bcb)(Aba) 1 2

stand for 1 2 and 1
1

1
2 and have nothing to do with symbols of labelled

immersed intervals. Parentheses should help to recognize positive bands. The braid of
the knot 10145 is strongly quasipositive.

This classification of quasipositive and strongly quasipositive knots gives us an in-
teresting criterion for detecting strongly quasipositiveknots.

Proposition. A knot with 10 crossings at most is strongly quasipositive, if and
only if it is quasipositive and its4-genus equals its ordinary genus.

We conclude this section with some questions and problems arising from the study
of track knots and quasipositive knots.
(1) Does there exist a quasipositive knot which is not a trackknot? (The free divide
knots 916, 10124, 10152 and 10154 might be good candidates.)
(2) Classify track knots up to 10 crossings. For this purpose, find new criterions for
detecting track knots.
(3) Is it true that a knot is strongly quasipositive, if and only if it is quasipositive and
its 4-genus equals its ordinary genus? In particular, is it true that special track knots
are strongly quasipositive?
(4) Do alternating quasipositive knots have positive diagrams? (Up to ten crossings,
this is true.)
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(5) Generalize the class of track knots in order to get some new Gordian number re-
sults.
(6) Prove the additivity of the Gordian number under connected sum of knots.

5. Examples of track knots

In this section we look at the labelled immersed interval shown in Fig. 17. It has
two double points and two specified points.

There are 112 patterns of signs, represented by a symbol at each double point.
Knots associated with different patterns of signs need not be different. It is still re-
markable that we obtain 24 different prime knots in this way.They are listed in Ta-
ble 2. The second and third column of Table 2 show the Dowker-Thistlethwaite num-
bering and the Rolfsen numbering, respectively. The fourthcolumn tells us whether
the knot is a free divide knot or not. In [8], Gibson and Ishikawa have listed knots of
free divides. Up to 10 crossings, their list is complete. We add the 4-genus in the fifth
column. It equals the clasp number and, except for the knots 946, 10140 and 11 139,
also the Gordian number.
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Table 2. Knots associated with a special immersed interval

( ) DT numbering Rolfsen numbering free divide
( ) 7 4 72 No 1
( 1) 5 1 52 Yes 1
( ) 7 5 73 Yes 2

( 1 1) 9 5 946 No 0
( 1 3) 10 29 10140 No 0
( 1 ) 12 121 No 1
( 1 1) 3 1 31 Yes 1
( 1 ) 10 14 10145 Yes 2
( 3 3) 11 139 No 0
( 3 3) 10 4 10133 No 1
( 3) 8 2 815 No 2
( ) 10 30 10142 No 3

( 1 1) 8 2 821 No 1
( 1 3) 9 2 945 No 1
( 1 1) 5 2 51 Yes 2
( 1 3) 7 3 75 Yes 2
( 1 ) 10 31 10161 Yes 3
( 3 3) 10 19 10131 No 1
( 3 ) 10 22 10128 No 3
( 1) 11 118 No 2
( 3) 12 407 No 2
( 1) 7 7 71 Yes 3
( 3) 10 6 10134 No 3
( ) 12 591 ? 4
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[13] http://www.sci.osaka-cu.ac.jp/˜kawauchi/index.htm
[14] H.R. Morton: Seifert circles and knot polynomials, Math. Proc. Camb. Phil. Soc.99 (1986),

107–109.
[15] T. Nakamura:Four-genus and unknotting number of positive knots and links, Osaka J. Math.

37 (2000), 441–451.
[16] D. Rolfsen: Knots and Links, Publish or Perish, 1976.
[17] L. Rudolph: Quasipositivity as an obstruction to sliceness, Bulletin of the AMS, 29 (1993),

51–59.
[18] L. Rudolph: Positive links are strongly quasipositive, Proceedings of the Kirbyfest, 1999.
[19] A. Stoimenow:On polynomials of variously positive links, arXiv: math.GT/0202226, February

2002.
[20] S. Yamada:The minimal number of Seifert circles equals the braid indexof a link, Invent.

math.89 (1987), 347–356.

Mathematisches Institut der Universität Basel
Rheinsprung 21
CH-4051 Basel
Switzerland
e-mail: baader@math-lab.unibas.ch


