AN ISOLATED UMBILICAL POINT OF A WILLMORE SURFACE

Naoya ANDO

(Received April 9, 2003)

1. Introduction

Let S be a surface in \mathbf{R}^{3}. Then it is known that if S is a surface with constant mean curvature, then the index of an isolated umbilical point on S is negative ([16]). If S is special Weingarten, then the same result is obtained ([15]). In the present paper, we shall prove that the index of an isolated umbilical point on a Willmore surface does not exceed $1 / 2$.

We say that S is a Willmore surface if S is a stationary surface of the Willmore functional \mathcal{W}, where the Willmore functional is defined by the integral of the square of the mean curvature. It is known that S is a Willmore surface if and only if S satisfies the following partial differential equation ([12]):

$$
\begin{equation*}
\left\{\Delta+2\left(H^{2}-K\right)\right\} H=0, \tag{1}
\end{equation*}
$$

where Δ is the Laplace operator on S and K, H are the Gaussian and the mean curvatures of S, respectively. Equation (1) is the Euler-Lagrange equation for Willmore surfaces.

Willmore proved that $\mathcal{W} \geqq 4 \pi$ for any compact surface in \mathbf{R}^{3} and that the equality holds if and only if the surface is a round sphere ([36], [37]). In addition, he and Shiohama-Takagi proved that $\mathcal{W} \geqq 2 \pi^{2}(>4 \pi)$ for a torus represented as the boundary of a tubular neighborhood of a closed curve in \mathbf{R}^{3} and that the equality holds if and only if the torus is a $\sqrt{2}$-anchor ring, i.e., the boundary of the tubular neighborhood with radius $a>0$ of a circle with radius $\sqrt{2} a$ ([38], [27]). Willmore conjectured $\mathcal{W} \geqq 2 \pi^{2}$ for any torus in \mathbf{R}^{3} ([36]). Since White showed that if the surface is compact and orientable, then \mathcal{W} is invariant under any conformal transformation of $\overline{\mathbf{R}}^{3}:=\mathbf{R}^{3} \cup\{\infty\}$ ([35]), it has been expected that the equality in Willmore's conjecture holds if and only if the torus is conformally equivalent in $\overline{\mathbf{R}}^{3}$ to a $\sqrt{2}$-anchor ring. Li-Yau showed that Willmore's conjecture is true for tori with certain conformal structures close to the conformal structure of a $\sqrt{2}$-anchor ring ([21]); MontielRos showed that Willmore's conjecture is also true for tori with more conformal structures ([22]). Simon proved that there exists an embedded torus in \mathbf{R}^{3} at which \mathcal{W} attains the infimum on all the immersed tori ([28], [29]). Recently, the author has had paper [26] by Schmidt the main theorem of which states that Willmore's conjecture is
true for any torus immersed in \mathbf{R}^{3}.
Weiner proved that the image of any minimal surface in S^{3} by a stereographic projection is a Willmore surface in \mathbf{R}^{3} ([34]). Any compact two-dimensional manifold other than the projective plane may be realized in S^{3} as a minimal surface ([20]), while the projective plane may not be realized in S^{3} as any minimal surface ([1], [20]). Therefore we see that any compact two-dimensional manifold distinct from the projective plane may be realized in \mathbf{R}^{3} as a Willmore surface. Pinkall showed that there exists a Hopf torus in S^{3} which is not conformally equivalent in S^{3} to any minimal surface and the image of which by a stereographic projection is a Willmore surface in \mathbf{R}^{3} ([24]). In addition, Kusner found an example of a Willmore surface in \mathbf{R}^{3} which is homeomorphic to the projective plane ([18], [19]). At this example, \mathcal{W} attains 12π, the infimum on all the projective planes immersed in \mathbf{R}^{3}. Bryant described the moduli space of the Willmore projective planes in \mathbf{R}^{3} for each of which \mathcal{W} is equal to 12π ([11]).

By Hopf-Poincare's theorem together with Kusner's example of a Willmore projective plane, we see that our estimate of the index of an isolated umbilical point on a Willmore surface is sharp.

It is expected that the index of an isolated umbilical point on a surface does not exceed one. We call this conjecture the index conjecture. In relation to the index conjecture, the following two conjectures are known: Carathéodory's conjecture and Loewner's conjecture. Carathéodory's conjecture asserts that there exist at least two umbilical points on a compact, strictly convex surface in \mathbf{R}^{3}. If the index conjecture is true, then we see from Hopf-Poincare's theorem that there exist at least two umbilical points on a compact, orientable surface of genus zero, and this immediately gives the affirmative answer to Carathéodory's conjecture. Let F be a real-valued, smooth function of two real variables x, y, and set $\partial_{\bar{z}}:=(\partial / \partial x+\sqrt{-1} \partial / \partial y) / 2$. Then Loewner's conjecture for a positive integer $n \in \mathbf{N}$ asserts that if a vector field $\operatorname{Re}\left(\partial_{\bar{z}}^{n} F\right)(\partial / \partial x)+\operatorname{Im}\left(\partial_{\bar{z}}^{n} F\right)(\partial / \partial y)$ has an isolated zero point, then its index with respect to this vector field does not exceed n ([17], [33]). Loewner's conjecture for $n=1$ is affirmatively solved; Loewner's conjecture for $n=2$ is equivalent to the index conjecture. We may find [9], [13], [30], [31] and [32] as recent papers in relation to Carathéodory's and Loewner's conjectures. We discussed the index of an isolated umbilical point on a surface in [2]-[7], and in [8], we introduced and studied a conjecture in relation to Loewner's conjecture.

We see from our estimate of the index in the present paper that the index conjecture is true for any isolated umbilical point on a Willmore surface. In the proof of the main theorem, we shall encounter a situation on a surface with an isolated umbilical point which has not appeared in our previous studies.

2. Willmore surfaces

Let M be a connected, orientable two-dimensional manifold and $\iota: M \rightarrow \mathbf{R}^{3}$ an immersion of M into \mathbf{R}^{3}. Let H be the mean curvature of M with respect to ι and $d A$ the area element of M with respect to the metric g induced by ι. Then the Willmore functional \mathcal{W} is given by

$$
\mathcal{W}(\iota):=\int_{M} H^{2} d A
$$

Let K be the Gaussian curvature of M with respect to the metric g and set

$$
\widehat{\mathcal{W}}(\iota):=\int_{M}\left(H^{2}-K\right) d A .
$$

Then we obtain

$$
\begin{equation*}
\widehat{\mathcal{W}}(\iota)=\mathcal{W}(\iota)-\int_{M} K d A \tag{2}
\end{equation*}
$$

It is known that for any conformal transformation X of $\overline{\mathbf{R}}^{3}$ such that $X \circ \iota$ is an immersion, the following holds ([35]):

$$
\begin{equation*}
\widehat{\mathcal{W}}(X \circ \iota)=\widehat{\mathcal{W}}(\iota) . \tag{3}
\end{equation*}
$$

If M is compact, then by (2), (3) and Gauss-Bonnet's theorem, we obtain

$$
\mathcal{W}(X \circ \iota)=\mathcal{W}(\iota)
$$

Let M and ι be as above. Let ξ be a unit normal vector field on M with respect to ι and f a smooth function on M with compact support. Let ι_{f} be a smooth map from $M \times \mathbf{R}$ into \mathbf{R}^{3} satisfying $\iota_{f}(p, 0)=\iota(p),\left(\partial \iota_{f} / \partial t\right)(p, 0)=f(p) \xi(p)$ for $p \in M$ and the condition that $\iota_{f}(p, t)=\iota_{f}(p, 0)$ for any $t \in \mathbf{R}$ and any point p of M outside the support of f. We set $\iota_{f, t}(p):=\iota_{f}(p, t)$ for $(p, t) \in M \times \mathbf{R}$. Then there exists an open interval I containing 0 such that for each $t \in I, \iota_{f, t}$ is an immersion of M into \mathbf{R}^{3}. We set

$$
w_{f}(t):=\mathcal{W}\left(\iota_{f, t}\right), \widehat{w}_{f}(t):=\widehat{\mathcal{W}}\left(\iota_{f, t}\right) .
$$

An immersion ι is called Willmore if $\left(d w_{f} / d t\right)(0)=0$ holds for any smooth function f on M with compact support; if ι is a Willmore immersion, then the pair (M, ι) or the image $\iota(M)$ of M by ι is called a Willmore surface. An immersion ι is Willmore if and only if (1) holds, where Δ is the Laplace operator on M with respect to the metric g ([12]). Let D be a domain in M which contains the support of f
and the boundary of which consists of a finite number of closed curves. Then for $t \in$ $I, w_{f}(t)-\widehat{w}_{f}(t)$ is represented as follows:

$$
\begin{equation*}
w_{f}(t)-\widehat{w}_{f}(t)=\int_{M \backslash D} K_{t} d A_{t}+\int_{D} K_{t} d A_{t}, \tag{4}
\end{equation*}
$$

where K_{t} and $d A_{t}$ are the Gaussian curvature and the area element of M with respect to the metric induced by $\iota_{f, t}$, respectively. From Gauss-Bonnet's theorem, we see that the second term of the right hand side of (4) depends only on the boundary of D, which implies that this term does not depend on $t \in I$. In addition, since D contains the support of f, the first term of the right hand side of (4) does not depend on $t \in I$ either. Therefore we see that $w_{f}-\widehat{w}_{f}$ is constant on I. In particular, we obtain

$$
\begin{equation*}
\frac{d \widehat{w}_{f}}{d t}(0)=\frac{d w_{f}}{d t}(0) \tag{5}
\end{equation*}
$$

By (3) together with (5), we obtain
Proposition 2.1. Let ι be an immersion of M into \mathbf{R}^{3} and X a conformal transformation of $\overline{\mathbf{R}}^{3}$ such that $X \circ \iota$ is an immersion. Then ι is Willmore if and only if $X \circ \iota$ is Willmore.

3. The index of an isolated umbilical point

Let f be a smooth function of two variables x, y and \mathbf{G}_{f} the graph of f. We set

$$
p_{f}:=\frac{\partial f}{\partial x}, q_{f}:=\frac{\partial f}{\partial y}, r_{f}:=\frac{\partial^{2} f}{\partial x^{2}}, s_{f}:=\frac{\partial^{2} f}{\partial x \partial y}, t_{f}:=\frac{\partial^{2} f}{\partial y^{2}} .
$$

Then the Gaussian curvature K_{f} and the mean curvature H_{f} of G_{f} are represented as follows:

$$
\begin{equation*}
K_{f}:=\frac{r_{f} t_{f}-s_{f}^{2}}{\left(1+p_{f}^{2}+q_{f}^{2}\right)^{2}}, \quad H_{f}:=\frac{r_{f}+t_{f}+p_{f}^{2} t_{f}-2 p_{f} q_{f} s_{f}+q_{f}^{2} r_{f}}{2\left(1+p_{f}^{2}+q_{f}^{2}\right)^{3 / 2}} \tag{6}
\end{equation*}
$$

Let $\mathrm{D}_{f}, \mathrm{~N}_{f}, \mathrm{PD}_{f}$ be symmetric tensor fields on G_{f} of type $(0,2)$ represented in terms of the coordinates (x, y) as follows:

$$
\begin{aligned}
& \mathrm{D}_{f}:=s_{f} d x^{2}+\left(t_{f}-r_{f}\right) d x d y-s_{f} d y^{2}, \\
& \mathrm{~N}_{f}:=\left(s_{f} p_{f}^{2}-p_{f} q_{f} r_{f}\right) d x^{2}+\left(t_{f} p_{f}^{2}-r_{f} q_{f}^{2}\right) d x d y+\left(p_{f} q_{f} t_{f}-s_{f} q_{f}^{2}\right) d y^{2}, \\
& \mathrm{PD}_{f}:=\frac{1}{1+p_{f}^{2}+q_{f}^{2}}\left(\mathrm{D}_{f}+\mathrm{N}_{f}\right)
\end{aligned}
$$

A tangent vector \boldsymbol{v}_{0} to G_{f} at a point is in a principal direction if and only if PD_{f} $\left(\boldsymbol{v}_{0}, \boldsymbol{v}_{0}\right)=0$ holds ([5]). For a tangent vector \boldsymbol{v}, we set

$$
\tilde{\mathrm{D}}_{f}(\boldsymbol{v}):=\mathrm{D}_{f}(\boldsymbol{v}, \boldsymbol{v}), \quad \tilde{\mathrm{N}}_{f}(\boldsymbol{v}):=\mathrm{N}_{f}(\boldsymbol{v}, \boldsymbol{v}), \quad \widetilde{\mathrm{PD}}_{f}(\boldsymbol{v}):=\mathrm{PD}_{f}(\boldsymbol{v}, \boldsymbol{v}) .
$$

For $\phi \in \mathbf{R}$, we set

$$
u_{\phi}:=\binom{\cos \phi}{\sin \phi}, \quad \mathbf{U}_{\phi}:=\cos \phi \frac{\partial}{\partial x}+\sin \phi \frac{\partial}{\partial y} .
$$

We set

$$
\operatorname{grad}_{f}:=\binom{p_{f}}{q_{f}}, \quad \operatorname{grad}_{f}^{\perp}:=\binom{-q_{f}}{p_{f}}, \quad \operatorname{Hess}_{f}:=\left(\begin{array}{cc}
r_{f} & s_{f} \\
s_{f} & t_{f}
\end{array}\right) .
$$

Let \langle,$\rangle be the scalar product in \mathbf{R}^{2}$. Then for any $\phi \in \mathbf{R}$, the following hold ([5]):

$$
\begin{aligned}
\tilde{\mathrm{D}}_{f}\left(\mathbf{U}_{\phi}\right) & =\left\langle\operatorname{Hess}_{f} u_{\phi}, u_{\phi+\pi / 2}\right\rangle, \\
\tilde{\mathrm{N}}_{f}\left(\mathbf{U}_{\phi}\right) & =\left\langle\operatorname{grad}_{f}, u_{\phi}\right\rangle\left\langle\operatorname{grad}_{f}^{\perp}, \operatorname{Hess}_{f} u_{\phi}\right\rangle .
\end{aligned}
$$

For $l \in \mathbf{N} \cup\{\infty\}$, let $\mathcal{C}_{o}^{(\infty, l)}$ be the set of smooth functions defined on a connected neighborhood of $(0,0)$ in \mathbf{R}^{2} such that $\left(\partial^{m+n} F / \partial x^{m} \partial y^{n}\right)(0,0)=0$ for each $F \in \mathcal{C}_{o}^{(\infty, l)}$ and non-negative integers m, n satisfying $0 \leqq m+n<l$. The following hold:

$$
\mathcal{C}_{o}^{(\infty, l)} \supset \mathcal{C}_{o}^{(\infty, l+1)} \supset \mathcal{C}_{o}^{(\infty, \infty)} \neq\{0\},
$$

where $l \in \mathbf{N}$. Let F be an element of $\mathcal{C}_{o}^{(\infty, 2)}$ such that $o:=(0,0,0)$ is an umbilical point of the graph of F, that is, there exists a real number a_{F} satisfying

$$
\begin{equation*}
F(x, y)=\frac{a_{F}\left(x^{2}+y^{2}\right)}{2}+o\left(x^{2}+y^{2}\right) \tag{7}
\end{equation*}
$$

Let σ_{F} be an element of $\mathcal{C}_{o}^{(\infty, 2)}$ defined by

$$
\sigma_{F}:= \begin{cases}0 & \text { if } a_{F}=0 \\ \frac{1}{a_{F}}-\frac{\left|a_{F}\right|}{a_{F}} \sqrt{\frac{1}{a_{F}^{2}}-\left(x^{2}+y^{2}\right)} & \text { if } a_{F} \neq 0\end{cases}
$$

Then we obtain $F-\sigma_{F} \in \mathcal{C}_{o}^{(\infty, 3)}$. For an integer $l \geqq 2$, let $\mathcal{C}_{o}^{\langle\infty, l\rangle}$ be the subset of $\mathcal{C}_{o}^{(\infty, l)}$ such that each $F \in \mathcal{C}_{o}^{\langle\infty, l\rangle}$ satisfies (7) for some $a_{F} \in \mathbf{R}$ and $F-\sigma_{F} \notin$ $\mathcal{C}_{o}^{(\infty, \infty)}$. For an integer $k \geqq 3$, let \mathcal{P}^{k} be the set of the homogeneous polynomials of degree k. Then for each $F \in \mathcal{C}_{o}^{\langle\infty, 2\rangle}$, there exist an integer $k_{F} \geqq 3$ and a nonzero element g_{F} of $\mathcal{P}^{k_{F}}$ satisfying $F-\sigma_{F}-g_{F} \in \mathcal{C}_{o}^{\left(\infty, k_{F}+1\right)}$. Let g be an element of \mathcal{P}^{k}.

Then set $\operatorname{Hess}_{g}(\theta):=\operatorname{Hess}_{g}(\cos \theta, \sin \theta)$ for $\theta \in \mathbf{R}$ and let η_{g} be a continuous function on \mathbf{R} such that for any $\theta \in \mathbf{R}, u_{\eta_{g}(\theta)}$ is an eigenvector of $\operatorname{Hess}_{g}(\theta)$, and let S_{g} denote the set of the numbers at each of which Hess g is represented by the unit matrix up to a constant.

Let $\mathcal{C}_{o}^{\infty, 2}$ be the subset of $\mathcal{C}_{o}^{\langle\infty, 2\rangle}$ such that on the graph G_{F} of each $F \in \mathcal{C}_{o}^{\infty, 2}$, o is an isolated umbilical point. For an element F of $\mathcal{C}_{o}^{\infty, 2}$, let ρ_{0} be a positive number such that there exists no umbilical point of G_{F} on $\left\{0<x^{2}+y^{2}<\rho_{0}^{2}\right\}$ and ϕ_{F} a continuous function on $\left(0, \rho_{0}\right) \times \mathbf{R}$ such that for each $(\rho, \theta) \in\left(0, \rho_{0}\right) \times \mathbf{R}$, a tangent vector $\cos \phi_{F}(\rho, \theta) \partial / \partial x+\sin \phi_{F}(\rho, \theta) \partial / \partial y$ of \mathbf{G}_{F} at $(\rho \cos \theta, \rho \sin \theta)$ is in a principal direction. Then the following (a)-(c) hold ([5], [6]):
(a) For any $\theta_{0} \in \mathbf{R} \backslash S_{g_{F}}$, there exists a number $\phi_{F, o}\left(\theta_{0}\right)$ satisfying the following:
(i) $\lim _{\rho \rightarrow 0} \phi_{F}\left(\rho, \theta_{0}\right)=\phi_{F, o}\left(\theta_{0}\right)$,
(ii) $u_{\phi_{F,, o}\left(\theta_{0}\right)}$ is an eigenvector of $\operatorname{Hess}_{g_{F}}\left(\theta_{0}\right)$;
(b) For any $\theta_{0} \in \mathbf{R}$, there exist numbers $\phi_{F, o}\left(\theta_{0}+0\right), \phi_{F, o}\left(\theta_{0}-0\right)$ satisfying the following:
(i) $\lim _{\theta \rightarrow \theta_{0} \pm 0} \phi_{F, o}(\theta)=\phi_{F, o}\left(\theta_{0} \pm 0\right)$,
(ii) $\Gamma_{F, o}\left(\theta_{0}\right):=\phi_{F, o}\left(\theta_{0}+0\right)-\phi_{F, o}\left(\theta_{0}-0\right)$ is an element of $\{n \pi / 2\}_{n \in \mathbf{Z}}$;
(c) The index $\operatorname{ind}_{o}\left(\mathrm{G}_{F}\right)$ of o on G_{F} is represented as follows:

$$
\begin{equation*}
\operatorname{ind}_{o}\left(\mathrm{G}_{F}\right)=\frac{\eta_{g_{F}}(\theta+2 \pi)-\eta_{g_{F}}(\theta)}{2 \pi}+\frac{1}{2 \pi} \sum_{\left.\theta_{0} \in S_{S_{F}} \cap \theta, \theta+2 \pi\right)} \Gamma_{F, o}\left(\theta_{0}\right) \tag{8}
\end{equation*}
$$

For an integer $k \geqq 3$, set $\mathcal{P}_{o}^{k}:=\mathcal{P}^{k} \cap \mathcal{C}_{o}^{\infty, 2}$. Then for any $g \in \mathcal{P}_{o}^{k}$, the following hold: $\Gamma_{g, o}\left(\theta_{0}\right)=-\pi / 2$ for any $\theta_{0} \in S_{g}([4]) ; \operatorname{ind}_{o}\left(\mathrm{G}_{g}\right) \in\{1-k / 2+i\}_{i=0}^{[k / 2]}$ ([2]). Let $\mathcal{C}_{o o}^{\infty, 2}$ be the subset of $\mathcal{C}_{o}^{\infty, 2}$ such that for each $F \in \mathcal{C}_{o q}^{\infty, 2}, o$ is an isolated umbilical point on each of G_{F} and $\mathrm{G}_{g_{F}}$. If F is an element of $\mathcal{C}_{o}^{\langle\infty, 2\rangle}$ satisfying $S_{g_{F}}=\emptyset$, then $F \in \mathcal{C}_{o o}^{\infty, 2}$ holds ([5], [6]). We see that if $F \in \mathcal{C}_{o o}^{\infty, 2}$ satisfies $S_{g_{F}}=\emptyset$, then the following hold:

$$
\begin{equation*}
\operatorname{ind}_{o}\left(\mathrm{G}_{F}\right)=\operatorname{ind}_{o}\left(\mathrm{G}_{g_{F}}\right)=\frac{\eta_{g_{F}}(\theta+2 \pi)-\eta_{g_{F}}(\theta)}{2 \pi} \tag{9}
\end{equation*}
$$

For any $F \in \mathcal{C}_{o o}^{\infty, 2}$, the following hold ([5], [6]):
(a) $-\pi / 2 \leqq \Gamma_{F, o}\left(\theta_{0}\right) \leqq \pi / 2$ for any $\theta_{0} \in S_{g_{F}}$;
(b) $\operatorname{ind}_{o}\left(\mathrm{G}_{g_{F}}\right) \leqq \operatorname{ind}_{o}\left(\mathrm{G}_{F}\right) \leqq 1$.

If F is an element of $\mathcal{C}_{o}^{\infty, 2}$ satisfying $\Gamma_{F, o}\left(\theta_{0}\right) \leqq \pi$ for any $\theta_{0} \in S_{g_{F}}$, then $\operatorname{ind}_{o}\left(\mathrm{G}_{F}\right) \leqq$ 1 holds ([5], [6]). In general, it is expected that the index of an isolated umbilical point on a surface does not exceed one (which is called the index conjecture or the local Carathéodory's conjecture).

We presented one way of computing $\eta_{g}(\theta+2 \pi)-\eta_{g}(\theta)$ for any $g \in \mathcal{P}^{k}$ ([5]). For $\theta \in \mathbf{R}$, set $\tilde{g}(\theta):=g(\cos \theta, \sin \theta)$. A number $\theta_{0} \in \mathbf{R}$ is called a root of g if $(d \tilde{g} / d \theta)\left(\theta_{0}\right)=0$. The set of the roots of g is denoted by R_{g}. Let $R\left(\right.$ Hess $\left._{g}\right)$ be the set of numbers such that each $\theta_{0} \in R\left(\operatorname{Hess}_{g}\right)$ satisfies $\theta_{0} \in\left\{\eta_{g}\left(\theta_{0}\right)+n \pi / 2\right\}_{n \in \mathbf{Z}}$. For $\theta \in \mathbf{R}$,
we set $\operatorname{grad}_{g}(\theta):=\operatorname{grad}_{g}(\cos \theta, \sin \theta)$. Then the following holds:

$$
\begin{equation*}
(k-1) \operatorname{grad}_{g}(\theta)=\operatorname{Hess}_{g}(\theta) u_{\theta} \tag{10}
\end{equation*}
$$

From (10), we obtain

$$
\begin{equation*}
\left\langle\operatorname{Hess}_{g}(\theta) u_{\theta}, u_{\theta+\pi / 2}\right\rangle=(k-1) \frac{d \tilde{g}}{d \theta}(\theta) . \tag{11}
\end{equation*}
$$

Therefore we obtain $S_{g} \subset R_{g}$ and $R\left(\right.$ Hess $\left._{g}\right) \subset R_{g}$. Suppose $R_{g}=\mathbf{R}$. Then k is even and g is represented by $\left(x^{2}+y^{2}\right)^{k / 2}$ up to a constant. By direct computations, we obtain $S_{g}=\emptyset$. Therefore o is an isolated umbilical point of G_{g}. By (11), we see that $R\left(\operatorname{Hess}_{g}\right)=\mathbf{R}$, i.e., there exists a number $z_{0} \in\{n \pi / 2\}_{n \in \mathbf{Z}}$ satisfying $\eta_{g}(\theta)=\theta+z_{0}$ for any $\theta \in \mathbf{R}$. Therefore by (9), we obtain

$$
\operatorname{ind}_{o}\left(\mathrm{G}_{g}\right)=\frac{\eta_{g}(\theta+2 \pi)-\eta_{g}(\theta)}{2 \pi}=1
$$

In the following, suppose $R_{g} \neq \mathbf{R}$. Then for each $\theta_{0} \in R_{g}$, there exists a positive integer μ satisfying $\left(d^{\mu+1} \tilde{g} / d \theta^{\mu+1}\right)\left(\theta_{0}\right) \neq 0$. The minimum of such integers is denoted by $\mu_{g}\left(\theta_{0}\right)$. A root $\theta_{0} \in R_{g}$ is said to be
(a) related if θ_{0} satisfies $\tilde{g}\left(\theta_{0}\right)=0$ or if $\mu_{g}\left(\theta_{0}\right)$ is odd;
(b) non-related if θ_{0} satisfies $\tilde{g}\left(\theta_{0}\right) \neq 0$ and if $\mu_{g}\left(\theta_{0}\right)$ is even.

Suppose that $\theta_{0} \in R_{g}$ is related. Then it is said that the critical sign of θ_{0} is positive (respectively, negative) if the following holds:

$$
\tilde{g}\left(\theta_{0}\right) \frac{d^{\mu_{g}\left(\theta_{0}\right)+1} \tilde{g}}{d \theta^{\mu_{g}\left(\theta_{0}\right)+1}}\left(\theta_{0}\right) \leqq 0 \quad(\text { respectively, }>0)
$$

The critical sign of θ_{0} is denoted by $\mathrm{c}-\operatorname{sign}_{g}\left(\theta_{0}\right)$. The set $R_{g} \backslash R\left(\right.$ Hess $\left._{g}\right)$ consists of the numbers at each of which Hess_{g} is represented by the unit matrix up to a nonzero constant; in addition, an element $\theta_{0} \in R_{g} \backslash R\left(\right.$ Hess $\left._{g}\right)$ is related and satisfies $\mathrm{c}-\operatorname{sign}_{g}\left(\theta_{0}\right)=-([5])$. It is said that the sign of $\theta_{0} \in R\left(\mathrm{Hess}_{g}\right)$ is positive (respectively, negative) if there exists a neighborhood $U_{\theta_{0}}$ of θ_{0} in \mathbf{R} satisfying

$$
\left\{\theta-\eta_{g}(\theta)-\left(\theta_{0}-\eta_{g}\left(\theta_{0}\right)\right)\right\}\left(\theta-\theta_{0}\right)>0 \quad(\text { respectively, }<0)
$$

for any $\theta \in U_{\theta_{0}} \backslash\left\{\theta_{0}\right\}$. For $\theta_{0} \in R\left(\right.$ Hess $\left._{g}\right), \theta_{0}$ is related if and only if the sign of θ_{0} is positive or negative ([5]). If $\theta_{0} \in R\left(\right.$ Hess $\left._{g}\right)$ is related, then the sign of θ_{0} is denoted by $\operatorname{sign}_{g}\left(\theta_{0}\right)$. For a related root θ_{0} of g satisfying c-sign ${ }_{g}\left(\theta_{0}\right)=+, \theta_{0} \in R\left(\right.$ Hess $\left._{g}\right)$ and $\operatorname{sign}_{g}\left(\theta_{0}\right)=+$ hold ([5]). Referring to [3], we see that if θ_{0} is a related element of $R\left(\operatorname{Hess}_{g}\right)$ satisfying c - $\operatorname{sign}_{g}\left(\theta_{0}\right)=-$, then the condition $\operatorname{sign}_{g}\left(\theta_{0}\right)=+$ (respectively, -) is equivalent to the following:

$$
\frac{1}{\tilde{g}\left(\theta_{0}\right)} \frac{d^{2} \tilde{g}}{d \theta^{2}}\left(\theta_{0}\right) \in(k(k-2), \infty) \quad(\text { respectively, }[0, k(k-2)))
$$

Let $n_{g,+}$ (respectively, $n_{g,-}$) denote the number of the related elements of $R\left(\right.$ Hess $\left._{g}\right)$ in $[\theta, \theta+\pi)$ with positive (respectively, negative) sign. Then for any $\theta \in \mathbf{R}$, the following holds ([5]):

$$
\begin{equation*}
\frac{\eta_{g}(\theta+2 \pi)-\eta_{g}(\theta)}{2 \pi}=1-\frac{n_{g,+}-n_{g,-}}{2} . \tag{12}
\end{equation*}
$$

4. The main theorem

We shall prove
Theorem 4.1. Let F be an element of $\mathcal{C}_{o}^{(\infty, 2)}$ satisfying (7) for some $a_{F} \in \mathbf{R}$ and suppose that the graph G_{F} of F is a Willmore surface such that there exists no totally umbilical neighborhood of o in G_{F}. Then the following hold:
(a) $F \in \mathcal{C}_{o}^{\langle\infty, 2\rangle}$;
(b) If o is an isolated umbilical point of G_{F}, then $\operatorname{ind}_{o}\left(\mathrm{G}_{F}\right) \leqq 1 / 2$.

Remark. Noticing Proposition 2.1 and that whether a one-dimensional subspace of the tangent plane at a point of a surface is a principal direction is invariant under any conformal transformation of $\overline{\mathbf{R}}^{3}$, we may suppose $F \in \mathcal{C}_{o}^{(\infty, 3)}$ in Theorem 4.1.

Remark. Although F is an element of $\mathcal{C}_{o}^{(\infty, 2)}$ such that o is an isolated umbilical point of $\mathrm{G}_{F}, F \in \mathcal{C}_{o}^{\langle\infty, 2\rangle}$ does not always hold. Let f be a smooth function on a neighborhood of $(0,0)$ in \mathbf{R}^{2} satisfying $f(0,0)=0$ and $f>0$ on a punctured neighborhood of $(0,0)$. Then $\exp (-1 / f)$ is a smooth function defined on a punctured neighborhood of $(0,0)$ and smoothly extended to $(0,0)$ so that all the partial derivatives of $\exp (-1 / f)$ at $(0,0)$ are equal to zero. Then we obtain $\exp (-1 / f) \in \mathcal{C}_{o}^{(\infty, \infty)}$. Suppose that for each positive number $c>0$, there exists a punctured neighborhood of $(0,0)$ on which the norm of the gradient vector field of $\log f$ is bounded from below by the number c. Then o is an isolated umbilical point on the graph of $\exp (-1 / f)$ ([7]). However, since $\exp (-1 / f) \in \mathcal{C}_{o}^{(\infty, \infty)}$, we obtain $\exp (-1 / f) \notin$ $\mathcal{C}_{o}^{\langle\infty, 2\rangle}$. (a) of Theorem 4.1 is crucial to the proof of (b) of Theorem 4.1.

Proof of (a) of Theorem 4.1. Let Δ_{F} be the Laplace operator on G_{F}, and K_{F}, H_{F} the Gaussian and the mean curvatures of G_{F}, respectively. Then H_{F} satisfies the following elliptic partial differential equation:

$$
\begin{equation*}
\left\{\Delta_{F}+2\left(H_{F}^{2}-K_{F}\right)\right\} H_{F}=0 \tag{13}
\end{equation*}
$$

If $H_{F} \equiv 0$, then G_{F} is a minimal surface and F is real-analytic. Since G_{F} is not totally umbilical, we obtain $F \not \equiv 0$ and this implies $F \in \mathcal{C}_{o}^{\langle\infty, 3\rangle}$. If $H_{F} \not \equiv 0$, then H_{F} is a non-trivial solution of (13) and referring to [14] as in [15], we see that not all the partial derivatives of H_{F} at $(0,0)$ are equal to zero. This implies $F \in \mathcal{C}_{o}^{\langle\infty, 3\rangle}$.

Hence we obtain (a) of Theorem 4.1.
Proof of (b) of Theorem 4.1. Let F be an element of $\mathcal{C}_{o}^{\langle\infty, 3\rangle}$ such that the graph G_{F} of F is a Willmore surface. Then there exist an integer $k_{F} \geqq 3$ and a nonzero homogeneous polynomial $g_{F} \in \mathcal{P}^{k_{F}}$ satisfying $F-g_{F} \in \mathcal{C}_{o}^{\left(\infty, k_{F}+1\right)}$, and noticing (6) and (13), we see that g_{F} satisfies $\Delta_{0}^{2} g_{F} \equiv 0$, where $\Delta_{0}:=(\partial / \partial x)^{2}+(\partial / \partial y)^{2}$. Therefore there exist spherical harmonic functions $h_{k_{F}}, h_{k_{F}-2}$ of degree $k_{F}, k_{F}-2$, respectively such that g_{F} is represented as

$$
g_{F}=h_{k_{F}}+\left(x^{2}+y^{2}\right) h_{k_{F}-2} .
$$

Suppose $S_{g_{F}}=\emptyset$. Then $F \in \mathcal{C}_{o o}^{\infty, 2}$ holds. Noticing that the number of the zero points of \tilde{g}_{F} in $[\theta, \theta+\pi)$ is more than or equal to $k_{F}-2$, we obtain

$$
k_{F}-2 \leqq \sharp\left\{R_{g_{F}} \cap[\theta, \theta+\pi)\right\} \leqq k_{F}
$$

and

$$
\left(n_{g_{F},+}, n_{g_{F},-}\right) \in\left\{\left(k_{F}-2,0\right),\left(k_{F}-1,1\right),\left(k_{F}, 0\right)\right\} .
$$

Therefore by (9), (12) and $k_{F} \geqq 3$, we obtain

$$
\operatorname{ind}_{o}\left(\mathrm{G}_{F}\right) \leqq 1-\frac{k_{F}-2}{2}=2-\frac{k_{F}}{2} \leqq \frac{1}{2}
$$

Suppose $S_{g_{F}} \neq \emptyset$ and $F \in \mathcal{C}_{o o}^{\infty, 2}$. Then we obtain $\sharp\left\{S_{g_{F}} \cap[\theta, \theta+\pi)\right\}=1,\left(n_{g_{F},+}, n_{g_{F},-}\right)=$ ($k_{F}-1,0$) and $-\pi / 2 \leqq \Gamma_{F, o}\left(\theta_{0}\right) \leqq \pi / 2$ for any $\theta_{0} \in S_{g_{F}}$. Therefore by (8), (12) and $k_{F} \geqq 3$, we obtain

$$
\operatorname{ind}_{o}\left(\mathrm{G}_{F}\right) \leqq 1-\frac{k_{F}-1}{2}+\frac{1}{2}=2-\frac{k_{F}}{2} \leqq \frac{1}{2} .
$$

Suppose $S_{g_{F}} \neq \emptyset, F \in \mathcal{C}_{o}^{\infty, 2}$ and $F \notin \mathcal{C}_{o o}^{\infty, 2}$. Then there exists an element $\theta_{0} \in S_{g_{F}}$ satisfying $\tilde{g}_{F}\left(\theta_{0}\right)=0$ and $\mu_{g_{F}}\left(\theta_{0}\right)=2$. We obtain $\sharp\left\{S_{g_{F}} \cap[\theta, \theta+\pi)\right\}=1$ and $\left(n_{g_{F},+}, n_{g_{F},-}\right)=$ $\left(k_{F}-1,0\right)$. We shall prove $-\pi / 2 \leqq \Gamma_{F, o}\left(\theta_{0}\right) \leqq \pi / 2$, which implies $\operatorname{ind}_{o}\left(\mathrm{G}_{F}\right) \leqq 1 / 2$. We may suppose $\theta_{0}=0$ and represent g_{F} as

$$
\begin{equation*}
g_{F}(x, y)=g_{0}(x, y) y^{3}, \tag{14}
\end{equation*}
$$

where g_{0} is a homogeneous polynomial of degree $k_{F}-3$ satisfying $g_{0}(x, 0) \neq 0$ for any $x \in \mathbf{R} \backslash\{0\}$. We set

$$
\begin{aligned}
& a_{F}:=s_{F}+s_{F} p_{F}^{2}-p_{F} q_{F} r_{F}, \\
& 2 b_{F}:=t_{F}-r_{F}+t_{F} p_{F}^{2}-r_{F} q_{F}^{2},
\end{aligned}
$$

$$
c_{F}:=-s_{F}-s_{F} q_{F}^{2}+p_{F} q_{F} t_{F}
$$

Then the following holds:

$$
\left(1+p_{F}^{2}+q_{F}^{2}\right) \mathrm{PD}_{F}=a_{F} d x^{2}+2 b_{F} d x d y+c_{F} d y^{2}
$$

We set

$$
\tilde{b}_{F}(\rho, \theta):=b_{F}(\rho \cos \theta, \rho \sin \theta)
$$

for $(\rho, \theta) \in\left(-\rho_{0}, \rho_{0}\right) \times \mathbf{R}$, where $\rho_{0}>0$ is a positive number such that there exists no umbilical point of G_{F} on $\left\{0<x^{2}+y^{2}<\rho_{0}^{2}\right\}$. There exists a smooth function $\tilde{b}_{F}^{\left(k_{F}-2\right)}$ on \mathbf{R} satisfying

$$
\tilde{b}_{F}(\rho, \theta)-\rho^{k_{F}-2} \tilde{b}_{F}^{\left(k_{F}-2\right)}(\theta)=o\left(\rho^{k_{F}-2}\right)
$$

From (14), we obtain $\left(d \tilde{b}_{F}^{\left(k_{F}-2\right)} / d \theta\right)(0) \neq 0$. Therefore by the implicit function theorem, we see that there exist a neighborhood V_{0} of $(0,0)$ in \mathbf{R}^{2} and a curve C_{0} in V_{0} through $(0,0)$ satisfying
(a) $C_{0}=\left\{(\rho, \theta) \in V_{0} ; \tilde{b}_{F}(\rho, \theta) / \rho^{k_{F}-2}=0\right\}$;
(b) C_{0} is not tangent to the θ-axis at $(0,0)$.

Then noticing the behavior of the two continuous distributions around o defined by

$$
b_{F} d x^{2}+\left(c_{F}-a_{F}\right) d x d y-b_{F} d y^{2}=0
$$

we obtain $-\pi / 2 \leqq \Gamma_{F, o}\left(\theta_{0}\right) \leqq \pi / 2$.

References

[1] F.J. Almgren, Jr.: Some interior regularity theorems for minimal surfaces and an extension of Bernstein's theorem, Ann. of Math. 84 (1966), 277-292.
[2] N. Ando: An isolated umbilical point of the graph of a homogeneous polynomial, Geom. Dedicata 82 (2000), 115-137.
[3] N. Ando: The behavior of the principal distributions around an isolated umbilical point, J. Math. Soc. Japan 53 (2001), 237-260.
[4] N. Ando: The behavior of the principal distributions on the graph of a homogeneous polynomial, Tohoku Math. J. 54 (2002), 163-177.
[5] N. Ando: The behavior of the principal distributions on a real-analytic surface, J. Math. Soc. Japan. 56 (2004), 201-214.
[6] N. Ando: The index of an isolated umbilical point on a surface; in Differential geometry and integrable systems, Contemp. Math. 308, Amer. Math. Soc. 2002, 1-11.
[7] N. Ando: An umbilical point on a non-real-analytic surface, Hiroshima Math. J. 33 (2003), 1-14.
[8] N. Ando: A conjecture in relation to Loewner's conjecture, J. Math. Soc. Japan, to appear.
[9] L. Bates: A weak counterexample to the Carathéodory's conjecture, Differential Geom. Appl. 15 (2001), 79-80.
[10] R. Bryant: A duality theorem for Willmore surfaces, J. Differential Geom. 20 (1984), 23-53.
[11] R. Bryant: Surfaces in conformal geometry, Proc. Sympos. Pure Math. 48 (1988), 227-240.
[12] B.-Y. Chen: On a variational problem on hypersurfaces, J. London Math. Soc. 6 (1973), 321-325.
[13] C. Gutierrez and F. Sanchez-Bringas: Planer vector field versions of Carathéodory's and Loewner's conjectures, Publ. Mat. 41 (1997), 169-179.
[14] P. Hartman and A. Wintner: On the local behavior of solutions of non-parabolic partial differential equations, Amer. J. Math. 75 (1953), 449-476.
[15] P. Hartman and A. Wintner: Umbilical points and W-surfaces, Amer. J. Math. 76 (1954), 502-508.
[16] H. Hopf: Differential geometry in the large, Lecture Notes in Math. 1000, Springer-Verlag, Berlin-NewYork, 1989.
[17] T. Klotz: On G. Bol's proof of Carathéodory's conjecture, Comm. Pure Appl. Math. 12 (1959), 277-311.
[18] R. Kusner: Conformal geometry and complete minimal surfaces, Bull. Amer. Math. Soc. 17 (1987), 291-295.
[19] R. Kusner: Comparison surfaces for the Willmore problem, Pacific J. Math. 138 (1989), 317-345.
[20] H.B. Lawson, Jr.: Complete minimal surfaces in S^{3}, Ann. of Math. 92 (1970), 335-374.
[21] P. Li and S.-T. Yau: A new conformal invariant and its application to the Willmore conjecture and first eigenvalues of compact surfaces, Invent. Math. 69 (1982), 269-291.
[22] S. Montiel and A. Ros: Minimal immersions of surfaces by the first eigenfunctions and conformal area, Invent. Math. 83 (1985), 153-166.
[23] R. Osserman: A survey of minimal surfaces, Van Nostrand, 1969.
[24] U. Pinkall: Hopf tori in S^{3}, Invent. Math. 81 (1985), 379-386.
[25] U. Pinkall and I. Sterling: Willmore surfaces, Math. Intelligencer 9 (1987), 38-43.
[26] M.U. Schmidt: A proof of the Willmore conjecture, preprint (math.DG/0203224).
[27] K. Shiohama and R. Takagi: A characterization of a standard torus in E^{3}, J. Differential Geometry, 4 (1970), 477-485.
[28] L. Simon: Existence of Willmore surfaces, Proc. Centre for Math. Anal. 10 (1986), 187-216.
[29] L. Simon: Existence of surfaces minimizing the Willmore functional, Comm. Anal. Geom. 1 (1993), 281-326.
[30] B. Smyth and F. Xavier: A sharp geometric estimate for the index of an umbilic on a smooth surface, Bull. London Math. Soc. 24 (1992), 176-180.
[31] B. Smyth and F. Xavier: Real solvability of the equation $\partial_{\bar{z}}^{2} \omega=\rho g$ and the topology of isolated umbilics, J. Geom. Anal. 8 (1998), 655-671.
[32] B. Smyth and F. Xavier: Eigenvalue estimates and the index of Hessian fields, Bull. London Math. Soc. 33 (2001), 109-112
[33] C.J. Titus: A proof of a conjecture of Loewner and of the conjecture of Carathéodory on umbilic points, Acta Math. 131 (1973), 43-77.
[34] J.L. Weiner: On a problem of Chen, Willmore, et al, Indiana University Math. J. 27 (1978), 19-35.
[35] J.H. White: A global invariant of conformal mappings in space, Proc. Amer. Math. Soc. 38 (1973), 162-164.
[36] T.J. Willmore: Note on embedded surfaces, An. Şti. Univ. "All. I. Cuza" Iaşi Secţ. I a Mat. 11B (1965), 493-496.
[37] T.J. Willmore: Mean curvature of immersed surfaces, An. Şti. Univ. "All. I. Cuza" Iaşi Secţ. I a Mat. 14 (1968), 99-103.
[38] T.J. Willmore: Mean curvature of Riemannian immersions, J. London Math. Soc. 3 (1971), 307-310.
[39] T.J. Willmore: Riemannian Geometry, Oxford University Press, 1993.

Department of Mathematics

Faculty of Science
Kumamoto University
2-39-1 Kurokami, Kumamoto 860-8555, Japan
e-mail: ando@math.sci.kumamoto-u.ac.jp

