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1. Introduction

Let S be a surface irR®. Then it is known that ifS is a surface with constant
mean curvature, then the index of an isolated umbilical fpomsS is negative ([16]).
If Sis special Weingarten, then the same result is obtain&8])] In the present pa-
per, we shall prove that the index of an isolated umbilicahpon a Willmore surface
does not exceed/2.

We say thatS is aWillmore surfaceif S is a stationary surface of the Willmore
functional W, where theWillmore functionalis defined by the integral of the square of
the mean curvature. It is known that is a Willmore surfacenil @nly if S satisfies
the following partial differential equation ([12]):

(1) {A+2(H?> - K)}H =0,

where A is the Laplace operator ¢h aRd H, are the Gaussian anuehe cur-
vatures of S , respectively. Equation (1) is the Euler-Lagerquation for Willmore
surfaces.

Willmore proved thaty > 4x for any compact surface iR® and that the equal-
ity holds if and only if the surface is a round sphere ([36]7])3 In addition, he and
Shiohama-Takagi proved thaw > 272 (> 4r) for a torus represented as the bound-
ary of a tubular neighborhood of a closed curveRA and that the equality holds if
and only if the torus is a/2-anchor ring, i.e., the boundary of the tubular neighbor-
hood with radiusa > 0 of a circle with radiusv/2a ([38], [27]). Willmore conjec-
tured W > 272 for any torus inR® ([36]). Since White showed that if the surface
is compact and orientable, ther is invariant under any conformal transformation
of R*:= R3U{oo} ([35]), it has been expected that the equality in Willmoresmjec-
ture holds if and only if the torus is conformally equivalent R to a /2 -anchor
ring. Li-Yau showed that Willmore’s conjecture is true farit with certain confor-
mal structures close to the conformal structure of/a-anchor ring ([21]); Montiel-
Ros showed that Willmore's conjecture is also true for toithwnore conformal struc-
tures ([22]). Simon proved that there exists an embeddads tor R® at which W at-
tains the infimum on all the immersed tori ([28], [29]). Rettgnthe author has had
paper [26] by Schmidt the main theorem of which states thdimWie’s conjecture is
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true for any torus immersed iR3.

Weiner proved that the image of any minimal surfaceSthby a stereographic
projection is a Willmore surface iR® ([34]). Any compact two-dimensional manifold
other than the projective plane may be realizedSthas a minimal surface ([20]),
while the projective plane may not be realized S8 as any minimal surface ([1],
[20]). Therefore we see that any compact two-dimensionahifola distinct from
the projective plane may be realized R¥ as a Willmore surface. Pinkall showed that
there exists a Hopf torus i which is not conformally equivalent i§% to any min-
imal surface and the image of which by a stereographic piojedés a Willmore sur-
face inR® ([24]). In addition, Kusner found an example of a Willmorerfage in R®
which is homeomorphic to the projective plane ([18], [19X this example, W at-
tains 12r, the infimum on all the projective planes immersedRf Bryant described
the moduli space of the Willmore projective planesRi for each of whichW is
equal to 1z ([11]).

By Hopf-Poincaré’s theorem together with Kusner's exampf a Willmore pro-
jective plane, we see that our estimate of the index of aratedl umbilical point on
a Willmore surface is sharp.

It is expected that the index of an isolated umbilical poimt & surface does
not exceed one. We call this conjecture timelex conjecturelIn relation to the in-
dex conjecture, the following two conjectures are knownrafl&&odory’s conjecture
and Loewner’s conjectureCaratheodory’s conjectureasserts that there exist at least
two umbilical points on a compact, strictly convex surfaceRS. If the index con-
jecture is true, then we see from Hopf-Poincaré’s theorbat there exist at least
two umbilical points on a compact, orientable surface ofugerero, and this immedi-
ately gives the affirmative answer to Carathéodory’s adoje. LetF be a real-valued,
smooth function of two real variables,y , and s&t:=(0/0x ++/—10/0y)/2.
Then Loewner’s conjecturdor a positive integem € N asserts that if a vector field
Re(02F) (0/0x)+Im (82F) (0/0y) has an isolated zero point, then its index with re-
spect to this vector field does not exceed ([17], [33]). Loedanconjecture fon =1
is affirmatively solved; Loewner's conjecture far =2 is equént to the index con-
jecture. We may find [9], [13], [30], [31] and [32] as recentppses in relation to
Carathéodory's and Loewner’s conjectures. We discussednidex of an isolated um-
bilical point on a surface in [2]-[7], and in [8], we introdert and studied a conjecture
in relation to Loewner’s conjecture.

We see from our estimate of the index in the present paperttiegaindex con-
jecture is true for any isolated umbilical point on a Willmosurface. In the proof of
the main theorem, we shall encounter a situation on a susadttean isolated umbil-
ical point which has not appeared in our previous studies.
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2. Willmore surfaces

Let M be a connected, orientable two-dimensional manifold anM — R®
an immersion ofM intoR3. Let H be the mean curvature dZ  with respect:to
and dA the area element aif  with respect to the mepric  induced.byhen
the Willmore functional)V is given by

W(r) ::/ H?dA.
M
Let K be the Gaussian curvature of  with respect to the metricd st
W() ::/(HZ—K)dA.
M
Then we obtain

) W) = W() — /M K dA.

It is known that for any conformal transformaticn B such thatX o is an im-
mersion, the following holds ([35]):

?3) WX 01) = W().
If M is compact, then by (2), (3) and Gauss-Bonnet's theorem,obtain
W(X o) = W().

Let M and. be as above. Lef be a unit normal vector field o  with respect
to . and f a smooth function oM  with compact support. Letbe a smooth map
from M x R into R® satisfying¢s(p, 0) = ¢«(p), (Ovr/0t)(p,0) = f(p)(p) for p e M
and the condition that;(p, ) = .;(p, 0) for anyr € R and any pointp ofM outside
the support off . We set;,(p) = ¢s(p,t) for (p,t) € M x R. Then there exists
an open intervall containing 0 such that for each I, ¢y, is an immersion ofM
into R3. We set

wr(t) = W(r), We(t) = Wiey).

An immersion. is called Willmore if (dw/dt)(0) = O holds for any smooth func-
tion f on M with compact support; if is a Willmore immersion, then the pain4 )
or the imagew(M) of M by . is called aWillmore surface An immersion. is Will-
more if and only if (1) holds, where\ is the Laplace operator Mnwith respect
to the metricg ([12]). LetD be a domain i  which contains the mrp of f
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and the boundary of which consists of a finite number of clos@tes. Then for
I, we(t) — wy(r) is represented as follows:

(@) W) — () = /

deAf"'/ K[dAf,
M\D D

where K, anddA, are the Gaussian curvature and the area elemént dth reapect

to the metric induced by;,, respectively. From Gauss-Bonnet's theorem, we see that
the second term of the right hand side of (4) depends only enbthundary ofD ,
which implies that this term does not depend oa /. In addition, sinceD contains
the support off , the first term of the right hand side of (4) dnesdepend on €
either. Therefore we see that; — w, is constant or/ . In particular, we obtain

d@f _ dwf
(5) (0 ==—L(0)
By (3) together with (5), we obtain

Proposition 2.1. Let: be an immersion oM int&k3 and X a conformal trans-
formation ofR° such thatX o is an immersionThen. is Willmore if and only ifXo.
is Willmore

3. The index of an isolated umbilical point

Let f be a smooth function of two variablas y, a@d the graph off . We set

_of _of  _®f  _&PF _Pf

= = : = tpi= )
Pr-="¢ 4 oy’ 1T a2 oxdy’ T 9y?

Then the Gaussian curvatufe;  and the mean curvailyre G ;oére represented as
follows:

rty =57 _Tr Pty —2prqpsy +qfry

6) Ky =—2T" _ p,o
S 2(1+pF +q5)¥?

Let Dy, Ny, PD; be symmetric tensor fields @y of type (Q 2) represented in terms
of the coordinatesx( y ) as follows:

Dy :=sy dx? + (tr —rp)dxdy — sy dy?,
Ny = (syp% — pragr)dx®+ (t;p5 — rpq5)dxdy + (prasty — spq%) dy?,

1
2 (Df + Nf)-

PDf ::1+p§+qf
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A tangent vectorvp to G, at a point is in a principal direction if and only if BD
(vo, vo) = 0 holds ([5]). For a tangent vectar , we set

Ds(v) :=Ds(w,v), Ns(»):=Ns(v,v), PD;@):=PDs ¢, v)

For ¢ € R, we set

_ [ cosg . 0 .0
Uy = <sin¢) , Ugp = cos¢a—x +sm¢a—y.

We set

[ Pr — [ ~4r [ Tr Sr
rad, := , grad: = ( ) , Hes .—( ) )
gragy (qf> grag Py ¥ s o

Let ( , ) be the scalar product iR2. Then for any¢ € R, the following hold ([5]):

D(Uy) = (HeSS g, g 2).
Ny(Uy) = (grad;, us)(gradr, Hess ).

For I € NU{oo}, let c©>) be the set of smooth functions defined on a connected
neighborhood of (0 0) irR? such that §*F /0x™dy")(0, 0) = 0 for eachF € C{>)
and non-negative integers,n  satisfying<On +n < [. The following hold:

C((,OOJ) > C{()oo.l+1) > C{()oo,oo) ?f {O},

wherel € N. Let F be an element of{>? such thato := (0 0 0) is an umbilical
point of the graph ofF , that is, there exists a real number sfyatig

ar(x*+y?)

> + o(x2 + yz).

(7 Flx,y)=
Let o be an element of(>? defined by

0 if ap =0,

9F =94 1 /1 .
a——@ —2—(x2+y2) if ap #0.
F ar arp

Then we obtainF — o € C>3). For an integerl > 2, let ¢°°" be the subset
of C(>>) such that each¥ € ¢\*" satisfies (7) for somer € R and F — o ¢
C>>>), For an integerk > 3, let P* be the set of the homogeneous polynomials of
degreek . Then for eaclr € c{? | there exist an integetr; = 3 and a nonzero
elementg, of Pk satisfying F — o — gr € C{>%*D, Let ¢ be an element oP*.
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Then set Hessd := Hess (cog, sinf) for 6 € R and letn, be a continuous function
on R such that for any € R, u,, () is an eigenvector of Hegg)), and letS, denote
the set of the numbers at each of which Hess is representedebynit matrix up to
a constant.

Let C>>2 be the subset of{™? such that on the grapB of eachF ¢ 2,
o is an isolated umbilical point. For an elemefit @2, let po be a positive num-
ber such that there exists no umbilical point @ on {0 < x? + y? < pg} and ¢r
a continuous function on (@) x R such that for eachp( 0) € (0, po) x R, a tangent
vector cospr(p, 0)0/0x + singr(p, 0)0/0y of Gr at (pcosh, psind) is in a principal
direction. Then the following (a)—(c) hold ([5], [6]):
(a) For anyfy € R\ S,,, there exists a numbesy ,(0o) satisfying the following:

0) ETO or(p, 00) = ¢r.0(0o),

(i) ug,,(60) 1S an eigenvector of Hegs ),
(b) For anyfp € R, there exist numberspr (6o +0), ¢r (0o — 0) satisfying the fol-
lowing:

(1) limg—go+0¢F.0(0) = ¢r.0(00 £ 0),

(i) Tro00) = ¢r.o(bo+0)— ¢ro(bo —0) is an element ofnm/2},cz;
(c) Theindexind,(Gfr) of o on Gy is represented as follows:

®) ind, Gr) = Tr020 =@ 15~ g

27 27
O0€S,,. N[O, 0+2m)

For an integerk > 3, setPX := Pk N2, Then for anyg € P¥, the following hold:
T,.,(00) = —7/2 for any o € S, ([4]); iNd,(G,) € {1—k/2+i /2 ([2]). Let €222 be
the subset of22>2 such that for eachF € C5°2, o is an isolated umbilical point on

each of Gy andG,,. If F is an element ofc{>>? satisfying S,, =0, then F € C2-2
holds ([5], [6]). We see that it € C2>+2 satisfiesS,, ), then the following hold:

ey 0+ 27) = 1, (0)

C) ind, Gr) =ind, (Gg,) = o

For any F € C22, the following hold ([5], [6]):
(@) —m/2 = Tro(00) < /2 for any by € S,,;
(b) ind, (G, ) = ind,(Gr) = 1.
If Fis an element ofC2>2 satisfyingT'r, o) < « for any 6p € S,,, then ing Gr) <
1 holds ([5], [6]). In general, it is expected that the indeixam isolated umbilical
point on a surface does not exceed one (which is callednithex conjectureor the lo-
cal Caratteodory’s conjecture
We presented one way of computing(d + 2r) — n,(0) for any g € P* ([5]).
For 6 € R, setg () := g(cosd,sind). A numberfy € R is called aroot of g
if (dg/df)(fo) = 0. The set of the roots of is denoted By . LRt (Hess ) be the set
of numbers such that eadly € R(Hess ) satisfiedy € {n,(0o) +nn/2},cz. Ford € R,
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we set grag Q= grad, (co#, sinf). Then the following holds:

(20) k—1) graq, 0) = Hess Q)us.

From (10), we obtain

(1) (Hess Q. user2) = (k ~ DIE(O).

Therefore we obtainS, C R, and R (Hesg )C R,. SupposeR, =R. Thenk is
even andg is represented by?(+ y2)*/2 up to a constant. By direct computations,
we obtainS, =0. Thereforeo is an isolated umbilical point &,. By (11), we see
that R (Hess ) R, i.e., there exists a numbeg € {n7/2},cz satisfyingn,(d) =6 +zo
for any # € R. Therefore by (9), we obtain

ind, (G,) = ne(6 * 2722_ ne0) _ g,

In the following, supposeR, # R. Then for eachtdy € R,, there exists a positive
integer ;1 satisfying @**'g/d6"*1)(0o) # 0. The minimum of such integers is denoted
by 114(f0). A root 6y € R, is said to be

(a) relatedif 6o satisfiesg™@p) = 0 or if u,(6o) is odd,;

(b) non-relatedif ¢y satisfiesg™@o) 7 0 and if uy(6o) is even.

Suppose thatp € R, is related. Then it is said that trheitical sign of 6y is positive
(respectively, negative) if the following holds:

Lm0y .
8(00)——my:7(00) = 0 (respectively, > 0).

dOHs(0o)+
The critical sign of 6y is denoted by c-signdf). The setR, \ R(Hesg ) consists
of the numbers at each of which Hegss is represented by the roaitix up to
a nonzero constant; in addition, an elemégE R, \ R(Hess ) is related and satisfies
c-sign, ¢o) = — ([S]). It is said that thesign of 6o € R(Hesg ) is positive (respectively,
negative) if there exists a neighborho6®, of 6y in R satisfying

{0 = 1g(0) — (Bo — 14(60)) } (6 — 6o) > O (respectively, < 0)

for any 6 € Ug, \ {6o}. For 6y € R(Hess ),6 is related if and only if the sign ofig
is positive or negative ([5]). Ilp € R(Hess ) is related, then the sign 6§ is de-
noted by sign o). For a related rootly of g satisfying c-sigp fo) = +, 6o € R(Hess )
and sign €o) = + hold ([5]). Referring to [3], we see that i is a related element
of R(Hess ) satisfying c-signf§) = —, then the condition signég) = + (respectively,
—) is equivalent to the following:

1 d°%

%(00) g7 (00) € (k(k —2), 00) ~ (respectively, [0k K — 2)).
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Let ny . (respectively,n, _) denote the number of the related elementsrof (Hess )
in [0, 0+7) with positive (respectively, negative) sign. Then for ahy R, the follow-
ing holds ([5]):

Ng (0 + 2m) — ng(6) N S
2m 2 '

(12)

4. The main theorem

We shall prove

Theorem 4.1. Let F be an element af{>? satisfying(7) for somear € R and
suppose that the grapGr of F is a Willmore surface such that there exists no totally
umbilical neighborhood ob ifGr. Then the following hold
(@) Fecl?;

(b) If 0 is an isolated umbilical point of5r, thenind,(GFr) < 1/2.

Remark. Noticing Proposition 2.1 and that whether a one-dimeraiGubspace
of the tangent plane at a point of a surface is a principalctioe is invariant under
any conformal transformation cﬁg, we may supposé € C(>? in Theorem 4.1.

Remark. Although F is an element of{>? such thato is an isolated umbil-
ical point of Gp, F € (Zo<°°‘2> does not always hold. Lef be a smooth function
on a neighborhood of (0 0) iR? satisfying f (Q 0) = 0 andf > 0 on a punctured
neighborhood of (0 0). Then exp(/f) is a smooth function defined on a punctured
neighborhood of (0 0) and smoothly extended to (0 0) so thathal partial deriva-
tives of exp-1/f) at (0, 0) are equal to zero. Then we obtain exp(f) € CL>>),
Suppose that for each positive numher> 0, there exists a punctured neighbor-
hood of (Q 0) on which the norm of the gradient vector field of Jo is bounded
from below by the number . Then is an isolated umbilical padmt the graph
of exp(~1/f) ([7]). However, since exp{l/f) € C{>>), we obtain exp{l/f) ¢
Co<°°‘2>. (a) of Theorem 4.1 is crucial to the proof of (b) of Theorer.4.

Proof of (a) of Theorem 4.1. LeAr be the Laplace operatorGyn and Kr ,
Hr the Gaussian and the mean curvaturesQf, respectively. ThenHr  satisfies
the following elliptic partial differential equation:

(13) {Arp+2(H2 — Kp)}HF = 0.

If Hr =0, thenGy is a minimal surface and’ is real-analytic. SinGg is not to-
tally umbilical, we obtainF # 0 and this impliesF € ¢;*¥. If Hy # 0, then Hy
is a non-trivial solution of (13) and referring to [14] as 5], we see that not all
the partial derivatives ofHr at (0O O) are equal to zero. ThisliespF < C,§°°’3>.
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Hence we obtain (a) of Theorem 4.1. O

Proof of (b) of Theorem 4.1. LeF be an element(,’éfx"3> such that the graph
G of F is a Willmore surface. Then there exist an integer > 3 and a nonzero
homogeneous polynomial, € P satisfying F — g € C°**1 and noticing (6)
and (13), we see thaty  satisfiagg, = 0, whereAq := (9/0x)?+(0/dy)?. Therefore
there exist spherical harmonic functiohg, 5, _» of degreekr kr — 2, respectively
such thatgr is represented as

gr = hiy + (X2 + Yy 2.

SupposeS,, ). Then F € C? holds. Noticing that the number of the zero points
of gr in [0, 6 + ) is more than or equal tér — 2, we obtain

kr —2 < #{Rg, N[0.0+m)} < kr
and

(ngp+.ngp.—) € {(kr —2,0), kr —1,1), (kr, O)}.
Therefore by (9), (12) andz = 3, we obtain

ke
2

ind,(G) <1 2

=2 é

NI =

SupposeS,, # 0 and F € C>2. Then we obtairt{S,, N[0, 0+7)} =1, (1g +, ngp—) =
(krp —1,0) and —7/2 < Tpo(f0) < /2 for any g € S,.. Therefore by (8), (12)
and kr = 3, we obtain

kr—1
2

kr

ind,(Gr) =1 - >

[IA
N

1
+=-=2-
2

SupposeS,, #0, F € C:>? and F ¢ C2>2. Then there exists an elemefif € S,, sat-
isfying g5 (fo) = 0 and s, (6o) = 2. We obtaini{S,, N[0, 8+m)} =1 and g, +, ng, —) =
(kr — 1, 0). We shall prove-7/2 < T'r,(00) < 7/2, which implies ind Gr) < 1/2.
We may supposép = 0 and represeng, as

(14) gr (e, y) =go(x, y)y°,

where go is a homogeneous polynomial of degree — 3 satisfying go(x, 0) # O for
any x € R\ {0}. We set

— 2
ar ‘= Sp *SFPr — PFYFTF,

— 2 2
2br =ty —rp Y tppy — rrqF,
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— 2
CF = —SFr — SFqr * PFqFlF.

Then the following holds:

(1 +p% +q2)PDp =apdx®+ 2bp dx dy +cp dy*.

We set

br(p, 0) := br(pcosh, psinb)

for (p, 0) € (—po, po) X R, wherepg > 0 is a positive number such that there exists no
umbilical point of Gy on {0 < x2+ y2 < pg}. There exists a smooth functidif* —2
on R satisfying

br(p. 0) — o 26 2(6) = o' ).

From (14), we obtain dEg‘F’Z)/dH)(O) # 0. Therefore by the implicit function theo-
rem, we see that there exist a neighborhdgdof (0, 0) in R2 and a curveCq in Vo
through (0 0) satisfying

(@ Co={(p.0) € Vo; br(p. 0)/p" 2= 0};

(b) Co is not tangent to thé-axis at (Q 0).

Then noticing the behavior of the two continuous distribng around»  defined by

brdx?+ (cp —ap)dxdy — bpdy? =0,

we obtain—n/2 < T'p,(6p) < /2. |
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