Cordero, E. and Rodino, L.
Osaka J. Math.
42 (2005), 43-63

WICK CALCULUS: A TIME-FREQUENCY APPROACH
ELena CORDERO and Lici RODINO

(Received July 10, 2003)

Abstract
Anti-Wick operators are a class of pseudodifferentiaktyyperators that are also
known under the names of Time-frequency localization dpesaor Gabor-Toeplitz
operators or wave packets. We consider a general versionick Wperators, de-
pending on different window functions, and we investigdte telated calculus, ob-
taining a composition formula that extends the known resfilt 3, 5, 15, 16, 18].

1. Introduction

The purpose of this paper is to present a formula for the prodfi two Wick
operators, defined in terms of different pairs of windows ¢». In principle, Wick
operators can be converted to Weyl operators, and hence ayeapply to them the
standard symbolic calculus [14, 21]. It is natural, howeverconsider the product in
the Wick form, and try to compute directly the symbol in terofsthe symbols of the
factors; see in this direction [3, 5, 15, 16, 19]. Recentlyddrand Morimoto [1] have
given a full expansion for the Wick symbol of the product iretbase when all the
windows coincide with the Gaussian function.

We propose here a general formula. The expression is somewhastandard, be-
cause we write the product as a sum of anti-Wick operatorsesponding to a se-
guence of different pairs of windows, with decreasing ardéiis seems to us the only
possible expression of reasonable simplicity in the geneaise.

In the remaining part of this Introduction we recall the digfim of Wick oper-
ators and state the composition result. In Section 2 we suinengome concepts of
time-frequency methods used in the proof. In Section 3 weodhice the classes of
symbols we are arguing on. They are, essentially, those 0biS8H18], as generalized
in [3]. Let us emphasize that other classes of symbols, undgsker assumptions on
derivative estimates, would work as well. In Section 4 wevprthe result. In Sec-
tion 5 we give a composition formula for the particular caseGaussian functions as
a pair of windows and we recapture the results of Lerner [}, Ando and Mori-
moto [1]. Section 6 is devoted to miscellaneous commentsnéija we show how to
pass from a pair of windows to another and, finally, we coms$teuparametrix for the
elliptic Wick operators by using our formula; a natural agglion, which we hope
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to detail in future papers, concerns regularity resultsha frame of the modulation
spaces [9, 12].

Before stating the precise definition, let us observe thatkVdperators have been
considered in the past under rather different points of viemd different names. They
were introduced by Berezin [2] as a quantization procedang, as an approximation
of pseudodifferential operator s (“wave packets”) by Chal@and Fefferman [7, 11].
From the point of view of the time-frequency analysis, whiale shall adopt in
the following, they have been studied by Daubechies [8] aath&athan and Topi-
wala [17], and they are now extensively investigated as gyoitant mathematical tool
in signal analysis and other applications [22, 23, 10, 6fenrthe name of localization
operators.

Let us begin by defining the operators of translation and ratidun by

1) T f@)=f@—x) and M,f ¢)=e""""f(r).
For a fixed non-zerg € S(R?) the short-time Fourier transform of € S'(RY) with
respect to the windowg is given by

) Vo f(x,0) =(f, M,T,8) = 5 O —x)e 2 gr .

Then the time-frequency localization operatdf“> with symbola and windowsp;,
@7 is defined to be

3) AP f (1) = /};Zd a(x, w)Vy, f(x, ©)M,Te@(t) dx dow .

If a € S'(R*) and ¢1, 92 € S(RY), then (3) is a well-defined continuous operator
from S(RY) to S'(RY). If ¢1(r) = @o(r) = e ™", then A, =A% is the classical Anti-
Wick operator and the mapping— A%““? is interpreted as a quantization rule [2, 18,
23].

Often it is more convenient to interpret the definition 4f*“? in a weak sense,
then (3) can be recast as

4 (A2 f, &) = (aVy, f, Vip,8) = (@, Vi f Ving)s  fo g8 € SRY).

In the sequel it will be useful to see (3) asiperpositionof rank one operators.
Namely, letY = §1,y2) € R* and consider the time-frequency shift operators given

by
H(Y)f = M)‘z Tmf

then we define

(%) By F () = (Vo HX)TIY (1),
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and (3) can be written as
(6) Afpe2 = / a(Y)zy*2ay.
R2d

Our analysis of localization operators will heavily use timerplay between time-
frequency methods and the Weyl calculus. Namely, the teciesi used to prove our
results will exploit therepresentation of the localization operatofy*“? as a Weyl

transform.Let W (g, f) be the cross-Wigner distribution defined below (11hef the

Weyl transformL, ofc € &'(R*) is defined by

@) (Lo f.8) =(o, W(g. f).  f.geSERY.

Every continuous operator fro§(R?) to S’(R?) can be represented as a Weyl trans-
form, and a calculation in [4, 11, 18] reveals th&f" "> = Lu.w(g,.¢), SO the (Weyl)
symbol of AS**? is given by

(8) o =ax W2, ¢1).

If we consider symbols in the classes of the subsequent Defir.1, our main result
can be stated as follows

Theorem 1.1. Let ¢1, 92, 3, 94€ S(RY), a € §™, b e ™. Let N be a positive
integer. If we define

1 o
(9) o, = W Z (ﬁ)(_l)lﬁl (@3, talfﬁlaarﬁzw‘l)tﬁlaﬂzwl’
B<a

wherea = (a1, a2), B = (B1. B2) € Z¢ x Z¢, then we have the following composition
formula

T ED e
(10) A9 A = ZO = Agsit? + Ly,
Jer|=

where L, is a Weyl operator with Weyl symbok §m:*m2=N,

An analogous formula could be proved by interchanging thle of the two sym-
bols, then the symbato*b is replaced b§*¢ b ) . More symmetric fda®uwvith re-
spect toa and could be easily recovered as well.

Notation.  We definer® =¢-¢, for t ¢ RY, andxy =x-y is the scalar product on
RY,
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The Schwartz class is denoted BR?), the space of tempered distributions by
S'(RY). We use the bracketsf, g)  to denote the extensio(@®?) x S'(R?) of the
inner product(f, g) = f 1(3(r)dr on L?(R%). The Fourier transform is normalized to
be f(w) = Ff(w) = [ f(t)e ?"dz, the involutiong* isg* () =g(—7) while the re-
flection operatoris Zg(x) = g(—x). Given two differentiable functions x(«w h x(w )
on R*, we recall their Poisson brackets

d

{a,b} =) (9u;ad:,b — 35,0y, b) .
j=1

If Z=(z1,22) e R¥ and¥ = 1, y2) € R¥, we set

[Y,Z] = z1y2 — y1z2

Thus [,-] is a non-degenerate, antisymmetric bilinear forralled the symplectic
form [20]. Let X; the j th coordinate off € R?, then Hx, denotes the Hamilton
vector field of X; , that is, for 1< j < d ,Hx, =-04+; and Hx,, = 9;. and
M, T, = e¥**T, M,. We defineg* { ) =g(—1).

Throughout the paper, we shall use the notatibrf B to indicateA < ¢B for a
suitable constant > O, whereas=< B Af<c¢B amd<kA , for suitahlé > 0.

j+d

2. Time-Frequency methods

First we summarize some concepts and tools of time-frequamalysis. Since
these methods are now available in textbooks [11, 12], wédl simait the most part
of the proofs.

2.1. Short-Time Fourier transform (STFT) and Wigner distri bution. The
time-frequency representations needed for the Weyl aadcahd for localization op-
erators are thahort-time Fourier transformand theWigner distribution

The short-time Fourier transform (STFT) of a distributigne S’(R?) with respect
to a non-zero window; € S(RY) is

Vel 0) = (£ ML) = [ F0 D e e ar,
R‘[
whereas thecross-Wigner distribution (£, g) of f, g € L3(R?) is defined to be
— £ _ L —2riwt
(11) W) @)= [ f(x+5)e(x - 5)e 2 ar.
The quadratic expressioW f,(f ) is usually called the Wignetfridigtion of f.

Both the STFTV,f and the Wigner distributioW f,¢ ) are defined on ynan
pairs of Banach spaces. For instance, they both m&R?) x L?(R?) into L2(R%)
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and S(RY) x S(R?) into S(R%). Furthermore, they can be extended to a map from
S'(RY) x §'(R?) into S'(R*). Actually, the cross-Wigner distribution, is just an STFT
in disguise [12, Lemma 4.3.1]; in fact, for afl, g € L%(RY),

(12) W(.fv g)(xv C()) = 2i€4ﬂixwvzgf(2xv 2(1))

We first list some crucial properties of the STFT (for prootge [12, Ch. 3]
and [13]).

Lemma 2.1. Let f, g, f;, g, € LAR9), j =1, 2,then we have
(i) (Switching f andg),

(13) (V&) §) =e 25 (Ve f)(—x, =§).

(i) (Inversion formuld,

(14 [ ers Mt nds e = g s

(i) (Orthogonality relationy,
(15) (Vay f1, Voo f2) L2rixraey = (f1, f2) L2(re) (81, §2) 12Re)-
(iv) (STFT of time-frequency shiftsor y, £ € R?, we have

(16) Ve(Mc Ty f)(x, ) = e 2OV, )(x =y, 0 = §),

(17) Voo (Me Ty f)(x, ) = 2T E =)V, f)(x, w).

Note that (16) and (17) can be read backwards and yield a farnfior the
2d-dimensional time-frequency shift, 7. V{f ,3, ¢ € R¥.

Given a non-zero windowy , we recall the adjoint operatorVpf et E be a
function onR*, we define

(18) V;F 2/ F(x, ©)M,T,y dx dw
R
it is easy to see that, fof € L3(RY),

(VIF, f) = (F, V, f).

Let g1, g2, g3 be non-zero windows iS(RY), and f € L?(R?), from (14) and (18)
we get

(19) (g27 83) Vglf = Vg1vg*2(vg3f)'
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The next lemma summarizes those properties of the Wignéritdison that we need
in the sequel. For the proofs we refer again to [12, Ch. 4].

Lemma 2.2. (i) LetZ;F(x,t)=F(x+(/2), x— (t/2)) be the symmetric coordi-
nate transform andfF(x, w) = fR[, F(x,t)e 2" dt be the Fourier transform in the
second variablethen

(20) W(f.g)=FT(f ®g)
(i) Covariance ofW(f, g): For u,n € R¢, we have

W(T M, £, T, My g)(x, @) = e N)g2risay)g-2riot)
+ +
(21) <W(f8)(x = 2 0= 120,

2 YT

(iiiy V(7. D(x, &) = W( f, 9(~,x).

Maybe the following lemma is well known, but since we have fatnd it in the
literature we shall give the proof of the assumption. Anotheeful property of the
cross-Wigner distribution is given by

Lemma 2.3. Let f, g € S(RY), then

(22) [ W09 o) drdo = (£, 9)

Proof. For the Wigner distribution the assumption hold® tfii2, Lemma 4.3.6]:
/ W(h, h)(x, w)dx dw = (h, h) for all h € S(RY).
R2d
Therefore relation (22) simply follows by polarization. U

We can now state a relation among cross-Wigner distribstibat will play a cen-
tral réle in the proof of the main result.

Proposition 2.4. Let Y = (y,y2) € R¥, Z = (z1,z2) € R#, then for all

fi, f2, 81, 82 € S(RY),
(23)

24 [ Wlsd (P57 WUz 8 (157) N 02 = i s W 00
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Proof. We translate the Wigner distribution into the copmwling STFT and we
use the STFT properties to get the result. By means of (12),

W(f, gl)(Y;ZZ) = exp{ 4”-<Y1 - Z1)<yz - Zz)} Vew filY — 7).

2 2
W(f2, gz)(—%) =2 exp{ 4ri<y1221)<y2 ; ZZ)} Vig, f2(—(Y + 2)).

Making use of (13) and (16)
Vra fa(~(Y + 2)) = Vg * Z)e Ziowadlms)
= sz(n(_ Y)Zgz)(z)ehi(yz+Zz)yle—2ﬂi(y1+Z1)(yz+zz)
= sz(n(_Y)Igz)(z)eme'(zlzz+yzz1).

Thanks to the previous computations we can translate thddefd side of (23) in
the following way

24 [ Wi (%) W(f2 82) (-Y;Zz)ezm-m o

=2 | ritvm ey, (v - 2)V(M(-V)Te2)(Z) dZ
R

= d p2miy1y2 3 e2rizi(z2—y2) Vg, flY — Z)
R

5 ezni(ylzz_yzzﬁe_hizlzzsz(H(—Y)ZgZ)(Z) dzZ

= /RM e~ Zriabe=2y . £(Y — Z)Ve (Z(TI(Y) f2))(Z) dZ

where the last equality is obtained by the three followingpst
(i) Switching relation (13)

e~V (TH(=Y)I82)(Z) = Vin(=v)zgn fo(— Z)
(i) Since 1Y) =M,,T,, = e*>v2T, M,, and by (17),

202y E) 7 fo(—Z) = Viwynenze) (1Y) f2)(—Z)
= g~ 2Tinye VIgz(H(Y)fZ)(_Z)

(iii) Observing thatT_,, Zg»(t) = Zgo(t + z1) = g2(—t — z1), then

Ve (T(Y) f2)(~2) = /R (1Y) £2) (—1)e Z<e g3t — 2y di

d

/Rd (T f2))(O)e T, go(r) dt
Ve, (Z(TI(Y) £2))(2).
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Now, (19) can be rewritten in our case as follows

2 5 e~ Fiabem2y L, (Y — Z)Ve, (ZI(Y) £2))(2) dZ

=2 [V (E) ) O a7

= 21V} Vi, (T(Y) £2)). TI(Y ) Zga)
= 2V, Vi Ve (TMM R)(V) = 2 f1, 22 Ve T(M(Y) £2)(7)
= ZI(fl, g2>e4niy1}‘2VIglz'f2(2Y) =(f1, gz)W(Zfz, gl)(Y),

and we get the assumption. [l

3. Symbol classes

Our classes of symbols, introduced by Shubin, Berezin ahérstauthors (see
e.g. [2, 18, 3]), will be defined in terms of general weightdtions A (Z) in R,

Weight functions [5, 3]. Let us denote(Z) = (1#Z|%)Y? we consider a weight
function A (Z), continuous irR%, for which there existg > 0 such that

(24) (2)¢ < A(2) < (2), for all Z e R¥,

Moreover, beside (24), we shall assume that sl@wvly varying i.e. there exists >
0 such that

(25) A(Z)= A(X), for |X — Z| < eA(Z).

Let us observe that, starting from (24), (25), one can alfays A(Z) € C®(R%),
with A(Z) < A(Z), satisfying (24), (25) and the additional property

(26) 07 A(2)l S Az)t 7.

We are therefore allowed to assume that (26) is also satibffed. From (25) it also
easily follows thatA istemperatein the sense that

(27) AZ)S AX)(Z - X).

Another property we shall require fok  is the following. Fdt a= (r1,...,tx) €
R, we have

(28) ACZ)S AZ), with 1Z = (21, . .., taz2).
Combining (25) with (28) we obtain for € R%, 1" € R¥

(29) ACZ +1"X) < AX)(Z — X).
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Finally, from (27), it follows that for every € R

(30) A@ZY S AX)(Z—-X)P

Symbols.

Derinimion 3.1, Letm € R, then the symbol clasSy , denoted for shsft in
the sequel, consists of the functionsZ (€ Y™ R%) which satisfy the estimates

107a(Z)] < A(Z)" 7.

Let us assume, without loss of generality, thatZ ( ) satisfi®);(then we may
write A(Z) € S*. We list in the following some basic propositions [18, 3].

Proposition 3.2. We haveS—> =, S" = S(R¥).

Proposition 3.3. (i) ™ c ™, if m < m’. (i) If a € §”, and b € ™, then
ab e §™" and a + b e S"m (i) If a € ™, then D%a € §"1* for all « . (iv) If
a €S thenTya(Z) = a(Z — W) € S™ for all W € R,

Let us observe that™ is a Fréchet space with respect to theneens |al; s» =
Supy <« SUR g A(Z)™™71|107a(Z)|. The preceding Proposition 3.3 can be reconsid-
ered in the corresponding topology; we have in particulartionity of the linear map
DY: §m S/"—|0(\.

Derinmion 3.4, Leta;j € S™,j =1 2... m; - —oo Withmj+1 < m; for all j,
and leta € §™. We writea ~ } 72, a; if for all integerr > 2a —3",_;_, a; € S"™.
We say also in this case thgt:ﬁl a; is anasymptotic expansiofor a.

Proposition 3.5. Leta; € §™, j =1 2...,m; — —oo With mjs1 < m; for
all j. Then there exista € " such thata ~ } 72, a;. If another symbok’ has the
same property, them — a’ € S(R%).

4. Proof of the main result

We begin with the following preliminary results. They can ®een as generaliza-
tions of [1, Lemmas 2.9, 2.10].

Lemma 4.1. Let g, 2 € S,
(i) consider the symbopy (X) = Ty W (g2, ¢1)(X), then

(31 ==L,

whereL,, is the Weyl operator with Weyl sympgl;
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(i) consider the symbol

- Y-Z Y+Z
(32)  prz(X) =22 W (g, Ten) (T> W(g2, ¢3) (X ) ) ,
then
(33) 2?1,9022?3-«74 = LPY.Z'

Proof. (i) Letf, ge S, we have

(Egl’wzf’ g) = lef(Y)szg(Y)

Therefore, by (4), the operata;*“> can be seen as a localization operator with sym-
bol the Dirac measuréy . Its Weyl symbol is given by

py(X) =8y * W(pz, 92)(X) = W(p2, p2)(X = Y).

(i) Let f,ge S, then

(Zy"E5 S g) V%f(Z)le(H(Z)‘M)(Y)W

| (12)ea, T )0 ()2 @ TTZN) ., ) 0 s

r

that is an integral operator with kernel
k(u, v) = (T(Z)pa, T )e1)(TI(Y )92 ® TH(Z)@3) (u, v).

The Weyl symbol is given by [12, Thm. 14.3.5]

pr.z(u,v) = FoTek(u, v) = ((Z)ga, TI(Y)p1) 2T (TI(Y )02 @ T(Z)ys)
= Voo (I(2)pa) (V)W (TI(Y )2, TI(Z)gs) (u, v),
then by (12), (16) and (21) and making easy computations et ($2). U

Lemma 4.2. LetY € R¥, f, g € S(RY), a = (a1, @2), B = (B1. B2) € Z¢ x 74,
then

34) YW (f.2)(¥)= m ; <;>(_1)Iﬂzl W (—Prgeebz £, 1F19P2)(Y).
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Proof. LetY = (,w)e R*, we shall deal with theime variable x and the
frequencyvariable separately. Since

W, . 8)(x, ) = X, W(f, g)(x, ) + %/ 2o ¢ <x . 5) . ( B 5) "
Rd

1 —2ritw ! !
W) 0) = W o) = 5 [ e 20 (w3 ) g (x5 )
2 Jpa 2 2
by summing up the two previous relations,

W8 = SV 1, () + WU )(Y)]

and by induction we get

(35) WD) = 5y ()W P00

1<y

Next, we consider thérequencyvariable

t

1 ) T/ A\
a)‘XZW(f, g)(x7 w) = W /Rd aaze—thwf <x + %) g ( . E) dt

— 1 —2itw qop t t
= 7(2711')'”' /Rd e a (f (x + E) g (x — 5)) dt

1 o2 _
- - —1)Al ge2—h2 r gh2
(4ri)e! = (,32)( )PEW( 1, 0728)(x, )

By gluing together the previous relations we get (4.2). U

We now have all the instruments needed to prove our maintresul

Proof of Theorem 1.1. By means of (6) we have

(36) AFLez AP = / a(Y)b(Z)s3+? 55> dY dZ.
2d

R

Applying Taylor’s formula to the symbab

N-1 N
bz =bm)+ S b E v 2),

|
e o!
where

(Z-Y)

1
by(Y,Z)=N Z/O (L—6)V13*b(Y +0(Z — Y))do o

la|=N
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We substitute the previous expansion of the symibol in (3@) we get

N-1
37) AP AT =N " Qy + Ry
|l|=0
where
1
(38) Qy = o /R y a(Y)o“b(Y)(Z — Y)* Ty 2P dy dZ,
and

Ry = / a(V)by (Y, Z) S EL94qY dZ.
Rh[

First we find the Weyl symbot = Ky ) oRy . By Lemma 4.1(ii), we have
V:O'(RN):/ a(Y)bN(Y, Z)py’dedZ
RZ[[

we therefore have to show thate §”+*”2=VN_ which means, fory € Z¢, to estimate
d”r. We make the change of variableX ¢ ¥, X —Z —) —X,—Z ) in the previous
integral and we estimatg” aky )¥,., (5)8”°ad’by . Sineee §™ and by (30)

|8y_5a(X +7) S AX + Y)/"1—|V|+|5| < A(x)ml—\yl"'wl(Y)|/"1—|V|+|5||‘

Analogously, sinceé € §™2 and by means of (30) and (29) we get, faif N=

|3°t+5b(X+Y+9(Z — y))| < A(X+GZ +(1_9)Y)m27N—|5|

< A(X)mz—N—m (Y)|mz—N—|a||<(Z B Y))Imz—N—IBII.

Recall thatW {2, ¢3) and W 4, Ze1) € S(R*), therefore we have the boundedness of
the integrals

Iyé :/ (Y)|/nl+mz—N—|y||<(Z _ Y))/nz—|5|62ni[Z,Y]
R

Y—-Z Y+Z
X W(pa, Ze1) <T> W(p2, ¢3) <—T) dY dZ < oo,

and we obtain, for ally € Z{, the estimatgd”r X )< X, (5)Ls A(X)" 2 N=Irl,
that isr e Smitme=N,
Now, we compute the Weyl symbob Q) of the operatorQy. Again, by
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Lemma 4.1(ii), the change of variableX ¢ Y, X —Z — —X,—Z ) and (23),

@)X = [ alX + I ¥ (e, 09 W Tz, Ton)(1) dY

= (o, 93) /R a(X + V)X + V)W (g, pr)(— V)Y
= (@a, p3)ab = W (@2, p1)(X),

then, by (8), we gefo = (¢4, p3)AY2%*, which means that the first term of the com-
position formula (36) is a localization operator with syrhigiven by the product of
the two symbolsz and

Next, we compute the Weyl symbel Qf ) of the operafey . By the saom-
putations as the previouR,, we get

0 (Q2)(X) = 2“’% / a(X +Y)9*b(X + Y)</ (Z — Y)W (@4, L) (ﬂ)
o Jrd R4
Y+Z

2
x W(gp2, ¢3) <— > )eZni[Z,Y] dZ) dy
N —-Z\"
= 2*d% /Rda(x+Y)8“b(X+Y)(/Rd<Y—ZZ) W(ga, Ze1)

Y-Z Y+7Z :
X <T) W (@2, ¢3) <— 5 >e2’”[“] dZ) dy.

For computing the previous expression we do not use the iggotrdeveloped in [1,
Thm. 2.5] which consists of expanding the powgrY ¢ ) and therking separately
on the two variabler and& . The reason is that in that contesy ttould exploit

the fact of having the Gaussian functions as windows, thadweot have any more.
We then use formula (34) which let us get rid of the powers & fiillowing way: the

cross-Wigner distribution is replaced by sums of crossifgdistributions of products
of powers with derivatives of the previous windows. Nameising (34) and, secondly,
(23) we have

—1)el
0(2:)(X) = 2—(/% /Rd a(X +Y)3°b(X +Y) (/Rd (le)lazl ;: <;>(_1)Iﬂzl

Y -7 Y+7
« W(tm*ﬂlaaz*ﬂzgam t,313/321'¢1) (T) W((pz, §03) (— > )

x 2z dZ) dy

_ (=1)e o i frad b
- WZ(ﬂ)(—l)ﬂ'(t Pra ﬂ<p4,903)/Rda(x+Y)

B<a
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x 3*D(X + Y)W (Zgo, Z(t70%¢1))(Y) dY

therefore

— 1)l
(20 = > (Z)(—l)'ﬁl' (19 P19 Pagy, g3)

lerz] oy 1
(27 i )2l ! e

X [(aa"‘b) * W (@2, tﬂla’szgol)](X).

Now, by means of (8), we have that

_ (—1) |/31| (e1-BrgazBe ’ﬁlaﬁz(ﬂl ¢z
(39) u = g ,,Z 5)D 07 P24, 93) Aj
Finally, we plug2, and (39) in (37) and we obtain the assumption. U

RemARrk. It might be useful to write (10) in the equivalent form
(- 1)I0tl o
A</71 tﬂzA(ﬂs 04— —1)Al
> a2 (p)
(40) « ( W(tal—ﬂlaaz—ﬂzwm 3)(Y) dY) ;ﬂ;aa:wl 2+L,.
R2d
Let us point out that the remainder terim can also be handlddeatimated in

the way developed in [15, 1]. Moreover, also the symbol @asse consider can be
replaced by the ones of [15, 1].

5. The Gaussian windows

It is possible to reset formula (10) or (40) in terms of Wickeogtors correspond-
ing to the same pair of windowgs, @2 = ¢, wheng is the Gaussian function. This is
the classical Wick case [15, 1].

Theorem 5.1. Letg; =¢ =2/4% 7" for j=1,...,4,a € S™, b e S™. LetN
be a positive integera € Z¢ x 74, Y, Z € R¥. If we set

V(D2 | (S @ragzy o
(41) Za|(4n)|a| {(; a z:ay_,-Hy) @ b}’

then relation(40) becomes
(42) APYATY = APV + L,
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where L, is a Weyl operator with Weyl symbok §mi+me—N,

Proof. We shall divide it into four steps.

STEP1. Lety,8eZ¢ Y= (x,w)eR¥, we need to computd¥ ¢(173°¢ e ).
Let ¥1, Y2 € S, then by straightforward computations one gets

Y
43) W v, 0) = (x 4155 ) Woin, v, o)
By Lemma 2.2(iii) and the previous (43) we obtain

(44) W (1, 8°92)(x, @) = (=21} W (1, £292) (0, —x)
b
= (—27i)? (w +i%> W (1, ¥2)(x, ).
TT

Now, by (43) and (44) we get
H.\" H,\°
(45) W (1, 17 3°y2)(x, w) = (=270 )°! [ x +i— w+ti— | W, ¥2)(x, w).
4 4
STEP 2. For everyf =gy, B2) € Z¢ x 74, we define
L N S A A
l - =X l a7 w T - .

In terms of the Gaussiap , we haVe ¢, x)p )%2% ¢+ and

1 . HY o —27Y? 1 a—p —2nY?
2 Y+i— e dy =2 Y* Pe dy
R2d 4 R2d

_[ (@~ p) Cif a— B e2(Zd x 79

(87 ) e=Al/2((a — B)/2)!
0 otherwise.

STep 3. We use the previous relation and (45) to compute (40). We ha

(40) = Z (zil;?«lzllal Z <‘;>(—1)|ﬂ1| < /R (i)t (y _i % )aﬁ

x W(g, p)(Y) dY) Lagebys((—2niyea (v+i(iy jan)f wip.g) + Lr

_ 1 ; o (Ol - ﬂ)!
=2 JZ > <ﬁ> (87 )e=AI2((a — B)/2)!

=0 " B=<a
a—pe2(Z¢ x74)
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X Liyricay jany e 2 waneny + Lr-

STEP 4. Now, by induction and exploiting the same arguments asethgsed to
obtain Relations (2.17) and (2.19) in [1], we get the follogviequality (details of the
proof are omitted for brevity)

1 o (¢ — B)! _Hy B _ony?
sz Z (ﬂ) (8r)=PI/2((a — B)/2)! (YHE) ()

p=a
_ 2
e Y
Z=dy—iHy

a—pe2Zd x74)
(D)2 [ S (b Az)
= 2@
g0 T
The last differential operator can hence be moved from thietdethe right-hand side
of the convolution fold, and this passage leads to (41). U

~ al(4w)kl

Remarks.  We address to [1] for a further elaboration of (41), see [(nT 2.5],
giving an expansion whose terms are well-ordered as standar

It is clear from the previous proof that to pass from the gehéorm of The-
orem 1.1 to the explicit one, we need only the following twat& evident for the
Wigner distribution of the Gaussian:
1. One can exactly calculatg,,, Y PW (g4, p3)(Y)dY = C(e — B), which always
vanishes forx — 8 € ¢ x Z%) if p3 and ¢4 are even functions.
2. The formulaY; W ¢z, ¢1)(Y) = ¢;3; W (g2, ¢1)(Y) holds (or not) for some:; € C.

6. Miscellaneous remarks

One would like to reset formula (10) or (40) in terms of Wickeogtors corre-
sponding to the same pair of windows, ¢, also in the general case. This is pos-
sible, in principle, by means of Corollary 6.4 below, allogito pass from a pair of
windows to another. Let us first list some properties of th&eR\bperators in our con-
text.

Theorem 6.1. Let A%"“? be an operator with symbal(x, ») € S and windows
01, g2 € S(RY) satisfying(see(22))

(46) /RM W(gp2, p1)(x, w)dx dw = (g2, p1) # 0.

Then its Weyl symbat (x, w) = a* W (g2, ¢1) belongs toS” with asymptotic expansion

(47) o, w)~ anﬁagafa (x, w),
o.f



Wick CALcuLUS 59

where
coo = (@2, ¢1)
1 1
= B, - aap
Cap 1f /x " IW (g2, ¢1)(x, w)dx dw A Bl@n )l 029P FIW(g2, 91)]1(0).

Proof. It is a straightforward modification of [3, Theoreml}6.One must sub-
stitute the Gaussian function with the Wigner distributi@i(¢», 1) and exploit the
property: W (o2, 1) € S(R?) for @1, 92 € S(RY). O

If we drop condition (46), then Theorem (6.1) can be repldese follows.

Theorem 6.2. If k € N is the smallest index such that

(48) 030 FIW (92, 92)I(0) # 0,  for some(a, B): la + B| =k,
then if a(x,w) € $™, we have that the Weyl symbel  belongs Stt* (the order
decreaseg!and A7"** has the asymptotic expansion given (8y) with constants,s =
0, for |a + B| < k.

Let us give an example of windows, ¢, such that condition (46) is not fulfilled.
Let 1(r) = 2/% ;e ™" and po(t) = 2/4¢~™"*, then by a straightforward computation we
get W (2, g1)(x, ) = 2 (x; +iw; e~ 27¢"**") and we havefy,, W (g2, ¢1)(x, w) dx do =
0, whereas it is easy to check that (48) is valid for =1.

Not every Weyl operator can be seen as a localization ogewdtb symbol in §”
(see [3]). However, from the symbolic calculus we have a eosw of Theorem 6.1
modulo regularizing operators, that is operators with &krrbelonging taS(R*) [3,
Thm. 6.2].

Theorem 6.3. For every Weyl operato., with Weyl symbel € S, and for
every pair of windowsp;, 9> € S(RY) satisfying (46), there existsa(x, w) € S™ such
that we have

L, =A%+ L., witho' e SR,

and

(49) a~ 36507000
Y,

with constantst, s € C. In particular,

1
(02, 01)

(50) Coo =
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The proof is again an easy modification of [3, Thm. 6.2].
Formally we have

Zaygagagzzooi(—l)f Y Dara
y,8 j=0

(r.8)7(0.0)

After developing the right-hand side, this gives the exgigs of ¢,s in terms of the
constantscys .

Corollary 6.4. Let g1, 2, 03, ¢4 € S(R?) and let Condition(46) be satisfied for
each pair of windowsp;, @2 and g3, ¢4. If we consider a symbat € S™, then there
exists a symbat’ € ™ such that

A9z = A%V L 1 with o € S(RY),
and

(51) a'~ Y Gscapd] 0005 00a

X w X “wT?
a,By.8

wherec,s are given by47) and ¢, are as in(49) corresponding to the windowss,
@4-

Proof. By Theorem 6.1 the localization operator can be &mitin term of Weyl
operator as follows

A2 = [, +L,, withr e S(R¥)

whereo € ™ with asymptotic expansion given by (47) and (48). New,apply The-
orem 6.3 for the Weyl operatat,  with respect to the windawsg, and we get

L, = A% + L, with v’ € S(R¥),
wherea’ is recovered from the expansioncof given by (49) and. (50 U

Applying Corollary 6.4 to each term of the sum in the right éieside of (10),
we may then rewrite the expression in terms of the same paivindows @1, ¢2. In
practice, for generigp, ¢, formula (10) seems preferable for applications, see be-
low. Finally, we construct parametrices for elliptic Wiclperators. Namely, assume
that p € §™ is elliptic, i.e. for largeZ € R* we have

(52) AZY" 5 p(2).
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Note that p~1(Z) is then defined as element 6f” , by cutting off for smaill
Fix ¢; € S(RY), j = 1,..., 4, and let condition (46) be satisfied for each pair of
windows g1, ¢ and g3, ¢4. We furthermore add the normalization conditiqp, ¢4) -
(g2, 91) = 1. Consider thenA =A%*"; given N > 1, we want to construct a
parametrixB , i.e.

(53) BA =1 +L,,

where L, is a Weyl operator with Weyl symbole S~V . We shall look f8r vegi
by a finite sum of operators of the form, *¥?, where ' consist of different linear
combinations of windows of the typg’3%p; and the symbols: belong t6=™ . To
this end, we begin to consideﬂf‘[‘ji’f’z, so that applying Theorem 1.1,

N-1
=D o
APrPRAS s = ] + E AT+ Ly,
p p ol p~ta*p
ler|=1

with s € 7V, and ®, as in (9). We may then set

N-1 N-1

. : 1) o, :
Bi=) (-1 [ D0 —mani, | vt

j=0 la=1

Applying repeatedly Theorem 1.1 to the right-hand side wepgeize thatB has the
required form; the remaindek, in (53) is easily written in #&eyl form with r €
S~V by using Theorem 6.1 and the classical Weyl calculus.

Such an expression of the parametrix can be easily appli¢gtetstudy of the reg-
ularity of the solutions in the frame of modulation spaces1®], by using the bound-
edness properties of the operater$“2 contained in [6].

Let us finally point out that, concerning positivity propest of the classical Wick
operators, they do not hold true in our context, if we consite different windows
@1, ¢2. In fact, if o1 =2 = ¢ anda > 0, we have

(AS%u, u) = (a, VouVou) = (a, |Voul?) = 0,
and the positivity property is maintained. Now, take esg=i¢;, then
(A%, u) = —i(a, |Vyul?).
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