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Abstract
We will give a complete characterization of all regular Ditiet subspaces of
H(I) for a finite open interval by a certain family of scale funaso Each asso-
ciated diffusion will be constructed from a reflecting Braam motion on a closed
interval by a time change and a transformation of the staéeesp

1. Introduction

Throughout this paper let be a finite open intervali{ ) or thed fime R. De-
note by L?(I) the space of square integrable functionsfon and we let

HY(I) ={u € L*(I): u is absolutely continuous and € L%(1)}.

D(u,v):/u'-v'dx u,v e HYI).
I

(HY(I), (1/2)D) can be considered as a regular local recurrent Dirichlen fon L2(I_),
where I denotes d,b ] (respR) for I =(a,b) (resp.I =R). The associated diffusion
process onl is the reflecting Brownian motion (resp. the Brownian magion

We call (F, £) a Dirichlet subspace of( H(1), (1/2)D) if

1
(1.1) F c HYI), Eu,v)= ED(M, v), u,veF,

and (F, €) is a Dirichlet form onL(I). It is called regular on L%(I) (= L%(1)) if
FNCo(I) is dense both inF and Co(I), where Co(I) denotes the space of continuous
functions on/ with compact support. It is calledecurrent if its extended Dirichlet
spaceF, contains the constant function 1. Whén s finite, any regDigichlet sub-
space of (1), (1/2)D) is automatically recurrent.

In this paper, we shall prove that the Sobolev spaé({), (1/2)D) admits as its
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regular Dirichlet subspaces the following family of spa¢gs®), £6))s.s:

(12) FO = { u € L(I): u is absolutely continuous

. du 2
with respect tods(x), / (E(x)) ds(x) < oo}
1

1 (dudv
1. ®) =) = FE)
(1.3) E®(u, v) 2/ S Sds u,v e s

for s belonging to the space of functions

(1.49) S={s: s(x) is absolutely continuous, strictly increasingine /
ands’(x) =0or 1 for a.ex € I, s(n) =0},

wheren denotes either or 0 according/as dsb( )Ror
We shall further consider the subfamily

(15) A:{S whenl =@,b)

{s € S:s(£o0) = oo} when! =R,

of S and prove that all recurrent regular Dirichlet subspaceg#¥(/), (1/2)D) are
exhausted by the family of spaceg®, £©)),_s.

Fors € S, we letEs = {x € I:s'(x) = 0} and denote by -| the Lebesgue
measure. Denote by  the linear functignx ( )x= x € I . Cleaglye F© (FS)
when I =R) if and only if |[Es| = 0, or equivalently, the inverse function &f is
absolutely continuous. In this casg(x) equals eitheip  }a o x ) according ds
is (a,b) or R, and F©) = H(I) of course. A typical example of an elemesite S
for I = (0, 2) with |Es| > 0 is provided by

(1.6) s=t 1 t(x)=clx)+x, xe(0 1)

wherec is the standard Cantor function on (0 1).

In this connection, we would like to mention that the secomul ahe third
authors have considered in [3] a slightly more general mrgliirichlet form than
(H(I), (1/2)D) for I = (0, 1) and studied its regular Dirichlet subspace. Whnfioately,
there is a flaw in the proof of Theorem 2 in [3]. As is corrected[4], it should be
replaced by the following weaker assertion for which theoprgiven in [3] works: Let
F be a subspace af such that(]-" &) is a regular Dirichlet space orLZ(I ,odx)
Assume that a scale function of the diffusion process ol associated Wlth(]-“ £)
admits an absolutely continuous inverse ThenF = F.

The organization of the present paper is as follows. The m&grt sections are
devoted to the proof of the above mentioned assertions. tticptar, we shall show



REGULAR DIRICHLET SUBSPACES AND LINEAR DIFFUSIONS 29

in §2 that any recurrent regular Dirichlet subspace Bf(7), (1/2)D) has a scale func-
tion belonging to the clasS.

In §3, we shall construct a recurrent diffusion process o[ PHr&R) asso-
ciated with the spaceR®), £®)) for s € S from the reflecting Brownian motion on
a closed interval (resp. the Brownian motion &y by a time change and a state space
transformation. Since the infinitesimal generator of thifudion is (d/2Ix)d/ds) in
Feller's canonical form, such a construction is well knownprinciple (cf. [6]), but
we shall formulate it in relation to the transformations ofi€hlet forms in order to
ensure the recurrence of the resulting diffusion and DieicForm.

In the last section, we shall state some useful descriptadnthe spaceS and
give examples ok € S\ S corresponding to transient regular Dirichlet subspaces of
(H'(R), (1/2)D).

2. Regular Dirichlet subspaces and scale functions

We recall (cf. [2, p.55]) that the extended Dirichlet spag&(7) of H(I) is given
by

(2.1) Hel(I) ={u : u is absolutely continuous on and e L2(1)}.

In particular, 1 H}(I) and the Dirichlet form g*(I), (1/2)D) is recurrent. H}(I) is
continuously imbedded int@' 7f and in fact the following elementary inequality holds
for anyx,y € I:

(2.2) lu@)—u@)?® < |y —xID(u,u), ue HXI).

When I is finite, H}(1) = HY(I).

Let (F, &) be a regular Dirichlet subspace off¥(7), (1/2)D). Since (F,&) is
strongly local, there exists a diffusion proceds = (X;, P,) on [ associated with it.
Denote byo, the hitting time of the one point g}, y € 1, for M. The next lemma
about the existence of the scale function (a strictly insirg continuous function sat-
isfying (2.3)) is well known for a more general one-dimemsibdiffusion process ([5])
but we give a self contained proof of it based on the inequgRt2) in the present
special situation.

Lemma 2.1. There exists a strictly increasing functia on 1 uniquely up to
a linear transformation such that

(2.3) PX(Ud<op):H, c<x<d, c,deI_.

s is absolutely continuous oh
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Proof. LetJ be a connected open subsetl ofVe denote byr, the leaving time
from J of the diffusionM. We also consider the paM ; of M on J the diffusion
killed upon the leaving time; M is then associated with the subspagg of (F, &)
defined by

Fy={ueF:ulx)=0, er_\J}.

(2.2) implies that each singleton of has a positive capawiith respect to
the Dirichlet form (F,, £). Consequently, the connectedness of the state space is a
synonym for its quasi-connectedness f@,(£) and hence X, &) is irreducible ([2,
p.172]). This implies, by virtue of [2, Theorem 4.6.6], that

(2.4) P oy <t7)>0 Vx,yelJ

For anyc,d € I_,_ —o00 < ¢ < d < oo, we make the following choice of the in-
tervalsJ c I: whenI =[a, b] (resp. I =R), we take i, d ) and 4, b ] (resp.{oo,d )
and ¢, o0)). We then get from (2.4)

P(o. <04)>0, P(og<o.)>0 Vxe(,d)
We also note here that
(2.5) P.oc<04)=1 Pioa<oc)=1

because the positivity of the capacity of a point implies Meregularity of the point
for itself.

On the other hand, for the finite open intervAl &d C)I , the spakg &)
admits a 0-order potential operat6® by virtue of (2.2) again: for anyf e L2(J),

G°f e F;, £,(G°f, v):/fvdx, Yv e F.
J

Therefore

E.(0. Aog) =G%1;(x) <00, x € (c,d),
and

P.(o. <04)+ Pi(og <o0:.)=1 x¢€(cd)

In particular, the functionp. s A ) P &y < 0. ,)x € 1, is not only strictly pos-
itive but also strictly increasing it € c¢(d ) because the samm@éh continuity and
the strong Markov property df1 implies

(2.6) Ped &) =pey@Pea(V)< peay) c<x<y<d.
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In the same way, we have, fof <c <d <d’, ¢’,d’ €I, that

(2.7) Pea(x) = peax)pea(d)+ (L= peax))pe.a(c)
= (pc’.d’ (d) — Dc.d (C))pc,d(x) +poa (C) c<x<d.
When! =@,b), we let
S(x) = pap(x) x€l.

Then s is strictly increasing and its property (2.3) follows frord.7) with ¢/ = a,
d'=b. When! =R, we put, for anyc <d suchthat<x <d and< ,0 4d,

S(x) =apealx) +B,
and determines constands 8, by
s(0)=0, s(1)=1

Then, s(x) is independent of such a choice of,{ ) because, for any viater
(c’,d") D (c,d), pca is a linear function ofp. o+ ond,d ] in view of (2.4). Furthey
satisfies (2.3) because.s ¢ ()3 P d () =1.

Finally, in order to show the absolute continuity ®f we take any finite interval
(c,d) c I. It suffices to prove that the functiop x( ) p.a x( }, € I , is absolyte
continuous sinces is a linear function ofp ond,d ).

When!I = @,b), p &) is known to be the O-order equilibrium potentidl {d}
with respect to the Dirichlet space

Fepy =f{ue Fiulx)=0, Vx <c},
and p () is characterized by
(2.8) p€Fen, pd)=1 Ep,v)=0, YveFcy, vd)=0.

In particular, p is absolutely continuous.
When I =R, we consider the space

Fleoy ={u e Fru(x)=0, Vx <c}.

By virtue of (2.2), we see that the Dirichlet spacg.(,), £) is transient and the func-
tion p(x) is the associated 0-order equilibrium potential{@f haracterized by

(2.9) P € Fe)e pPA)=1 &(p,v)=0, Yve Feun)e v(d) =0,

where F..«)..(C H(R)) is the extended Dirichlet space &f. ). Hencep is abso-
lutely continuous. O
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We call the functions in Lemma 2.1 thescale functionassociated with the regu-
lar Dirichlet subspaceX, &) of (H(I), (1/2)D).

We continue to consider a finite open interval «d C)I and the expond-
ing function p (c ) =p..q« &t ) as in the proof of Lemma 2.1. By virtue ofZ}, the space
(Fy, £) admits the reproducing kerngP(x, y), x,y € J characterized by

. y) e Fro E(°C.y).v)=v(y), YveF.

Lemma 2.2. There exists a constarf > 0, such that for any x, y € J,

g%nw:iC””“‘p@” X<y

Cl—pE)pQ), x=y.
Proof. We consider the function
(210) p_?(x) = PX(GF A 0d > G}‘)a X, y € Jv

p?,( - ) is the O-order equilibrium potential dfy}  with respect t6,( £) characterized
by

(2.11) pYeFr, p)(»)=1 &P v) =0, YveF, v(y)=0.
The above two characterizations lead us to

0 — go(-x’ y)
Py) 2y, y)

x,ye€J.

On the other hand, we ha\@?(x) = pey(x), ¢ <x <y, and we get from (2.7)

px)
p(»)’
1-p(x)
-pe) =7

for x, y € J. The desired expression gf(x, y) follows from the above two identities.
O

x < y
p(x) =

Lemma 2.3. Any function inF is absolutely continuous with respect ds.
Proof. For any finite intervall =c¢(d Y I , leG® be the 0-order potential

operator associated with7(, £) as was considered in the proof of Lemma 2.1. Then
it follows from Lemma 2.2 that, forf € L?(J), x € J,

@ﬂm=/fwwﬂw@
J
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X d
:C(l—p(x»/ p(y)f(y)dy+Cp(X)/ (A= p &) 0)dy
d X py
= Cp(x) / (L= pO)NF )y — C / / " FE)dzdp(y).

which means thatG®f is absolutely continuous with respect o, namely, it can be
expressed ag. ¢ y(pJ y(dy by some functipne L*(J;dp).

Since G°(L?(J)) is dense inF;, there exist, for any: € F;, f, € L?(J) such that
up = G°f, = [y ea(y)p'(y)dy is € convergent tou . Hence, for ang C J  on which
p'(x)=0 a.e,

/ u'(x)?dx = / ' () — @u(X)p' () dx < Eu — un,u —uy) — 0, n— o0,
B B

which impliesu’ ) = 0 a.e. omB , namely, is absolutely contirmiauith respect
to dp.
Finally, anyu € F can be expressed as

(12 ul)=ueE)+b@)-ue)p @) +bk)-ue))- wd)-uc)pk) xel,

the last term being a member &;. Thereforeu is absolutely continuous on  with
respect todp and hence with respectd®. ]

Suppose thatX, &) is recurrent. Then, by [2, Theorem 4.6.6], the propertyt)2.
for J =1 is strengthened to

(2.13) Py <o0)=1 Vx,yel.

Note that, when/ =d,b ),X, £) is automatically recurrent because, owing to the reg-
ularity, 7 contains a continuous function greater than 1 @[ ] and héimeeon-
stant function 1A v as well.

For the scale functios associated withX, £), we let

(2.14) Es = {x el: lim Supw = 0} .
h—0 h

Lemma 2.4. SupposqF, ) is recurrent.
(i) s’ is constant a.e. o \ Es.
(i) s(Fo0) = +oo.

Proof. (i) Again we fix an arbitrary intervalc(d )} I and denote byx),(
x € I, the functionp., & ) in the proof of Lemma 2.1. We know that is dbtdy
continuous on/ , strictly increasing on,d ) apdc,d ))s (0 1). benbyg the in-
verse function ofp| 4.
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We have then
(2.15) lp@A) :/ p' & )dx, for any Borel sed C c(d .)
A

This is clear for a disjoint union of finite number of subin&s of ,d), and
the monotone class lemma (cf. [1]) then applies.
We next let
E= {x € (c,d): Iimsupw = 0}
h—0 h
and F =p E). Then|F| =0 by (2.15). (2.15) further means thatAifc c¢,d( \ B
and|A| > O, thenp A )> 0. Hence is absolutely continuous an (Q A)
On the other hand, for any € Cél)((o, 1), o) € Fer) (resp. Fie.oo)e) When
I = (a,b) (resp.R.) Furthero p ¢ )) = 0,x >d ,x € I , becausp x( ) =% >d ,
x € I, on account of (2.13) and (2.5) . Hence, in view of (2.8) an®)(2

1 d
/0 P/ (@)@ (x) dx = f P ()¢ (p())p (x) dx = 26 (p. () = 0.

It follows that p’ (g (x)) is constant a.e. on (0 1). Therefopé instant a.e. on
(c,d)\ E. Sinces is a linear function ofp ond,d )s’ is constant a.e. onc(d \)Es
as was to be proved.

(ii) Since the recurrence assumption implies the consieprass of the proceshl
([2]), it is easy to see that

Px(lim o‘.:oo):1 xel_,
y—>z+oo -

and we can ges(—oo) = —oo by noting (2.11) and letting — —oco in (2.3). Simi-
larly we gets(oo) = co. ]

We are now in a position to state a main theorem of this paperSlbe the class
of functionss defined by (1.4) and be its subclass defined by (1.5). Fere S, we
introduce the spaceR®), £8)) by (1.2) and (1.3).

Theorem 2.1. (i) For anys e S, the space(F®), £8)) is a regular Dirichlet
subspace of H(1), (1/2)D). The scale function associated wifF®), £6)) equalss
up to a linear transform.

(i) Let (F,&) be a regular recurrent Dirichlet subspace 6f1(7), (1/2)D) and s be
the associated scale function. Thday making a linear modification of if necessary
s belongs to the clas§ and

f:f’(s)’ 5(u’v):g(s)(u,v), u,verF.
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Remark. The converse to (i) (the recurrence of the spag&)(£®) for s € S)
will be shown in the next section.

Proof. (i) Supposes € Sandu,v € F®). Thenu, v are absolutely continuous
with respect todx and

1 dudvd_l du dv

2 Iadx X_E 1%%

1 [ dudv
2 ), dsds

s(x)?dx
(2.16)

ds, u,veF®.

HenceF®) ¢ HY(I) and £®8)(u, v) = (1/2)D(u, v), u, v € FE).
Sinceu @ )—u é):ff’ @u/ds)ds, we see that

lu(d) — u(c)? < 2/d — c|ESw,u) (c,d)C 1, ueF®,

and anygf)—Cauchy sequence is uniformly convergent on any compaetvat of I .
Hence (F®), £6)) is a closed symmetric form oh?(1). Clearly it is Markovian.

The regularity is also verifiable. Indeed, whén is a finiteeiwal, 7©) contains
s and constant functions and hence an algebra generated by, thbich separates
points of 1. ConsequentlyF®) is dense inC i) by the Weierstrass theorem. Since the
above inequality implies thaf®) c C(I), we see thatf®), £8)) is a regular Dirich-
let form on L2(1).

When I =R, we consider the space

C ={p(s): ¢ € CH(R)}.

ThenC c F©). SinceC is an algebra separating points df , it is denseC§(R).
Supposex € F©) is &-orthogonal toC: E1(u, v) = 0 Yv € C. Thenu is a solution of
the equation

1d du

2dxds

It is known that the solutions of this equation form a 2-disienal vector space
spanned by a positive increasing functisf) and a positive decreaing function
u® ([6]). Obviously, neitheru® nor u® is in L3(R) andu must vanish. Hencé is
dense inF®). Therefore F®), £6)) is a regular Dirichlet subspace ofif(7), (1/2)D).

In order to prove the second assertion in (i), we consider famie interval J =
(c,d) C R, take anyd; € J and put

(s —s()\" s(d)—s(x)\"
“”‘(s(dl)—s(c)) A(s(d)—s(czl)) o veR
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We readily see that € J—'ﬁs), r(d1) =1 and, for anyv € ]—‘55),

1 4 dy 1 4 dv
©)(r. p) = dv o a
£ ) 2(s(d1)—s(c))/p s " 2@ —s@) J,, as
= ! v(d) + ! v(dh).
26 —s@) "™ " 2@ — sy

Hence r satisfies the condition (2.11) faF®), £6)) and r () coincides with the
function pgl(x) defined by (2.10) onJ for the diffusionX¢, P, ) associated with
(F®), £6)) and in particular

r(x) = PX(G([l < Gr) X € (C, d]_)

Since

s(x) —s(c)
S(d1) —s(c)

we have shown thas is a scale function for the spacg®), £6)).
(i) The scale functions associated with a given regular recurrent Dirichlet subspa
(F. &) of (H(I), (1/2)D) belongs toS (after an appropriate linear transform) by virtue
of Lemma 2.1 and Lemma 2.4. We further see from Lemma 2.3 aedtitg (2.16)
for u,v e F that F ¢ F©) and E(u, v) = E&(u, v), u, v € F.

Take an intervall =d,d Y I . Consider any functiane F©) with u(x) =0 for
x & J and assume that  i§®)-orthogonal to the spacé;:

r(x) =

c<x<d,

E®u,v)=0, VveF,.

By the functionp =p., for (£, &) as in the proof of Lemma 2.1, we may write
S0) = copl) +es. 1) = [ 0@)dp(©). c=x=d.

Choosing asv the Green functigg?¥(x) = g%x,y) € F, of Lemma 2.2 for each

fixed y € J, we are led to

d du d 0,y
audas™

o ds ds

y d
Ceo® [ o= pONar() - Ce? [ o)) dpto)

£, ) s

y d
Cey? / o(x) dp(x) — Ceg*p(y) / () dp(x) = Ceyu(y),

andu = 0. Hence any function ifF®) with compact support belongs to the spake
Since we have seen in (i) thaF), £6)) is regular, we have the desired inclusion
Fe c F. O
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3. Constructions by time change and state space transform

If the scale function of the diffusion associated with thgular Dirichlet subspace
is s, then we know intuitively that, after a state space tramsédions: I — s(I),
the diffusion becomes another diffusion with hitting distitions identical with that
of Brownian motion and that this new diffusion differs frotnet Brownian motion by
a time change. This suggests a way of constructing the atigiiffusion and Dirichlet
subspace from the Brownian motion and Sobolev space.

In this section, we construct a recurrent diffusion procéssassociated with
the Dirichlet form (1.2), (1.3) or.?(I) for s € S from the reflecting Brownian motion
on s(I_) when [ is finite and the Brownian motion & when/ =R by a time change
and a transformation of the state space. We also noticeXhiat the one-dimensional
diffusion on / with infinitesimal generator (1 2j(dx J(ds) in Feller's sense ([5]).

We prepare a lemma.

Lemma 3.1. Let (E,m) be a o -finite measure spaceX = (X,, P,) be an
m-symmetric Markov process oA  arnd, £) be the associated Dirichlet space on
L%(E;m). Lety be a one-to-one measurable transformation frem  ontpacs E
and m be the image measurgi(B) = m(y ~1(B)). We put

X, =y(X)), P,=P,1,, xeL.

ThenX = (X,, P,) is anm-symmetric Markov process afi and the associated Dirich-
let space(F, £) on L?(E, ) satisfies

F={uel¥E;n): uoyeF)
Ew,v)=EWoy,voy) uvelF.

Proof. It was proved in [1, p. 325] tha¥ is a Markov process o with tran-
sition function

PfO)=p(foy)y () yekE, feB,

where p, is the transition function of
The i -symmetry ofp; and the above relation of the Dirichleacgs follow from

[ Bof - gdin = / 2 o ) 0N 0 )XY dmly L)
E E
= /Ept(fo y)govy)dm,

and

1 1
;/E(f—i?,f)-gdﬂi:;/E(foy—p,(foy))goydm.
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That completes the proof. O

The processX = (X,, P,),.; in the above lemma is called the process obtained
from X = (X,, P, ). by the transformationy  of the state space fréam Eto

Take anys from the classS defined by (1.5) and let be its inverse function.
Clearly

Josy=|@b-a=IEsD. 1= (b,
R, I =R.

Let (B, Py),.; be the reflecting Brownian motion os when / = ¢,b) and
the Brownian motion orR when I =R. It is associated with the regular local re-
current Dirichlet form (), (1/2)D) on L2(J_). The transition function of §,, P, ) is
absolutely continuous with respect o . Each one point setehpositive 1-capacity
with respect to this Dirichlet form. Hence the quasi-suppifra positive Radon mea-
sure onJ coincides with its topological support.

Let A, be the PCAF (positive continuous additive functional)the strict sense
(B:, Py) with Revuz measurét . Since the support oft is J, the fine support of4,
is alsoJ and A, is strictly increasing im  a.s. Let  be the inverseApf anadotie
by X the time change oB, byr( ):

(3.1) X, =By,

Theorem 3.1. (i) Let

(3.2) X, =t (B,), t=0, P, =Ps, xel.

Then(X,, P.),.; is a diffusion process oii associated with the regular Dirichlet sub-
space(F®), £8)) on L(I) of (H(I), (1/2)D).
(i) (F®), £6)) is recurrent.

Proof. (i) By virtue of (6.2.22) in [2], the time changed pess (., P ); is
dt -symmetric and its Dirichlet spacer{, £’) on L?(J;dt) is given by

- 1
F' = HYNI)NLA(J, dt), & (u,v) = ED(u, v), wu,verF’,

for the extended Dirichlet spack(J) defined by (2.1) forH(J).

Since X = (X,, P,) is obtained from the time changed proce&s, (P, ) of (3.1) by
means of the transformatidn of the state space froni onto 7, we see by Lemma 3.1
that X is symmetric with respect to the image measure byf dt , which is obviously
the Lebesgue measuttr  dn and the associated Dirichlet spac, €) on L%(I) =
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L?(I) is given by
(3.3) F=luel’I):uot e Fj}={ue L?(I): uot € HXJ)},

~ 1
(3.4) S(M,U)IED(uot,uot ), u,velF.
We claim that
(3.5) F=FO®, Eu,v)=E9u,v), u,velF.

By (3.3), u € F if and only if u € L2(I) and there exists a functiop € L2(J) such
that

u(t (x)) :/0 $()dy +C. xel,

for some constan€ . In this case,

s(x) x
= [ ¢(y)dy+c:/ $6()ds()+C. x el

and

2
1
%/, (3_) ds=3 [ #s@rasw =3 [ swrar

and henceF c F©) and & = £€8) on F x F. Converse inclusion can be shown in
the same way.

(i) We have only to show this for =R. By virtue of [2, (6.2.23)], the extended
Dirichlet space of £, £®) coincides with @}(R), (1/2)D) and hence contains con-
stant functions. Since the Dirichlet spacg, €) is obtained by (3.3) and (3.4), its ex-
tended Dirichlet space also contains constant functions. ]

From the proof, it also follows that ,fos € S, u € F©) if and only if uot €
HY(J). Equivalently 7®) = {u os : u € HY(J)).

4. Some descriptions of the class S

We can give more tractable descriptions of the cl@ssf scale functions defined
by (1.4).

Let T be the totality of functiont defined on some open intervdl C R ex-
pressed as

4.1 tx)=clx)+x, xel,

for a non-decreasing singular continuous functiom ( )Jon
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Let E be the totality of measurable subgét Jof satisfying thatafoy x,y € 1,
x <y, [I\E)N(x,y) > 0, i.e., the complement of has a positive measure on any
non-empty open subinterval. Two setsknare regarded to be equivalent if they differ
by a zero-measure set.

The following theorem illustrates the structure fand shows that any regular
recurrent Dirichlet subspace o#H{(7), D) may be obtained in the same way as done
in the example irg1.

Theorem 4.1. Lets be a strictly increasing function on
(1) s € Sif and only if its inverse function belongs T
(2) s € Sif and only if there exists a sdf € E such that

(4.2) s(x) = /X 1gc(y)dy, xe€l,
n

wheren denotess wheh = (a,b) and 0 when ! = R. The setE is uniquely deter-
mined bys up to the equivalence.

Proof. (1) Fors € S, we lett (x) =s~(x), x € J = s(I). In view of the first
part of the proof of Lemma 2.4 (i), we see thd(x) =1 a.e.x € J , and accordingly

tx)=clx)+x, xelJ,

for some nondecreasing singular continuous function ( ndde € T.

Conversely ift € T, thent (x) = ¢(x) +x is a strictly increasing continuous func-
tion witht’ =1 a.e. onJ . Further, for any,y e J x <y y@FEx 3t(y)—t(x).
It follows that s(x) =t ~1(x), x € I =t (J), is absolutely continuous. Clearly is
differentiable att (x) if and only if t has a non-zero derivative ate /  and hence

1
s'(t = =1 ae. J
()= =L aexel,
which implies thats” = 1 a.e. on/ \ Es in the same way as in the second part of
the proof Lemma 2.4 (i).
As for (2), for anys € S, Es € E and conversely folE € E, it is easy to check
thats € S as defined in (4.2). [l

By this theorem, we can readily conceive functionsdn, S when =R. For
example, for any non-decreasing singular continuous fomet(x) on R with ¢(fo0) =
+o0, we put

(4.3) t(x):c<1_x|x|>+x, xe(-11)
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and lets be the inverse function df .
Another example is provided by

(4.4) s(x):/ox 16(v)dy, x € R, for G = U(

meQ

where O ={r,} is the set of all rational numbers.

1 1)

- +
P on+l »In on+l

In both cases,s(—o0) and s(o0) are finite and the corresponding spaces
(F©), £6)) are transient Dirichlet subspaces @gf{(R), (1/2)D) by Theorem 2.1.
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