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1. Introduction

Let be a surface inR3. Then it is known that if is a surface with constant
mean curvature, then the index of an isolated umbilical point on is negative ([16]).
If is special Weingarten, then the same result is obtained ([15]). In the present pa-
per, we shall prove that the index of an isolated umbilical point on a Willmore surface
does not exceed 1/2.

We say that is aWillmore surfaceif is a stationary surface of the Willmore
functionalW , where theWillmore functionalis defined by the integral of the square of
the mean curvature. It is known that is a Willmore surface if and only if satisfies
the following partial differential equation ([12]):

(1) { + 2( 2 − )} = 0

where is the Laplace operator on and , are the Gaussian and themean cur-
vatures of , respectively. Equation (1) is the Euler-Lagrange equation for Willmore
surfaces.

Willmore proved thatW ≧ 4π for any compact surface inR3 and that the equal-
ity holds if and only if the surface is a round sphere ([36], [37]). In addition, he and
Shiohama-Takagi proved thatW ≧ 2π2 (> 4π) for a torus represented as the bound-
ary of a tubular neighborhood of a closed curve inR3 and that the equality holds if
and only if the torus is a

√
2 -anchor ring, i.e., the boundary of the tubular neighbor-

hood with radius > 0 of a circle with radius
√

2 ([38], [27]). Willmore conjec-
tured W ≧ 2π2 for any torus inR3 ([36]). Since White showed that if the surface
is compact and orientable, thenW is invariant under any conformal transformation

of R
3

:= R3 ∪{∞} ([35]), it has been expected that the equality in Willmore’sconjec-

ture holds if and only if the torus is conformally equivalentin R
3

to a
√

2 -anchor
ring. Li-Yau showed that Willmore’s conjecture is true for tori with certain confor-
mal structures close to the conformal structure of a

√
2 -anchor ring ([21]); Montiel-

Ros showed that Willmore’s conjecture is also true for tori with more conformal struc-
tures ([22]). Simon proved that there exists an embedded torus in R3 at which W at-
tains the infimum on all the immersed tori ([28], [29]). Recently, the author has had
paper [26] by Schmidt the main theorem of which states that Willmore’s conjecture is
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true for any torus immersed inR3.
Weiner proved that the image of any minimal surface in3 by a stereographic

projection is a Willmore surface inR3 ([34]). Any compact two-dimensional manifold
other than the projective plane may be realized in3 as a minimal surface ([20]),
while the projective plane may not be realized in3 as any minimal surface ([1],
[20]). Therefore we see that any compact two-dimensional manifold distinct from
the projective plane may be realized inR3 as a Willmore surface. Pinkall showed that
there exists a Hopf torus in3 which is not conformally equivalent in3 to any min-
imal surface and the image of which by a stereographic projection is a Willmore sur-
face in R3 ([24]). In addition, Kusner found an example of a Willmore surface in R3

which is homeomorphic to the projective plane ([18], [19]).At this example,W at-
tains 12π, the infimum on all the projective planes immersed inR3. Bryant described
the moduli space of the Willmore projective planes inR3 for each of whichW is
equal to 12π ([11]).

By Hopf-Poincaré’s theorem together with Kusner’s example of a Willmore pro-
jective plane, we see that our estimate of the index of an isolated umbilical point on
a Willmore surface is sharp.

It is expected that the index of an isolated umbilical point on a surface does
not exceed one. We call this conjecture theindex conjecture. In relation to the in-
dex conjecture, the following two conjectures are known: Carathéodory’s conjecture
and Loewner’s conjecture.Carath́eodory’s conjectureasserts that there exist at least
two umbilical points on a compact, strictly convex surface in R3. If the index con-
jecture is true, then we see from Hopf-Poincaré’s theorem that there exist at least
two umbilical points on a compact, orientable surface of genus zero, and this immedi-
ately gives the affirmative answer to Carathéodory’s conjecture. Let be a real-valued,
smooth function of two real variables , and set∂ := (∂/∂ +

√
−1∂/∂ )/2.

Then Loewner’s conjecturefor a positive integer ∈ N asserts that if a vector field
Re
(
∂

)
(∂/∂ ) + Im

(
∂

)
(∂/∂ ) has an isolated zero point, then its index with re-

spect to this vector field does not exceed ([17], [33]). Loewner’s conjecture for = 1
is affirmatively solved; Loewner’s conjecture for = 2 is equivalent to the index con-
jecture. We may find [9], [13], [30], [31] and [32] as recent papers in relation to
Carathéodory’s and Loewner’s conjectures. We discussed the index of an isolated um-
bilical point on a surface in [2]–[7], and in [8], we introduced and studied a conjecture
in relation to Loewner’s conjecture.

We see from our estimate of the index in the present paper thatthe index con-
jecture is true for any isolated umbilical point on a Willmore surface. In the proof of
the main theorem, we shall encounter a situation on a surfacewith an isolated umbil-
ical point which has not appeared in our previous studies.
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2. Willmore surfaces

Let be a connected, orientable two-dimensional manifold and ι : → R3

an immersion of intoR3. Let be the mean curvature of with respect toι
and the area element of with respect to the metric induced byι. Then
the Willmore functionalW is given by

W(ι) :=
∫

2

Let be the Gaussian curvature of with respect to the metric and set

Ŵ(ι) :=
∫

( 2 − )

Then we obtain

(2) Ŵ(ι) = W(ι) −
∫

It is known that for any conformal transformation ofR
3

such that ◦ ι is an im-
mersion, the following holds ([35]):

(3) Ŵ( ◦ ι) = Ŵ(ι)

If is compact, then by (2), (3) and Gauss-Bonnet’s theorem, we obtain

W( ◦ ι) = W(ι)

Let and ι be as above. Letξ be a unit normal vector field on with respect
to ι and a smooth function on with compact support. Letι be a smooth map
from × R into R3 satisfying ι ( 0) = ι( ), (∂ι /∂ )( 0) = ( )ξ( ) for ∈
and the condition thatι ( ) = ι ( 0) for any ∈ R and any point of outside
the support of . We setι ( ) := ι ( ) for ( ) ∈ × R. Then there exists
an open interval containing 0 such that for each∈ , ι is an immersion of
into R3. We set

( ) := W(ι ) ̂ ( ) := Ŵ(ι )

An immersion ι is called Willmore if ( / )(0) = 0 holds for any smooth func-
tion on with compact support; ifι is a Willmore immersion, then the pair ( ι)
or the imageι( ) of by ι is called aWillmore surface. An immersionι is Will-
more if and only if (1) holds, where is the Laplace operator onwith respect
to the metric ([12]). Let be a domain in which contains the support of
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and the boundary of which consists of a finite number of closedcurves. Then for ∈
, ( ) − ̂ ( ) is represented as follows:

(4) ( )− ̂ ( ) =
∫

\
+
∫

where and are the Gaussian curvature and the area element of with respect
to the metric induced byι , respectively. From Gauss-Bonnet’s theorem, we see that
the second term of the right hand side of (4) depends only on the boundary of ,
which implies that this term does not depend on∈ . In addition, since contains
the support of , the first term of the right hand side of (4) doesnot depend on ∈
either. Therefore we see that − ̂ is constant on . In particular, we obtain

(5)
̂

(0) = (0)

By (3) together with (5), we obtain

Proposition 2.1. Let ι be an immersion of intoR3 and a conformal trans-

formation ofR
3

such that ◦ι is an immersion. Thenι is Willmore if and only if ◦ι
is Willmore.

3. The index of an isolated umbilical point

Let be a smooth function of two variables , andG the graph of . We set

:=
∂

∂
:=
∂

∂
:=
∂2

∂ 2
:=

∂2

∂ ∂
:=
∂2

∂ 2

Then the Gaussian curvature and the mean curvature ofG are represented as
follows:

(6) :=
− 2

(1 + 2 + 2)2
:=

+ + 2 − 2 + 2

2(1 + 2 + 2)3/2

Let D , N , PD be symmetric tensor fields onG of type (0 2) represented in terms
of the coordinates ( ) as follows:

D := 2 + ( − ) − 2

N := ( 2 − ) 2 + ( 2 − 2) + ( − 2) 2

PD :=
1

1 + 2 + 2 (D + N )
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A tangent vector 0 to G at a point is in a principal direction if and only if PD
( 0 0) = 0 holds ([5]). For a tangent vector , we set

D̃ ( ) := D ( ) Ñ ( ) := N ( ) P̃D ( ) := PD ( )

For φ ∈ R, we set

φ :=

(
cosφ
sinφ

)
Uφ := cosφ

∂

∂
+ sinφ

∂

∂

We set

grad :=

( )
grad⊥ :=

(
−

)
Hess :=

( )

Let 〈 〉 be the scalar product inR2. Then for anyφ ∈ R, the following hold ([5]):

D̃ (Uφ) = 〈Hess φ φ+π/2〉
Ñ (Uφ) = 〈grad φ〉〈grad⊥ Hess φ〉

For ∈ N∪{∞}, let C(∞ ) be the set of smooth functions defined on a connected
neighborhood of (0 0) inR2 such that (∂ + /∂ ∂ )(0 0) = 0 for each ∈ C(∞ )

and non-negative integers satisfying 0≦ + < . The following hold:

C(∞ ) ⊃ C(∞ +1) ⊃ C(∞ ∞) 6= {0}

where ∈ N. Let be an element ofC(∞ 2) such that := (0 0 0) is an umbilical
point of the graph of , that is, there exists a real number satisfying

(7) ( ) =
( 2 + 2)

2
+ ( 2 + 2)

Let σ be an element ofC(∞ 2) defined by

σ :=





0 if = 0,

1 − | |
√

1
2 − ( 2 + 2) if 6= 0.

Then we obtain − σ ∈ C(∞ 3). For an integer ≧ 2, let C〈∞ 〉 be the subset
of C(∞ ) such that each ∈ C〈∞ 〉 satisfies (7) for some ∈ R and − σ /∈
C(∞ ∞). For an integer ≧ 3, let P be the set of the homogeneous polynomials of
degree . Then for each ∈ C〈∞ 2〉, there exist an integer ≧ 3 and a nonzero
element ofP satisfying − σ − ∈ C(∞ +1). Let be an element ofP .
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Then set Hess (θ) := Hess (cosθ sinθ) for θ ∈ R and letη be a continuous function
on R such that for anyθ ∈ R, η (θ) is an eigenvector of Hess (θ), and let denote
the set of the numbers at each of which Hess is represented by the unit matrix up to
a constant.

Let C∞ 2 be the subset ofC〈∞ 2〉 such that on the graphG of each ∈ C∞ 2,
is an isolated umbilical point. For an element ofC∞ 2, let ρ0 be a positive num-

ber such that there exists no umbilical point ofG on {0 < 2 + 2 < ρ2
0} and φ

a continuous function on (0ρ0) × R such that for each (ρ θ) ∈ (0 ρ0) × R, a tangent
vector cosφ (ρ θ)∂/∂ + sinφ (ρ θ)∂/∂ of G at (ρ cosθ ρ sinθ) is in a principal
direction. Then the following (a)–(c) hold ([5], [6]):
(a) For anyθ0 ∈ R \ , there exists a numberφ (θ0) satisfying the following:

(i) lim
ρ→0

φ (ρ θ0) = φ (θ0),

(ii) φ (θ0) is an eigenvector of Hess (θ0);
(b) For anyθ0 ∈ R, there exist numbersφ (θ0 + 0), φ (θ0 − 0) satisfying the fol-
lowing:

(i) limθ→θ0±0φ (θ) = φ (θ0 ± 0),
(ii) (θ0) := φ (θ0 + 0)− φ (θ0 − 0) is an element of{ π/2} ∈Z ;

(c) The index ind (G ) of on G is represented as follows:

(8) ind (G ) =
η (θ + 2π) − η (θ)

2π
+

1
2π

∑

θ0∈ ∩[θ θ+2π)

(θ0)

For an integer ≧ 3, setP := P ∩ C∞ 2. Then for any ∈ P , the following hold:
(θ0) = −π/2 for any θ0 ∈ ([4]); ind (G ) ∈ {1− /2 + }[ /2]

=0 ([2]). Let C∞ 2 be
the subset ofC∞ 2 such that for each ∈ C∞ 2, is an isolated umbilical point on
each ofG and G . If is an element ofC〈∞ 2〉 satisfying =∅, then ∈ C∞ 2

holds ([5], [6]). We see that if ∈ C∞ 2 satisfies =∅, then the following hold:

(9) ind (G ) = ind (G ) =
η (θ + 2π) − η (θ)

2π

For any ∈ C∞ 2, the following hold ([5], [6]):
(a) −π/2 ≦ (θ0) ≦ π/2 for any θ0 ∈ ;
(b) ind (G ) ≦ ind (G ) ≦ 1.
If is an element ofC∞ 2 satisfying (θ0) ≦ π for any θ0 ∈ , then ind (G ) ≦

1 holds ([5], [6]). In general, it is expected that the index of an isolated umbilical
point on a surface does not exceed one (which is called theindex conjectureor the lo-
cal Carath́eodory’s conjecture).

We presented one way of computingη (θ + 2π) − η (θ) for any ∈ P ([5]).
For θ ∈ R, set ˜ (θ) := (cosθ sinθ). A number θ0 ∈ R is called a root of
if ( ˜ / θ)(θ0) = 0. The set of the roots of is denoted by . Let (Hess ) be the set
of numbers such that eachθ0 ∈ (Hess ) satisfiesθ0 ∈ {η (θ0)+ π/2} ∈Z . For θ ∈ R,
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we set grad (θ) := grad (cosθ sinθ). Then the following holds:

(10) ( − 1) grad (θ) = Hess (θ) θ

From (10), we obtain

(11) 〈Hess (θ) θ θ+π/2〉 = ( − 1)
˜
θ

(θ)

Therefore we obtain ⊂ and (Hess )⊂ . Suppose =R. Then is
even and is represented by (2 + 2) /2 up to a constant. By direct computations,
we obtain =∅. Therefore is an isolated umbilical point ofG . By (11), we see
that (Hess ) =R, i.e., there exists a number0 ∈ { π/2} ∈Z satisfyingη (θ) = θ + 0

for any θ ∈ R. Therefore by (9), we obtain

ind (G ) =
η (θ + 2π) − η (θ)

2π
= 1

In the following, suppose 6= R. Then for eachθ0 ∈ , there exists a positive
integerµ satisfying ( µ+1 ˜/ θµ+1)(θ0) 6= 0. The minimum of such integers is denoted
by µ (θ0). A root θ0 ∈ is said to be
(a) related if θ0 satisfies ˜ (θ0) = 0 or if µ (θ0) is odd;
(b) non-relatedif θ0 satisfies ˜ (θ0) 6= 0 and if µ (θ0) is even.
Suppose thatθ0 ∈ is related. Then it is said that thecritical sign of θ0 is positive
(respectively, negative) if the following holds:

˜ (θ0)
µ (θ0)+1 ˜
θµ (θ0)+1 (θ0) ≦ 0 (respectively,> 0)

The critical sign of θ0 is denoted by c-sign (θ0). The set \ (Hess ) consists
of the numbers at each of which Hess is represented by the unitmatrix up to
a nonzero constant; in addition, an elementθ0 ∈ \ (Hess ) is related and satisfies
c-sign (θ0) = − ([5]). It is said that thesign of θ0 ∈ (Hess ) is positive (respectively,
negative) if there exists a neighborhoodθ0 of θ0 in R satisfying

{θ − η (θ) − (θ0 − η (θ0))}(θ− θ0) > 0 (respectively,< 0)

for any θ ∈ θ0 \ {θ0}. For θ0 ∈ (Hess ),θ0 is related if and only if the sign ofθ0

is positive or negative ([5]). Ifθ0 ∈ (Hess ) is related, then the sign ofθ0 is de-
noted by sign (θ0). For a related rootθ0 of satisfying c-sign (θ0) = +, θ0 ∈ (Hess )
and sign (θ0) = + hold ([5]). Referring to [3], we see that ifθ0 is a related element
of (Hess ) satisfying c-sign (θ0) = −, then the condition sign (θ0) = + (respectively,
−) is equivalent to the following:

1
˜ (θ0)

2 ˜
θ2

(θ0) ∈ ( ( − 2) ∞) (respectively, [0 ( − 2)))
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Let + (respectively, −) denote the number of the related elements of (Hess )
in [θ θ+π) with positive (respectively, negative) sign. Then for anyθ ∈ R, the follow-
ing holds ([5]):

(12)
η (θ + 2π) − η (θ)

2π
= 1− + − −

2

4. The main theorem

We shall prove

Theorem 4.1. Let be an element ofC(∞ 2) satisfying(7) for some ∈ R and
suppose that the graphG of is a Willmore surface such that there exists no totally
umbilical neighborhood of inG . Then the following hold:
(a) ∈ C〈∞ 2〉;
(b) If is an isolated umbilical point ofG , then ind (G ) ≦ 1/2.

REMARK. Noticing Proposition 2.1 and that whether a one-dimensional subspace
of the tangent plane at a point of a surface is a principal direction is invariant under

any conformal transformation ofR
3
, we may suppose ∈ C(∞ 3) in Theorem 4.1.

REMARK. Although is an element ofC(∞ 2) such that is an isolated umbil-
ical point of G , ∈ C〈∞ 2〉 does not always hold. Let be a smooth function
on a neighborhood of (0 0) inR2 satisfying (0 0) = 0 and > 0 on a punctured
neighborhood of (0 0). Then exp(−1/ ) is a smooth function defined on a punctured
neighborhood of (0 0) and smoothly extended to (0 0) so that all the partial deriva-
tives of exp(−1/ ) at (0 0) are equal to zero. Then we obtain exp(−1/ ) ∈ C(∞ ∞).
Suppose that for each positive number> 0, there exists a punctured neighbor-
hood of (0 0) on which the norm of the gradient vector field of log is bounded
from below by the number . Then is an isolated umbilical pointon the graph
of exp(−1/ ) ([7]). However, since exp(−1/ ) ∈ C(∞ ∞), we obtain exp(−1/ ) /∈
C〈∞ 2〉. (a) of Theorem 4.1 is crucial to the proof of (b) of Theorem 4.1.

Proof of (a) of Theorem 4.1. Let be the Laplace operator onG , and ,
the Gaussian and the mean curvatures ofG , respectively. Then satisfies

the following elliptic partial differential equation:

(13) { + 2( 2 − )} = 0

If ≡ 0, thenG is a minimal surface and is real-analytic. SinceG is not to-
tally umbilical, we obtain 6≡ 0 and this implies ∈ C〈∞ 3〉. If 6≡ 0, then
is a non-trivial solution of (13) and referring to [14] as in [15], we see that not all
the partial derivatives of at (0 0) are equal to zero. This implies ∈ C〈∞ 3〉.
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Hence we obtain (a) of Theorem 4.1.

Proof of (b) of Theorem 4.1. Let be an element ofC〈∞ 3〉 such that the graph
G of is a Willmore surface. Then there exist an integer ≧ 3 and a nonzero
homogeneous polynomial ∈ P satisfying − ∈ C(∞ +1), and noticing (6)
and (13), we see that satisfies20 ≡ 0, where 0 := (∂/∂ )2+(∂/∂ )2. Therefore
there exist spherical harmonic functions , −2 of degree , − 2, respectively
such that is represented as

= + ( 2 + 2) −2

Suppose =∅. Then ∈ C∞ 2 holds. Noticing that the number of the zero points
of ˜ in [θ θ + π) is more than or equal to − 2, we obtain

− 2 ≦ ♯{ ∩ [θ θ + π)} ≦

and

( + −) ∈ {( − 2 0) ( − 1 1) ( 0)}

Therefore by (9), (12) and ≧ 3, we obtain

ind (G ) ≦ 1− − 2
2

= 2−
2

≦
1
2

Suppose 6= ∅ and ∈ C∞ 2. Then we obtain♯{ ∩[θ θ+π)} = 1, ( + −) =
( − 1 0) and−π/2 ≦ (θ0) ≦ π/2 for any θ0 ∈ . Therefore by (8), (12)
and ≧ 3, we obtain

ind (G ) ≦ 1− − 1
2

+
1
2

= 2−
2

≦
1
2

Suppose 6= ∅, ∈ C∞ 2 and /∈ C∞ 2. Then there exists an elementθ0 ∈ sat-
isfying ˜ (θ0) = 0 andµ (θ0) = 2. We obtain♯{ ∩[θ θ+π)} = 1 and ( + −) =
( − 1 0). We shall prove−π/2 ≦ (θ0) ≦ π/2, which implies ind (G ) ≦ 1/2.
We may supposeθ0 = 0 and represent as

(14) ( ) = 0( ) 3

where 0 is a homogeneous polynomial of degree− 3 satisfying 0( 0) 6= 0 for
any ∈ R \ {0}. We set

:= + 2 −
2 := − + 2 − 2
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:= − − 2 +

Then the following holds:

(1 + 2 + 2 ) PD = 2 + 2 + 2

We set

˜ (ρ θ) := (ρ cosθ ρ sinθ)

for (ρ θ) ∈ (−ρ0 ρ0)×R, whereρ0 > 0 is a positive number such that there exists no
umbilical point of G on {0 < 2 + 2 < ρ2

0}. There exists a smooth functioñ( −2)

on R satisfying

˜ (ρ θ) − ρ −2˜ ( −2)(θ) = (ρ −2)

From (14), we obtain (˜ ( −2)/ θ)(0) 6= 0. Therefore by the implicit function theo-
rem, we see that there exist a neighborhood0 of (0 0) in R2 and a curve 0 in 0

through (0 0) satisfying
(a) 0 = {(ρ θ) ∈ 0 ; ˜ (ρ θ)/ρ −2 = 0};
(b) 0 is not tangent to theθ-axis at (0 0).
Then noticing the behavior of the two continuous distributions around defined by

2 + ( − ) − 2 = 0

we obtain−π/2 ≦ (θ0) ≦ π/2.
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15 (2001), 79–80.

[10] R. Bryant:A duality theorem for Willmore surfaces, J. Differential Geom.20 (1984), 23–53.
[11] R. Bryant:Surfaces in conformal geometry, Proc. Sympos. Pure Math.48 (1988), 227–240.
[12] B.-Y. Chen: On a variational problem on hypersurfaces, J. London Math. Soc.6 (1973),

321–325.
[13] C. Gutierrez and F. Sanchez-Bringas:Planer vector field versions of Carathéodory’s and
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