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Abstract
We present a class of knots associated with labelled geimarizersions of in-
tervals into the plane and compute their Gordian numbersdadinensional invari-
ants. At least 10 % of the knots in Rolfsen’s table belong te tass of knots. We
call them track knots. They are contained in the class of igoasive knots. In this
connection, we classify quasipositive knots and stronglasipositive knots up to
ten crossings.

1. Introduction

Several classes of knots are closely related to generic isioms of compact
1-manifolds into the plane. The class of track knots we shadisent subsequently
is a partial generalization of the class of divide knots. Aidk is the intersection
of a plane curve with the unit disk ifR?, provided the plane curve is transverse
to the unit circle. The concept of knots associated with d#isi is due to Norbert
ACampo and emerged from the study of isolated singularité complex plane curves
(see [1]). In [2] and [3], ACampo specified some propertiésdivide knots, includ-
ing fiberedness and a Gordian number result. Mikami Hirasgawee an algorithm for
drawing diagrams of divide links and extended the Gordiamiver result to certain
arborescent links (see [9]). A large extension of the cldssivde links was intro-
duced by William Gibson and Masaharu Ishikawa [8]. They kifygt Gordian number
result, too. Tomomi Kawamura [11] and Ishikawa indepenigeptoved the quasiposi-
tivity of these links of free divides.

Borrowing from all these, we propose a new construction ajt&rassociated with
labelled generic immersions of intervals into the plane.

Let C be the image of a generic immersion of the interval [0 1§ ithe plane. In
particular,C has no multiple points apart from a finite numbérransversal double
points, none of which is the image of 0 or 1. Further we eniithas,follows (see
Fig. 1 for an illustration).

(i) A small disk around each double point 6f is cut into fougims by C . Label
each of these regions by a sign, such that the sum of the fgus 36 non-negative.
There are four types of patterns of signs around a doublet,poidled a, b, ¢ andd .
They are shown in Fig. 2. If the tangent spafgC at a double peimf C is
the set{ £,y )e R? | (y — y(p))? = (x — x(p))?}, then we may represent patterns
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Fig. 2. Patterns of signs

of four signs atp by one of the following symbols:
a,ai, b,b1, by bz c,crcacsd.

An index i at a symbol means that the corresponding patterntdhdse turned
counter-clockwise by the angler( 2).

For example b1 >< stands for the patterﬁ{{.

Henceforth we shall use these symbols.
(i) Specify a finite number of different pointps, po, ..., p, on the edges o (i.e.
on the connected components ©f-{double point$, such thatC — {p1, p2, ..., p,} is
simply connected, but not necessarily connected. is grésa@ or equal to the num-
ber of double points ofC .

A labelled generically immersed interval in the plane willvays be denoted
by Cy.

The following algorithm associates a knot diagram, hencenet kn the 3-space,
to a labelled generically immersed inten@j,
(1) Draw a parallel companion of; . In other words, replace by boundary
of a small band followingC, . Join the two strands with an arc ethbend points of
C; and orient the resulting plane curve clockwise, in regardhef small band (see
Fig. 3).
(2) At each double point of; , place over- and under-crossamgrding to the signs
of the four regions, as shown in Fig. 4.
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The characters a, b, ¢c and d stand for ‘above, ‘betweenfnveational’ and ‘dou-
ble,” respectively. ‘Conventional’ crossings appear ie tisualization of links of di-
vides, see Hirasawa [9].

(3) Add a full twist to the band at each specified pointf , in anmer that gives
rise to two positive crossings (see Fig. 4).

The knot diagram arising frond;,, by these three steps will beotighby D (C;, ),

the corresponding knot b C{ ).

Derinmion. A track knotis a knot which can be realized as a knot associated
with a labelled generically immersed interv@l . If it can lealized without any dou-
ble point of typeb , then we call it apecial track knot

Remark. We observe that the classes of track knots and special toacts are
closed under connected sum. The connected sum operatioesponds to the gluing
of two labelled immersed intervals along end points. Thisas true for knots of free
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divides; the connected sum of the free divide knet(l Rolfsen’s numbering [16])
with itself is not a free divide knot.

2. Slice and Gordian numbers

Let L be an oriented link witm components i§¢ = 3dB*. The slice num-
ber x, (L) of L is the maximal Euler characteristic among all srhpariented sur-
faces in B* which are bounded by. and have no closed components. Thecesirfa
in consideration need not be connectedkIf is a knot, thenige* (K ) is defined
as (¥ 2)(1— x; € )). The clasp number L( ) of a link is the minimal nemlof
transversal double points @f generically immersed disk®4rwith boundaryL . We
will also be concerned with the Gordian numbei. ( ), which is thinimal number
of crossing changes needed to transfakm  into the trividt livith » components.
The following two inequalities relate these numbers:

1) u(L) 2 (L) = 51— (L))

They can be shown by purely geometrical arguments, see KaveaftO].

Gordian numbers and 4-dimensional invariants of track «rene easy to deter-
mine. Let K be a track knot associated with a labelled gengriéammersed inter-
val C,. Further letA ,B ,C andD be the numbers of double point<pf \pih
terns of signs of typer 5 ¢ and , respectively.

Theorem 1. The clasp number and thégenus ofK equal+2D. If B is zerq
then the Gordian number and the ordinary genuskof  equia 2D, too.

Corollary. Both the clasp number and thkgenus are additive under connected
sum of track knots. Moreovethe Gordian number is additive under connected sum of
special track knots.

Remark. The connected sum of a knot with its mirror image always lkisun
an embedded disk iB*, thus the clasp number and the 4-genus are not additive un-
der connected sum of knots in general. It is still a conjectinmat the Gordian number
is additve under connected sum of knots (see M. Boileau and/éher [5]).

Proof of Theorem 1. We first show that the 4-genus Kof does noeexk
C+2D.If C =D =0, thenK is clearly slice, i.eK bounds a disk &f. Indeed,
the band followingC, provides an immersed disk S8 with boundary K . At each
double point of typeb we may push a part of the band iBtbto get an embedded
disk. But then, at each double point of type , we add one hatallthe band, as
Fig. 5 (c) suggests. Similarly, we add two handles to the bangach double point of
type d, see Fig. 5 (d). This creates an embedded surfa& iof genusC +2 with
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Fig. 5.

boundaryK . IfB =0, it is an embedded surfacesh

We remark that the spots where we add handles to the band centebereted as
clasp singularities of the immersed band. Therefore thepclaumber ofK does not
exceedC +2 , either. Next, we show that the Gordian numbek of es dmt exceed
C + 2D, providedB is zero. IfC =D =0, thelk is the unknot since it baind
an embedded disk i5%. On a knot diagram level, double points of type differ from
double points of typea only by one crossing change, see FigSidilarly, double
points of typed differ from double points of type by two crogsichanges. Hence
we concludex K xC +D .

We still have to prove tha€ +R2 is a lower bound for the four nenshin ques-
tion. If we proveg, K )> C + 2D , then we are done, thanks to (1). Fos thirpose
we need the slice-Bennequin inequality. LBt be the diagr&mnocoriented linkL .
The writhew QL ) is the number of positive minus the number ofatieg crossings
of the diagramD, . Smoothing, at all crossings produces a uniddedert circles.
Let s(Dr) be their number.

Theorem (Slice-Bennequin Inequality).
xs(L) = s(Dr) — w(Dy).

The slice-Bennequin inequality was first established faisetl braid diagrams by
Lee Rudolph [17]; the proof of the general case can be foun®udolph [18] and
Kawamura [10]. A ‘3-dimensional’ version of the inequalifgoncerning Seifert sur-
faces) was proved by Daniel Bennequin [4].

Now let us computew 0 @, )) and I C, )) for the knot diagram of theel#d
generically immersed interval’;,

(1) w(D(C,))=2C +4D +2 , wherer is the number of specified points@n

(2) Each double point and each specified pointCf gives risa small Seifert cir-
cle, see Fig. 6. Moreover, each connected componer@;of {pi1, p2,..., p,} gives
one Seifert circle. The number of connected component§,of {ps1, po, ..., p,} be-
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Fig. 6.

Fig. 7.
ing 1+r — (A +B +C +D), we conclude
s(D(C,)=A+B+C+D+r+1+r— A +B +C +D)=2 +1

Thus the slice-Bennequin inequality vielgs K (<) -1 C2 D4 gidK ( ) =
(/A= xs &)= C +2D. O

Remarks. (i) If we renounce twisting the band at some specified ppitlien
the statements of Theorem 1 are no longer true. The labethetersed interval (with-
out specified points) of Fig. 7 has one double point of type ginds the unknot.

(ii) The statement of Theorem 1 about the Gordian number eaextended for track
knots with B = 1. However, ifB > 2, then the Gordian number may beatgr than

C + 2D. E.g. the knots & and 1Qqo are slice track knots (see Table 2) and their
Gordian numbers are certainly not zero.

3. The knots 1Q3; and 1045

The knot 1Qs; is the track knot corresponding to the labelled immersedrva
of Fig. 8. Its 4-genus and Gordian number equal 1. The lasteteiclared unknown in
Akio Kawauchi’s table of knots [12]. It is a curious fact thae can see the unknot-
ting operation on its minimal diagram both in Rolfsen’s anawuchi’s table.

The knot 1Qq4g is not a genuine track knot; it corresponds to a labelled inseek
interval with too little specified points, see Fig. 9. Copyithe first part of the proof
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of Theorem 1, we see that its 4-genus is 1 at most. Since the Ihgs is already
known not to be slice, we conclude that its 4-genus is 1. Thisyan Kawauchi’'s ta-
ble of knots has been corrected a few years ago, see [13]. \owee cannot decide
whether its Gordian number is 1 or 2.

4. The HOMFLY polynomial and quasipositivity

The HOMFLY polynomial P, ¢, z )e Z[v*?, zY] of an oriented linkL is defined
by the following two requirements (see [7]):
1. Normalization:Py ¢,z ) =1, wher&® stands for the regular diag@onsisting of
one ftrivial circle.
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2. Relation: (¥v Pp,(v,z) —vPp_(v,z) = zPp,(v, z). Here D,, D_ and D, denote
regular diagrams which coincide outside a standard disk diffier, as in Fig. 10, in-
side this disk.

Writing P (v, z) = Z,f:(f&) ar(z)v*, with a.)(z), apey(z) # 0, as a Laurent poly-
nomial in one variabler , we define its rangedn as/[,(E)L ( )]. H.RorMn gave
some bounds foe I{ ) and’ L( ) in terms of the writhe and the numbeeifert cir-
cles of a diagram of. .

Theorem (Morton [14]). For any diagramD; of an oriented linit
w(Dr) — (s(Dr) —1) <e(L) < E(L) = w(Dr) +(s(Dr)— 1)

The first inequality is tailor-made for track knots.

Theorem 2. 2g¢*(K) < e(K) for any track knotK .

Proof. Choose a track knot diagram & . The proof of Theorenells us
thatg* (K) = (1 2)(s O )+w O )), which is exactly half the lower bouird Morton’s
theorem. ]

Theorem 2 draws our attention to quasipositive knots. A ipaastive knot is
a knot which can be realized as the closure of a quasipoditig@&l. A quasipositive
braid is a product of conjugates of a positive standard ge¢oerof the braid group.
The slice-Bennequin inequality being an equality for ctbgpiasipositive braid dia-
grams, we see that Theorem 2 is true both for track knots anduasipositive knots.

Theorem 3. Track knots are quasipositive.

We adopt the pattern of Takuji Nakamura’s proof of strongsiuasitivity of pos-
itive links (see [15]). Any planar knot diagram gives rise @aosystem of Seifert cir-
cles with signed arcs, where each arc stands for a crossiniggotwo Seifert circles,
as shown in Fig. 11. The sign of an arc tells us whether thesiirgsis positive or
negative.

Derinimion. A knot diagram isquasipositiveif its set of crossings can be parti-
tioned into single crossings and pairs of crossings, suah ttie following three con-
ditions are satisfied.

(1) Each single crossing is positive.

(2) Each pair of crossings consists of one positive and ommtive crossing joining
the same two Seifert circles.

(3) A pair of crossings does not separate other pairs of trgssMore precisely, go-
ing from one crossing of a pair to its opposite counterpash@la Seifert circle, one
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Fig. 11. A system of Seifert circles

Fig. 12. A pair of crossings
cannot meet only one crossing of a pair.

EXAMPLES.
e Positive knot diagrams are obviously quasipositive.
e Track knot diagrams are quasipositive: negative arcs acglent with a small
Seifert circle corresponding to a double point of typeb , cor hey can be paired
with neighbouring positive crossings of the same small eseifircle (see Fig. 12). At
this point, it is essential thal; —{p1, p2, ..., p,} is simply connected. This guarantees
that pairs of crossings do not get entangled (see Fig. 11).
e Quasipositive braid diagrams are quasipositive.

Lemma. A quasipositive knot diagram represents a quasipositivat.kn

Proof. Any link diagram can be deformed into a braid represgen, i.e. a sys-
tem of concentric Seifert circles, by a finite sequence ofchirg operations or con-
centric deformations of two types, without changing thetheiand the number of
Seifert circles of the link diagram. This algorithm is due Sbuji Yamada, see [20].
We shall explain these two deformations and their effect aasgpositive knot dia-
grams.

First of all, we may consider only knot diagrams which haveoatermost Seifert
circle 1, i.e. one that contains all the other Seifert circles. Thigesponds to choos-
ing a point on the spher&? appropriately.

If S1 contains a maximal Seifert circl& with the opposite orientation ofy, then
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Fig. 14. A concentric deformation of type Il

w
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Fig. 15.

we apply a concentric deformation of type | 3, as shown in Fig. 13.

If $1 contains maximal Seifert circles with the same orientatsnS; only, then
we apply a concentric deformation of type Il to any of theseximal Seifert circles,
say to S, as shown in Fig. 14.

In the next step, we consider maximal Seifert circles insigeand so on. This al-
gorithm clearly ends in a braid representation. Now we oleséhat concentric defor-
mations of both types preserve the quasipositivity of kriagchms in the above sense.
They merely introduce new pairs of crossings, which do ndt eggangled. Fig. 15
and 16 show how a positive crossing (or a pair of crossingspestively) gets more
‘conjugated’ by new pairs of crossings after a concentrifoeation.

Thus, starting with a quasipositive knot diagram, we end uih & quasipositive
braid diagram, which clearly represents a quasipositivat.kn ]

Theorems 2 and 3 reduce the number of potential track knotshe following,
we consider prime knots up to 10 crossings. Looking at Kawesidable of knots,
we see that 60 of 249 prime knots up to 10 crossings satisfynéguality 2* K )<
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e(K). Among these 60 knots, 42 have positive diagrams:

31, 51, 52, 71, 72, 73, 74, 75, 815, 819,

91, 9, 93, 94, 95, 96, 97, 99, 910, 913, 916, 918, 923, 935, 938, a9,
1049, 1053, 10s5, 1063, 1066, 1050, 10101, 10120,

10124, 10128, 10134, 10139, 10142, 10152, 10154, 10461-

Remarks. (i) Since knots are always listed up to mirror image, we mist
more precise: ‘a knokk  satisfies the inequality ' means ‘eitkieor its mirror im-
age K satisfies the inequality. ’

(i) The 4-genus of the knot 1@ is not known. However, it is known not to be slice,
hence the inequality & (39 < e¢(10s1) = 0 is not satisfied.

According to the result of Nakamura [15] and Rudolph [18]sifiee knots are
strongly quasipositive, i.e. they can be realized as theuct of a braid which is a
product of positive embedded bands of the form

0 = (0i - 0;-2)0j-1(0i -+ 0;-2) ",

where o; is the i-th positive standard generator of the braiougr The remaining
18 knots are listed in Table 1, except for the knot;330 which is not quasiposi-
tive. Alexander Stoimenow already pointed out that the ipesitivity of the knot

1013, would imply the quasipositivity of its untwisted 2-cablenki together with
a violation of Morton’s inequality, which is a contradiatiolsee [19]). Table 1 con-
tains one strongly quasipositive, non-positive knot;430It is non-positive since it is
non-homogeneous (see P.R. Cromwell [6]). The other 16 kagsnot strongly quasi-
positive since their 4-genus is smaller than their genuspadrticular, they are non-
positive. So in Table 1 we list all quasipositive, non-piesitprime knots up to 10
crossings in Rolfsen’s numbering, together with a quadipesbraid representation,
the 4-genug™ and the ordinary gengis . In the second column a b d AAR, ...
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Table 1. Quasipositive, non-positive prime knots up to 1@ssings

Knot | quasipositive braid representation g*
80 | (abAbaBA)(baB)

8,1 | (abA)b(Abba)

95 | a(Bcb)b(bacB)

96 | (abbcBBA)(bacB)

10126 | aa(aaabAAA)b

10,27 | abbb(bAbbaB)

10131 | a(aaBChdBcbAA)(BcbdcBCh)d(Bcb)
10,33 | aab(bDCbcdB)(bCBcACbcdCBcaCbcB)(bCBcaChgB
10140 | (abbbcBBBA)b(Cbc)

10143 | a(BBBaaabbb)

10145 | (abA)cd(abA)(bcB)(bcdCB)(cdC)b
10145 | ab(bbacBB)(cbC)

10149 | a(bbCbccBB)a(bcccB)

10i55 | (abA)(ABchCba)(bcB)

10s57 | a(Baab)b(baaB)

10;59 | a(BBaabb)(baB)

1066 | (abcBA)(acbA)(Bcb)(Aba)

RIRr[N oM RN RO RN R ok RO
N Wl w|lw|w| N W NN N W w| kNN ke

stand foroy, o, ... ando; b, 0,1, ... and have nothing to do with symbols of labelled
immersed intervals. Parentheses should help to recoguizitive bands. The braid of
the knot 1Q4s is strongly quasipositive.

This classification of quasipositive and strongly quasip@sknots gives us an in-
teresting criterion for detecting strongly quasipositkreots.

Proposition. A knot with 10 crossings at most is strongly quasipositive and
only if it is quasipositive and itgd-genus equals its ordinary genus.

We conclude this section with some questions and problemsmarfrom the study
of track knots and quasipositive knots.
(1) Does there exist a gquasipositive knot which is not a triacit? (The free divide
knots 9, 10124, 10152 and 1Qs4 might be good candidates.)
(2) Classify track knots up to 10 crossings. For this purpdisel new criterions for
detecting track knots.
(3) Is it true that a knot is strongly quasipositive, if andyoii it is quasipositive and
its 4-genus equals its ordinary genus? In particular, isué tthat special track knots
are strongly quasipositive?
(4) Do alternating quasipositive knots have positive diagg? (Up to ten crossings,
this is true.)
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Fig. 17.

(5) Generalize the class of track knots in order to get sonve @erdian number re-
sults.
(6) Prove the additivity of the Gordian number under conegcum of knots.

5. Examples of track knots

In this section we look at the labelled immersed intervalaihan Fig. 17. It has
two double points and two specified points.

There are 14 patterns of signs, represented by a symbol at each doubts. poi
Knots associated with different patterns of signs need modifferent. It is still re-
markable that we obtain 24 different prime knots in this wakey are listed in Ta-
ble 2. The second and third column of Table 2 show the Dowkestlethwaite num-
bering and the Rolfsen numbering, respectively. The fowdlumn tells us whether
the knot is a free divide knot or not. In [8], Gibson and Iskviahave listed knots of
free divides. Up to 10 crossings, their list is complete. Wd ¢he 4-genus in the fifth
column. It equals the clasp number and, except for the kngis1®40 and 1k 139,
also the Gordian number.
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Table 2. Knots associated with a special immersed interval

(x,y) | DT numbering| Rolfsen numbering free divide | g*
(b, c) Tad 7 No 1
(b, c1) 5a1 5 Yes 1
(b, d) Ta5 73 Yes 2
(bl, b]_) on5 96 No 0
(bl, b3) 10n 29 10140 No 0
(b1, ¢) 120121 — No 1
(bl, C]_) 3al 3 Yes 1
(b1, d) 10n14 10145 Yes 2
(b3, b3) 112139 — No 0
(b3, C3) 1n4 10433 No 1
(C, C3) 8a2 815 No 2
(c,d) 10n 30 10142 No 3
(Cl, bl) 8n2 821 No 1
(Cl, b3) on2 95 No 1
(Cl, C]_) 5a2 5 Yes 2
(Cl, C3) 7a3 75 Yes 2
(c1,d) 10n 31 10161 Yes 3
(C3, bg) 1019 10431 No 1
(C3, d) 10n 22 10;28 No 3
(d, b1) 112118 — No 2
(d, b3) 120407 - No 2
d, c1) Ta7 71 Yes 3
d, c3) 1n6 10134 No 3
(d,d) 121591 - ? 4
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