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Abstract
Anti-Wick operators are a class of pseudodifferential-type operators that are also

known under the names of Time-frequency localization operators or Gabor-Toeplitz
operators or wave packets. We consider a general version of Wick operators, de-
pending on different window functions, and we investigate the related calculus, ob-
taining a composition formula that extends the known results [1, 3, 5, 15, 16, 18].

1. Introduction

The purpose of this paper is to present a formula for the product of two Wick
operators, defined in terms of different pairs of windows1, 2. In principle, Wick
operators can be converted to Weyl operators, and hence one may apply to them the
standard symbolic calculus [14, 21]. It is natural, however, to consider the product in
the Wick form, and try to compute directly the symbol in termsof the symbols of the
factors; see in this direction [3, 5, 15, 16, 19]. Recently Ando and Morimoto [1] have
given a full expansion for the Wick symbol of the product in the case when all the
windows coincide with the Gaussian function.

We propose here a general formula. The expression is somewhat non-standard, be-
cause we write the product as a sum of anti-Wick operators corresponding to a se-
quence of different pairs of windows, with decreasing order. This seems to us the only
possible expression of reasonable simplicity in the generic case.

In the remaining part of this Introduction we recall the definition of Wick oper-
ators and state the composition result. In Section 2 we summarize some concepts of
time-frequency methods used in the proof. In Section 3 we introduce the classes of
symbols we are arguing on. They are, essentially, those of Shubin [18], as generalized
in [3]. Let us emphasize that other classes of symbols, underweaker assumptions on
derivative estimates, would work as well. In Section 4 we prove the result. In Sec-
tion 5 we give a composition formula for the particular case of Gaussian functions as
a pair of windows and we recapture the results of Lerner [15, 16], Ando and Mori-
moto [1]. Section 6 is devoted to miscellaneous comments. Namely we show how to
pass from a pair of windows to another and, finally, we construct a parametrix for the
elliptic Wick operators by using our formula; a natural application, which we hope
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to detail in future papers, concerns regularity results in the frame of the modulation
spaces [9, 12].

Before stating the precise definition, let us observe that Wick operators have been
considered in the past under rather different points of view, and different names. They
were introduced by Berezin [2] as a quantization procedure,and as an approximation
of pseudodifferential operator s (“wave packets”) by Cordoba and Fefferman [7, 11].
From the point of view of the time-frequency analysis, whichwe shall adopt in
the following, they have been studied by Daubechies [8] and Ramanathan and Topi-
wala [17], and they are now extensively investigated as an important mathematical tool
in signal analysis and other applications [22, 23, 10, 6], under the name of localization
operators.

Let us begin by defining the operators of translation and modulation by

(1) ( ) = ( ) and ( ) = 2 ( )

For a fixed non-zero S(R ) the short-time Fourier transform of S (R ) with
respect to the window is given by

(2) ( ) = =
R

( ) ( ) 2

Then the time-frequency localization operator1 2 with symbol and windows 1,

2 is defined to be

(3) 1 2 ( ) =
R2

( ) 1 ( ) 2( )

If S (R2 ) and 1 2 S(R ), then (3) is a well-defined continuous operator
from S(R ) to S (R ). If 1( ) = 2( ) =

2
, then = 1 2 is the classical Anti-

Wick operator and the mapping 1 2 is interpreted as a quantization rule [2, 18,
23].

Often it is more convenient to interpret the definition of1 2 in a weak sense,
then (3) can be recast as

(4) 1 2 = 1 2 = 1 2 S(R )

In the sequel it will be useful to see (3) assuperpositionof rank one operators.
Namely, let = ( 1 2) R2 and consider the time-frequency shift operators given
by

( ) = 2 1

then we define

(5) 1 2 ( ) = ( 1 )( ) ( ) 2( )
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and (3) can be written as

(6) 1 2 =
R2

( ) 1 2

Our analysis of localization operators will heavily use theinterplay between time-
frequency methods and the Weyl calculus. Namely, the techniques used to prove our
results will exploit therepresentation of the localization operator 1 2 as a Weyl
transform.Let ( ) be the cross-Wigner distribution defined below (11). Then the
Weyl transform of S (R2 ) is defined by

(7) = ( ) S(R )

Every continuous operator fromS(R ) to S (R ) can be represented as a Weyl trans-
form, and a calculation in [4, 11, 18] reveals that1 2 = ( 2 1), so the (Weyl)
symbol of 1 2 is given by

(8) = ( 2 1)

If we consider symbols in the classes of the subsequent Definition 3.1, our main result
can be stated as follows

Theorem 1.1. Let 1 2 3 4 S(R ), 1 , 2 . Let be a positive
integer. If we define

(9) =
1

(2 ) 2
( 1) 1

3
1 1 2 2

4
1 2

1

where = ( 1 2), = ( 1 2) Z+ Z+, then we have the following composition
formula

(10) 1 2 3 4 =
1

=0

( 1)

!
2 +

where is a Weyl operator with Weyl symbol 1+ 2 .

An analogous formula could be proved by interchanging the rˆole of the two sym-
bols, then the symbol is replaced by ( ) . More symmetric formulas with re-
spect to and could be easily recovered as well.

NOTATION. We define 2 = , for R , and = is the scalar product on
R .
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The Schwartz class is denoted byS(R ), the space of tempered distributions by
S (R ). We use the brackets to denote the extension toS(R ) S (R ) of the
inner product = ( )( ) on 2(R ). The Fourier transform is normalized to
be ˆ ( ) = F ( ) = ( ) 2 , the involution is ( ) = ( ) while the re-
flection operatoris I ( ) = ( ). Given two differentiable functions ( ), ( )
on R2 , we recall their Poisson brackets

=
=1

If = ( 1 2) R2 and = ( 1 2) R2 , we set

[ ] = 1 2 1 2

Thus [ ] is a non-degenerate, antisymmetric bilinear form, called the symplectic
form [20]. Let the th coordinate of R2 , then denotes the Hamilton
vector field of , that is, for 1 , = + and + = . and

= 2 . We define ( ) = ( )
Throughout the paper, we shall use the notation. to indicate for a

suitable constant 0, whereas if and , for suitable 0.

2. Time-Frequency methods

First we summarize some concepts and tools of time-frequency analysis. Since
these methods are now available in textbooks [11, 12], we shall omit the most part
of the proofs.

2.1. Short-Time Fourier transform (STFT) and Wigner distri bution. The
time-frequency representations needed for the Weyl calculus and for localization op-
erators are theshort-time Fourier transform and theWigner distribution.

The short-time Fourier transform (STFT) of a distribution S (R ) with respect
to a non-zero window S(R ) is

( ) = =
R

( ) ( ) 2

whereas thecross-Wigner distribution ( ) of 2(R ) is defined to be

(11) ( )( ) = +
2 2

2

The quadratic expression ( ) is usually called the Wigner distribution of .
Both the STFT and the Wigner distribution ( ) are defined on many

pairs of Banach spaces. For instance, they both map2(R ) 2(R ) into 2(R2 )
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and S(R ) S(R ) into S(R2 ). Furthermore, they can be extended to a map from
S (R ) S (R ) into S (R2 ). Actually, the cross-Wigner distribution, is just an STFT
in disguise [12, Lemma 4.3.1]; in fact, for all 2(R ),

(12) ( )( ) = 2 4
I (2 2 )

We first list some crucial properties of the STFT (for proofs,see [12, Ch. 3]
and [13]).

Lemma 2.1. Let 2(R ), = 1, 2, then we have
(i) (Switching and ),

(13) ( )( ) = 2 ( )( )

(ii) ( Inversion formula),

(14)
R R

( )( ) =

(iii) ( Orthogonality relations),

(15) 1 1 2 2 2(R R ) = 1 2 2(R ) 1 2 2(R )

(iv) (STFT of time-frequency shifts) For R , we have

( )( ) = 2 ( ) ( )( )(16)

( )( )( ) = 2 ( )( )( )(17)

Note that (16) and (17) can be read backwards and yield a formula for the
2 -dimensional time-frequency shift ( ) R2 .

Given a non-zero window , we recall the adjoint operator of . Let be a
function onR2 , we define

(18) =
R2

( )

it is easy to see that, for 2(R ),

=

Let 1, 2, 3 be non-zero windows inS(R ), and 2(R ), from (14) and (18)
we get

(19) 2 3 1 = 1 2
( 3 )
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The next lemma summarizes those properties of the Wigner distribution that we need
in the sequel. For the proofs we refer again to [12, Ch. 4].

Lemma 2.2. (i) Let T ( ) = ( + ( 2) ( 2)) be the symmetric coordi-
nate transform andF2 ( ) = R ( ) 2 be the Fourier transform in the
second variable, then

(20) ( ) =F2T ( ¯)

(ii) Covariance of ( ): For R , we have

( )( ) = ( + )( ) 2 ( ) 2 ( )

( )
+

2

+

2
(21)

(iii) ( )( ) = ( )( ) .

Maybe the following lemma is well known, but since we have notfound it in the
literature we shall give the proof of the assumption. Another useful property of the
cross-Wigner distribution is given by

Lemma 2.3. Let S(R ), then

(22)
R2

( )( ) =

Proof. For the Wigner distribution the assumption holds true [12, Lemma 4.3.6]:

R2
( )( ) = for all S(R )

Therefore relation (22) simply follows by polarization.

We can now state a relation among cross-Wigner distributions that will play a cen-
tral rôle in the proof of the main result.

Proposition 2.4. Let = ( 1 2) R2 , = ( 1 2) R2 , then, for all

1 2 1 2 S(R ),
(23)

2
R2

( 1 1) 2
( 2 2)

+

2
2 [ ] = 1 2 (I 2 1)( )
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Proof. We translate the Wigner distribution into the corresponding STFT and we
use the STFT properties to get the result. By means of (12),

( 1 1) 2
= 2 exp 4 1 1

2
2 2

2 I 1 1( )

( 2 2)
+

2
= 2 exp 4 1 + 1

2
2 2

2
I 2 2 ( + )

Making use of (13) and (16)

I 2 2 ( + ) = 2(I 2)( + ) 2 ( 1+ 1)( 2+ 2)

= 2( ( )I 2)( ) 2 ( 2+ 2) 1 2 ( 1+ 1)( 2+ 2)

= 2( ( )I 2)( ) 2 ( 1 2+ 2 1)

Thanks to the previous computations we can translate the left-hand side of (23) in
the following way

2
R2

( 1 1)
2

( 2 2)
+

2
2 [ ]

= 2
R2

2 ( 1 2+ 1 2 2 2 1)
I 1 1( ) 2( ( )I 2)( )

= 2 2 1 2

R2

2 1( 2 2)
I 1 1( )

2 ( 1 2 2 1) 2 1 2
2( ( )I 2)( )

= 2
R2

2 1( 2 2)
I 1 1( ) 2(I( ( ) 2))( )

where the last equality is obtained by the three following steps,
(i) Switching relation (13)

2 1 2
2( ( )I 2)( ) = ( ( )I 2) 2( )

(ii) Since ( ) = 2 1 = 2 1 2
1 2 and by (17),

2 ( 1 2 2 1)
( ( )I 2) 2( ) = ( ( ) ( )I 2) ( ) 2 ( )

= 2 1 2
I 2 ( ) 2 ( )

(iii) Observing that 1I 2( ) = I 2( + 1) = 2( 1), then

I 2 ( ) 2 ( ) =
R

( ) 2 ( ) 2 2
2( 1)

=
R

I( ( ) 2) ( ) 2 2
1 2( )

= 2 I( ( ) 2) ( )
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Now, (19) can be rewritten in our case as follows

2
R2

2 1( 2 2)
I 1 1( ) 2 I( ( ) 2) ( )

= 2
R2

2 I( ( ) 2) ( ) 1 ( )I 1( )

= 2
1 2 I( ( ) 2) ( )I 1

= 2 I 1 1 2 I( ( ) 2) ( ) = 2 1 2 I 1I ( ) 2 ( )

= 2 1 2
4 1 2

I 1I 2(2 ) = 1 2 (I 2 1)( )

and we get the assumption.

3. Symbol classes

Our classes of symbols, introduced by Shubin, Berezin and others authors (see
e.g. [2, 18, 3]), will be defined in terms of general weight functions ( ) in R2 .

Weight functions [5, 3]. Let us denote = (1 + 2)1 2, we consider a weight
function ( ), continuous inR2 , for which there exists 0 such that

(24) . ( ) . for all R2

Moreover, beside (24), we shall assume that isslowly varying, i.e. there exists
0 such that

(25) ( ) ( ) for ( )

Let us observe that, starting from (24), (25), one can alwaysfind ˜ ( ) (R2 ),
with ˜ ( ) ( ), satisfying (24), (25) and the additional property

(26) ˜ ( ) . ˜ ( )1

We are therefore allowed to assume that (26) is also satisfiedby . From (25) it also
easily follows that istemperate, in the sense that

(27) ( ) . ( )

Another property we shall require for is the following. For all = ( 1 2 )
R2 , we have

(28) ( ) . ( ) with = ( 1 1 2 2 )

Combining (25) with (28) we obtain for R2 , R2

(29) ( + ). ( )
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Finally, from (27), it follows that for every R

(30) ( ) . ( )

Symbols.

DEFINITION 3.1. Let R, then the symbol class , denoted for short in
the sequel, consists of the functions ( ) (R2 ) which satisfy the estimates

( ) . ( )

Let us assume, without loss of generality, that ( ) satisfies (26); then we may
write ( ) 1. We list in the following some basic propositions [18, 3].

Proposition 3.2. We have = = S(R2 )

Proposition 3.3. (i) , if . (ii) If , and , then
+ and + max . (iii) If , then for all . (iv) If

, then ( ) = ( ) for all R2 .

Let us observe that is a Fréchet space with respect to the seminorms =
sup sup R2 ( ) + ( ) The preceding Proposition 3.3 can be reconsid-
ered in the corresponding topology; we have in particular continuity of the linear map

:

DEFINITION 3.4. Let , = 1 2 , with +1 for all ,
and let 1 . We write =1 if for all integer 2 1

We say also in this case that =1 is an asymptotic expansionfor .

Proposition 3.5. Let , = 1 2 with +1 for
all . Then there exists 1 such that =1 . If another symbol has the
same property, then S(R2 ).

4. Proof of the main result

We begin with the following preliminary results. They can beseen as generaliza-
tions of [1, Lemmas 2.9, 2.10].

Lemma 4.1. Let 1 2 S,
(i) consider the symbol ( ) = ( 2 1)( ), then

(31) 1 2 =

where is the Weyl operator with Weyl symbol;
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(ii) consider the symbol

(32) ( ) = 2 2 [ ] ( 4 I 1)
2

( 2 3)
+

2

then

(33) 1 2 3 4 =

Proof. (i) Let S, we have

1 2 = 1 ( ) 2 ( )

Therefore, by (4), the operator 1 2 can be seen as a localization operator with sym-
bol the Dirac measure . Its Weyl symbol is given by

( ) = ( 2 1)( ) = ( 2 1)( )

(ii) Let S, then

1 2 3 4 = 3 ( ) 1 ( ) 4 ( ) 2 ( )

=
R2

( ) 4 ( ) 1 ( ) 2 ( ) 3 ( )¯( ) ( )

that is an integral operator with kernel

( ) = ( ) 4 ( ) 1 ( ) 2 ( ) 3 ( )

The Weyl symbol is given by [12, Thm. 14.3.5]

( ) = F2T ( ) = ( ) 4 ( ) 1 F2T ( ) 2 ( ) 3

= 1 ( ) 4 ( ) ( ) 2 ( ) 3 ( )

then by (12), (16) and (21) and making easy computations one gets (32).

Lemma 4.2. Let R2 , S(R ), = ( 1 2), = ( 1 2) Z+ Z+,
then

(34) ( )( ) =
1

2 (2 ) 2
( 1) 2 ( 1 1 2 2 1 2 )( )
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Proof. Let = ( ) R2 , we shall deal with thetime variable and the
frequencyvariable separately. Since

( )( ) = ( )( ) +
1

2 R

2 +
2 2

( )( ) = ( )( )
1

2 R

2 +
2 2

by summing up the two previous relations,

( )( ) =
1

2
( )( ) + ( )( )

and by induction we get

(35) 1 ( )( ) =
1

2 1

1 1

1

1
( 1 1 1 )( )

Next, we consider thefrequencyvariable

2 ( )( ) =
1

( 2 ) 2
R

2 2 +
2 2

=
1

(2 ) 2
R

2 2 +
2 2

=
1

(4 ) 2

2 2

2

2
( 1) 2 ( 2 2 2 )( )

By gluing together the previous relations we get (4.2).

We now have all the instruments needed to prove our main result.

Proof of Theorem 1.1. By means of (6) we have

(36) 1 2 3 4 =
R2

( ) ( ) 1 2 3 4

Applying Taylor’s formula to the symbol

( ) = ( ) +
1

=1

( )
( )

!
+ ( )

where

( ) =
=

1

0
(1 ) 1 + ( )

( )

!
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We substitute the previous expansion of the symbol in (36) and we get

(37) 1 2 3 4 =
1

=0

+

where

(38) =
1

! R2
( ) ( )( ) 1 2 3 4

and

=
R2

( ) ( ) 1 2 3 4

First we find the Weyl symbol = ( ) of . By Lemma 4.1(ii), we have

= ( ) =
R2

( ) ( )

we therefore have to show that 1+ 2 , which means, for Z+, to estimate
. We make the change of variables ( ) ( ) in the previous

integral and we estimate ( ) = . Since 1 and by (30)

( + ) . ( + ) 1 + . ( ) 1 + 1 +

Analogously, since 2 and by means of (30) and (29) we get, for = ,

+ + + ( ) . + + (1 ) 2

. ( ) 2 2 ( ) 2

Recall that ( 2 3) and ( 4 I 1) S(R2 ), therefore we have the boundedness of
the integrals

=
R2

1+ 2 ( ) 2 2 [ ]

( 4 I 1)
2

( 2 3)
+

2

and we obtain, for all Z+, the estimate ( ). ( ) 1+ 2 ,
that is 1+ 2 .

Now, we compute the Weyl symbol (0) of the operator 0. Again, by
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Lemma 4.1(ii), the change of variables ( ) ( ) and (23),

( 0)( ) =
R2

( + ) ( + ) 4 3 (I 2 I 1)( )

= 4 3
R2

( + ) ( + ) ( 2 1)( )

= 4 3 ( 2 1)( )

then, by (8), we get 0 = 4 3
2 1, which means that the first term of the com-

position formula (36) is a localization operator with symbol given by the product of
the two symbols and .

Next, we compute the Weyl symbol ( ) of the operator . By the same com-
putations as the previous0, we get

( )( ) = 2
1

! R

( + ) ( + )
R

( ) ( 4 I 1)
2

( 2 3)
+

2
2 [ ]

= 2
( 2)

! R

( + ) ( + )
R 2

( 4 I 1)

2
( 2 3)

+

2
2 [ ]

For computing the previous expression we do not use the technique developed in [1,
Thm. 2.5] which consists of expanding the power ( ) and then working separately
on the two variables and . The reason is that in that context they could exploit
the fact of having the Gaussian functions as windows, that wedo not have any more.
We then use formula (34) which let us get rid of the powers in the following way: the
cross-Wigner distribution is replaced by sums of cross-Wigner distributions of products
of powers with derivatives of the previous windows. Namely,using (34) and, secondly,
(23) we have

( )( ) = 2
( 1)

! R

( + ) ( + )
R

1

(2 ) 2
( 1) 2

( 1 1 2 2
4

1 2I 1)
2

( 2 3)
+

2

2 [ ]

=
( 1)

(2 ) 2 !
( 1) 1 1 1 2 2

4 3
R

( + )
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( + ) I 2 I( 1 2
1) ( )

therefore

( )( ) =
( 1)

(2 ) 2 !
( 1) 1 1 1 2 2

4 3

( ) ( 2
1 2

1) ( )

Now, by means of (8), we have that

(39) =
( 1)

(2 ) 2 !
( 1) 1 1 1 2 2

4 3
1 2 1 2

Finally, we plug 0 and (39) in (37) and we obtain the assumption.

REMARK. It might be useful to write (10) in the equivalent form

1 2 3 4 =
1

=0

( 1)

(2 ) 2 !
( 1) 1

R2
( 1 1 2 2

4 3)( )
1 2 1 2 +(40)

Let us point out that the remainder term can also be handled and estimated in
the way developed in [15, 1]. Moreover, also the symbol classes we consider can be
replaced by the ones of [15, 1].

5. The Gaussian windows

It is possible to reset formula (10) or (40) in terms of Wick operators correspond-
ing to the same pair of windows1 2 = , when is the Gaussian function. This is
the classical Wick case [15, 1].

Theorem 5.1. Let = = 2 4 2
for = 1 4, 1 , 2. Let

be a positive integer, Z+ Z+, R2 . If we set

(41) =
1

=0

( 1) 2

!(4 )
=0

(4 )

! =

then relation(40) becomes

= +(42)
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where is a Weyl operator with Weyl symbol 1+ 2 .

Proof. We shall divide it into four steps.

STEP 1. Let Z+, = ( ) R2 , we need to compute ( )( ).
Let 1 2 S, then by straightforward computations one gets

(43) ( 1 2)( ) = +
4

( 1 2)( )

By Lemma 2.2(iii) and the previous (43) we obtain

( 1 2)( ) = ( 2 ) ( 1 2)( )(44)

= ( 2 ) +
4

( 1 2)( )

Now, by (43) and (44) we get

(45) ( 1 2)( ) = ( 2 ) +
4

+
4

( 1 2)( )

STEP 2. For every = ( 1 2) Z+ Z+, we define

+
4

:= +
4

1

+
4

2

In terms of the Gaussian , we have ( )( ) = 22 ( 2+ 2) and

2
R2

+
4

2 2
= 2

R2

2 2

=

( )!

(8 ) 2(( ) 2)!
if 2(Z+ Z+);

0 otherwise.

STEP 3. We use the previous relation and (45) to compute (40). We have

(40) =
1

=0

( 1)

(2 ) 2 !
( 1) 1

R2

(2 ) 2 2

4

( )( ) ( ) (( 2 ) 2 ( + ( 4 )) ( )) +

=
1

=0

1

!
2

2(Z+ Z+)

( )!

(8 ) 2(( ) 2)!
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[( + ( 4 )) ( 2 2 )] ( ) +

STEP 4. Now, by induction and exploiting the same arguments as those used to
obtain Relations (2.17) and (2.19) in [1], we get the following equality (details of the
proof are omitted for brevity)

1

!
2

2(Z+ Z+)

( )!

(8 ) 2(( ) 2)!
+

4
( 2 2

)

=
( 1) 2

!(4 )
=0

(4 )

!
( )

=

2 2

The last differential operator can hence be moved from the left to the right-hand side
of the convolution fold, and this passage leads to (41).

REMARKS. We address to [1] for a further elaboration of (41), see [1, Thm. 2.5],
giving an expansion whose terms are well-ordered as standard.

It is clear from the previous proof that to pass from the general form of The-
orem 1.1 to the explicit one, we need only the following two facts, evident for the
Wigner distribution of the Gaussian:
1. One can exactly calculateR2 ( 4 3)( ) := ( ), which always
vanishes for 2(Z+ Z+) if 3 and 4 are even functions.
2. The formula ( 2 1)( ) = ( 2 1)( ) holds (or not) for some C.

6. Miscellaneous remarks

One would like to reset formula (10) or (40) in terms of Wick operators corre-
sponding to the same pair of windows1, 2 also in the general case. This is pos-
sible, in principle, by means of Corollary 6.4 below, allowing to pass from a pair of
windows to another. Let us first list some properties of the Wick operators in our con-
text.

Theorem 6.1. Let 1 2 be an operator with symbol( ) and windows

1, 2 S(R ) satisfying(see(22))

(46)
R2

( 2 1)( ) = 2 1 = 0

Then its Weyl symbol ( ) = ( 2 1) belongs to with asymptotic expansion

(47) ( ) ( )
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where

00 = 2 1

=
1

! !
I ( 2 1)( ) =

1

! !(2 ) +
F [ ( 2 1)](0)

Proof. It is a straightforward modification of [3, Theorem 6.1]. One must sub-
stitute the Gaussian function with the Wigner distribution( 2 1) and exploit the
property: ( 2 1) S(R2 ) for 1 2 S(R ).

If we drop condition (46), then Theorem (6.1) can be rephrased as follows.

Theorem 6.2. If N is the smallest index such that

(48) F [ ( 2 1)](0) = 0 for some( ) : + =

then, if ( ) , we have that the Weyl symbol belongs to (the order
decreases!) and 1 2 has the asymptotic expansion given by(47) with constants =
0, for + .

Let us give an example of windows1, 2 such that condition (46) is not fulfilled.
Let 1( ) = 2 4 2

and 2( ) = 2 4 2
, then by a straightforward computation we

get ( 2 1)( ) = 2 ( + ) 2 ( 2+ 2) and we have R2 ( 2 1)( ) =
0, whereas it is easy to check that (48) is valid for = 1.

Not every Weyl operator can be seen as a localization operator with symbol in
(see [3]). However, from the symbolic calculus we have a converse of Theorem 6.1
modulo regularizing operators, that is operators with kernels belonging toS(R2 ) [3,
Thm. 6.2].

Theorem 6.3. For every Weyl operator with Weyl symbol , and for
every pair of windows 1 2 S(R ) satisfying (46), there exists ( ) such
that we have

= 1 2 + with S(R2 )

and

(49) ˜

with constants̃ C. In particular,

(50) ˜00 =
1

2 1
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The proof is again an easy modification of [3, Thm. 6.2].
Formally we have

˜ = ˜00

=0

( 1)
( )= (0 0) 00

After developing the right-hand side, this gives the expression of ˜ in terms of the
constants .

Corollary 6.4. Let 1 2 3 4 S(R ) and let Condition(46) be satisfied for
each pair of windows 1, 2 and 3, 4. If we consider a symbol , then there
exists a symbol such that

1 2 = 3 4 + with S(R2 )

and

(51) ˜

where are given by(47) and ˜ are as in (49) corresponding to the windows3,

4.

Proof. By Theorem 6.1 the localization operator can be written in term of Weyl
operator as follows

1 2 = + with S(R2 )

where with asymptotic expansion given by (47) and (48). Now,we apply The-
orem 6.3 for the Weyl operator with respect to the windows3 4 and we get

= 3 4 + with S(R2 )

where is recovered from the expansion of given by (49) and (50).

Applying Corollary 6.4 to each term of the sum in the right hand side of (10),
we may then rewrite the expression in terms of the same pair ofwindows 1, 2. In
practice, for generic 1, 2, formula (10) seems preferable for applications, see be-
low. Finally, we construct parametrices for elliptic Wick operators. Namely, assume
that is elliptic, i.e. for large R2 we have

(52) ( ) . ( )



WICK CALCULUS 61

Note that 1( ) is then defined as element of , by cutting off for small .
Fix S(R ), = 1 4, and let condition (46) be satisfied for each pair of
windows 1, 2 and 3, 4. We furthermore add the normalization condition3 4

2 1 = 1. Consider then = 3 4; given 1, we want to construct a
parametrix , i.e.

(53) = +

where is a Weyl operator with Weyl symbol . We shall look for given
by a finite sum of operators of the form 2, where consist of different linear
combinations of windows of the type 1 and the symbols belong to . To
this end, we begin to consider 1 2

1 , so that applying Theorem 1.1,

1 2
1

3 4 = +
1

=1

( 1)

!
2

1 +

with , and as in (9). We may then set

:=
1

=0

( 1)
1

=1

( 1)

!
2

1
1 2

1

Applying repeatedly Theorem 1.1 to the right-hand side we recognize that has the
required form; the remainder in (53) is easily written in theWeyl form with

by using Theorem 6.1 and the classical Weyl calculus.
Such an expression of the parametrix can be easily applied tothe study of the reg-

ularity of the solutions in the frame of modulation spaces [9, 12], by using the bound-
edness properties of the operators1 2 contained in [6].

Let us finally point out that, concerning positivity properties of the classical Wick
operators, they do not hold true in our context, if we consider two different windows

1 2. In fact, if 1 = 2 = and 0, we have

= = 2 0

and the positivity property is maintained. Now, take e.g.2 = 1, then

1 2 = 1
2
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