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1. Introduction

Suppose that we are given a locally compact metric space .CI(&) denote
the set of bounded continuous functions @ , abfiglE) its subset of continu-
ous functions vanishing at infinity. The subsets of non-tiegaelements ofC £ )
and Co(E) are denoted respectively bg*(E) and C}(E). Let (P, )>o0 be a strongly
continuous conservative Feller semigroup afy(E) with generator 4, D(A)),
where Dyo(A) C Co(E), and letD(A) = Do(A) U {1}. Suppose in addition thdt -§
C(E) andc (-) € C*(E) have continuous extensions I, the one point compactifica-
tion of E, and thatc ) is bounded away from zero.

Let M(E) be the space of finite Borel measures Bn  equipped wihtdipol-
ogy of weak convergence. Let¥ € ([&), M(E)) be the space of all continuous
pathsw : [Qoc0) — M(E). Let 7o(w) = inf{s > 0: w(s) = 0} for w € W and let Wy
be the set of pathss € W satisfyingw (0) =w () = 0 for allr > mo(w). We fix
a metric onM € ) which is compatible with its topology and endévand Wy with
the topology of uniform convergence. Then for eack M(E) there is a unique Borel
probability measur&,, on W such that forf € D(A),

(1.1) MUFMWﬂM%AwMﬂWWKIZQ

underQ, is a martingale with quadratic variation process

(1.2) <WmFAwaN&lZQ

where u(f) = [ fdu. The system{Q,: n € M(E)} defines a measure-valued diffu-
sion, which is the well-known Dawson-Watanabe superpsocksthe sequel, we shall
simply refer to it as a4, b, ¢ -puperprocessWe refer the reader to Dawson [1] and
the references therein for the construction and basic ptiepeof the process. A mod-
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ification of the above model is to replace (1.1) by

(1.3) M,(f):w,(f)—u(f)—/o ws(Af—bf)ds—/O V(ws. f)ds. 10,

by using a kernelvV 4, dx) from M(E) to E, which can be regarded as A,p,c - )
superprocess with interactive immigratioBome interesting special cases of this modi-
fication have been studied in the literature. Using a Cam#ftartin-Girsanov formula,
Dawson [1, pp. 172-173] treated the special case wher¢ =(0 and

V(u, dx) =r(p, x)u(dx), p€ M(E), x €E,

for a continuous functionr (, -) on M(E) x E and obtained a superprocess with
non-linear birth-death rate. The conditioned superpmassnstructed by Evans and
Perkins [5] and Roelly-Coppoletta and Rouault [16] cormes}s to the case

V(u, dx) = p(1)"*u(dx), € M(E)\ {0}, x € E.

An interesting representation of the conditioned supegss was given by Evans [4]
in terms of an “immortal particle” that moves around accogdto the underlying pro-
cess and throws off pieces of mass into the space.

Let m be ao-finite Borel measure o and let - ( -) be a non-negative Borel
function onM € )x E. We have another particular form of (1.3) given by

(1.4) Mz(f)=wr(f)—u(f)—/0 ws(Af—bf)dS—/O m(q(ws, -)f)ds, t=0,

wheregq (-, -) can be interpreted as an interactive immigration ratetiveldo the ref-
erence measure: . The process defined by (1.4) and (1.2) istevkéh since it in-
cludes as special cases (at least formally) the supermogitls non-linear birth-death
rate and the conditioned superprocess as they are a.sutahgatontinuous with re-
spect to the reference measune , both of which has arisendeoalsle research in-
terest. Ifg ¢, x) = g(x) only depends orx € E, the martingale problem has a unique
solution and defines a superprocess with independent iratiogr see e.g. Konno and
Shiga [8] and Li and Shiga [12]. In the general case, a salutib the martingale
problem could be constructed by an approximation by partgistems, but the unique-
ness of solution seems hard. This is similar to the supegssavith mean field
interaction studied by Méléard and Roelly [13, 14] for wlhithe uniqueness still
remains open. Instead of the martingale problem, Shiga Elifjgested another ap-
proach to the interactive immigration superprocess, whue gthe formulation of
a stochastic integral equation involving a superprocess arsystem of independent
Poisson processes on the space of excursions of one-donahdiranching diffu-
sions. For the particular case where = 0 and p — m(q(u, -)) is bounded
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and Lipschitz relative to the total variation metric, Shiffer] constructed a solu-
tion of the integral equation and showed that his solutioso aolves the martin-
gale problem (1.4) and (1.2). He proved that the pathwiseuemess of solution
for the stochastic integral equation holds so his solut®raidiffusion process. This
is a very interesting result since the uniqueness of saolutd (1.4) and (1.2) is
not known. A generalization of his result was given in theergcwork by Dawson
and Li [2], where some superprocesses with dependent kpatiton and interactive
immigration were constructed from one-dimensional exouss carried by stochastic
flows.

The main purpose of this paper is to establish the results hi§aS[17] when
the spatial migration mechanissh  is non-trivial. Since iis tbase the mass is mixed,
it is not clear how to construct the process from one-dimmradi excursions as in [17].
Fortunately, the techniques developed by Li and Shiga [E] be combined with
those of Shiga [17] to solve the difficulty. The main idea ofr @pproach is to for-
mulate a stochastic equation with a Poisson process on thee spf measure-valued
excursions. Let{X,: ¢+ > 0} be an @, b, ¢ )-superprocess with deterministic initial
state Xo = p and N s, dx,du,dw) a Poisson random measure onof) x E X
[0, 00) x Wo with intensity ds m @dx )du Q" (dw), where Q" is an excursion law of
the (A, b, c¢)-superprocess carried by excursions growing up a& E. We assume
{X,:t > 0} and N {s,dx,du,dw) are defined on a standard probability space and
are independent of each other. We shall prove that the stticheguation

t q(¥y,x)
(1.5) Y, =X, +/ / / / w(t —s)N(ds,dx,du,dw), t >0,
0 EJO Wo

has a pathwise unique continuous solutiff: + > 0} and its distribution onWw
solves the martingale problem given by (1.2) and (1.4); skeofem 4.1. The path-
wise uniqueness implies the strong Markov property{®&f: ¢ > 0}, so our result
gives a partial solution of the open problem on the Markovpprty of the superpro-
cess with mean field interaction; see Méléard and Roelly Al 103].

In particular, whenE ={a} is a singleton, equation (1.5) gives a decomposition
of the one-dimensional diffusion proce$s(¢): r > 0} defined by

(1.6) dy(t) =+/cy(®)dB(t) + B(y()y(t) dt +y(y(t))dt, t >0,

wherec > 0 is a constantg(-) is a bounded Lipschitz function on [60) and~(-) is
a non-negative locally Lipschitz function on,[8) satisfying the linear growth condi-
tion. In the special case wher# -) and~(-) are constant, Pitman and Yor [15] gave
a construction of{y(s): + > 0} by picking up excursions by a Poisson point process,
which served as a preliminary to their well-known resultsdmtomposition of Bessel
bridges. See also Le Gall and Yor [9].

In Section 2 we recall some basic facts on thef, ¢ )-superpsoaerd its immi-
gration processes with deterministic immigration rates.Section 3, we discuss con-
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struction of immigration processes with predictable immigpn rates. The stochastic
equation with a Poisson process of excursions is studieceatich 4.

2. Deterministic immigration rate

In this section, we summarize some basic facts on theb(c )rpupEess and
its immigration processes with deterministic immigratioates. Let Q, )-o denote
the transition semigroup of theA(b, ¢ )-superprocess, whicheigrmnined by

(2.1) / e "N, (1, dv) = expl—u(V. f)},  f € CT(E), n€ M(E),
M(E)

whereV, f is the unique positive solution of the evolution eumt

22)  Vif@)r= / ds / OIS f OGP (v, dy) = P f(x), 120, x €E,
2 0 E

where (P’ )so denotes the semigroup of kernels dn generatedABy A ==b.
By [1, pp. 195-196], there is a family of finite measursx,dv) on M(EY =
M(E)\ {0} such that

(2.3) / (1—e D) Li(x,dv) =V, f(x), t>0, x€E, feCHE).
M(E)°

Let (Q7)>0 be the restriction of @, ;}0 to M(E)°. It is easy to check that
(L:(x,))i>0 is anentrance lawfor (Q7),>o, that isL, &, -)Q; = Ly«(x, -) for r >0
andt > 0. Then there is a unique-finite Borel measuré&)* on (Wy, B(Wy)) such that

Q' (w(n) € dvy, ..., w(t,) € dv,)

(2.4) . .
= Lll(‘xv dVl)Q[z—tl(Vlv dVZ) T Qr,lft,,,l(yn—l, an)

for0O<n<tr<- -+ <t, anduvy, vy, ...,v, € M(E)°. Indeed,Q" is carried by
the pathsw € Wy such thatw, (1j*w, — 0, ast — 0; see [11] and [12]. Moreover,
it is easy to obtain that

(2.5) Q{w() ()} =P’f(x), t>0, x € E, fcC*(E).

Let B,(Wp) be theo-algebra onWy generated by{w(s): 0 < s < t}. Roughly speak-
ing, (Wo, B,(Wo), w(¢)) under Q* is a Markov process with semigroupgf),~o and
one-dimensional distributiond.{ x( - )),>0. The measur&”* is known as arexcursion
law of (Q,);>0.

Now we fix a o-finite reference measure@ oA  and suppose that, -§ is
a non-negative Borel function on ,[60) x E such thatn § {, -)) is a locally bounded
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function of r > 0. Then

eo | e_”(f)Q?.t(#,dV):E‘XP{—M(Vz_rf)— / m(q(s,-)v,_sf)ds}

defines an inhomogeneous transition semigrcﬁ@f,,)or. A diffusion process with
transition semigroup(Qj{,)Dr can be constructed as follows. Léx,: ¢+ > O} be
an (A, b, c)-superprocess with deterministic initial stafg = and N ds, dx, du,dw)
a Poisson random measure on,q0) x E x [0,00) x Wy with intensity
ds m(dx)du Q' (dw). We assume{X,:+ > O} and N (s, dx,du,dw) are defined on
a standard probability spac&(.A, P) and are independent of each other. Far O,
let G, be theo-algebra generated by thenull sets in.4 and the random variables
(2.7) {X;, N(J xA): JeB(0,s] x Ex[0,00)), A€ B_;(Wp), 0<s <t}

We define theM E )-valued proces$s,: + > O} by

t q(s,x)
(2.8) Y, =X, +/ // / w(t — s)N(ds, dx,du,dw), t>0,
o JEJo Wo

where the integration area refers to
{(s,x,u,w):0<s<t, x€E, O<u<gq(s, x), we Wy}
(We shall make the same convention in the sequel.)
Theorem 2.1. The process{Y,: t > 0} defined by(2.8) is an inhomogeneous

diffusion process relative t¢J;),>o with transition semigroup(Q;{,),>r. Moreover for
each f € D(A), B

(2.9) IVIz(f):Yz(f)—Yo(f)—/O Ys(Af—bf)dS—/O m(q(s, -)f)ds, >0,

is a martingale relative to the filtratior{G,),>o with quadratic variation process

(2.10) (M(f)),:/of Y (cf%)ds, t>0.

Proof. LetNi(ds,dx, du,dw) denote the restriction oV d§, dx, du,dw ) to
{(s,x,u,w):s>0, x€E, 0<u<gq(s,x), we W}

and let Ni(ds, dw) be the image ofVi(ds, dx, du, dw) under the maps(x,u, w }»
(s, w). Then Ni(ds, dw) is a Poisson random measure ond@) x Wy with intensity



732 Z. Fu AND Z. LI

dsQf (dw), where

Qi (dw) :/Eq(s, x)Q" (dw)m(dx), w € Wj.

Then the first assertion follows by an obvious modification tbe arguments
of [12, Theorem 1.3] and [17, Theorem 3.6]; see also [10, Témw03.2]. The martin-
gale characterization (2.9) and (2.10) can be proved by euledion of the generator
Of( ’C{”)IZr' [
The construction (2.8) gives clear interpretations foerefice measure and im-
migration rateq ¢, -) in the phenomenon. Since (2.9) is linear fne D(A), it de-
fines a martingale measud ds(dx ) with quadratic variation meas(x)Y, (dx)ds
in the sense of Walsh [18]. By a standard argument one getfotiosving

Theorem 2.2. For eachr >0 and f € C(E) we have &.
t !
(2.11) Y,(f):Yo(P,bf)+/ /Pflsf(x)M(ds,dxH/ m (q(s, )P/ f) ds.
0 JE 0

3. Predictable immigration rate

In this section, we fix ao-finite reference measurea oA . LeR,(A,P) be
a standard probability space andds(dx,du,dw ) afl,: ¢ > 0} be as in the last
section. LetG, be thecs-algebra onQ2 generated by thenull sets in A and the ran-
dom variables in (2.7). LeP be thes-algebra on [0co) x E x © generated by func-
tions of the form

(3.1) 8. x, w) = no(x, W)L () + > 7, W)L (5),

i=0
where 0 =rg <ry <rp<--- andn;(-, -) is B(E)xG,-measurable. We say a function
on [0, 00) x E x Q is predictableif it is P-measurable.

Theorem 3.1. Suppose thatg(-, -, -) is a non-negative predictable function
on [0,00) x E x Q such thatE{m(q(¢, -))?} is locally bounded inr > 0. Then
the M (E)-valued process

t q(s.x)
3.2) Y, =X, +/ / / / w(t —s)N(ds, dx,du,dw), t>0,
0 EJO Wo

has a continuous modificatioMoreover for this modification and eaclf € D(A),

(33) M,(f):x(f)—yo(f)—/o Ys(Af—bf)ds—/O m(g(s. -)f)ds. >0,



MEASURE-VALUED DIFFUSIONS AND STOCHASTIC EQUATIONS 733

is a martingale relative to the filtratiorG,),>o with quadratic variation process

(3.4) )= [ Y (ef?)ds, 120

Let M(ds, dx) denote the stochastic integral with respect to thetimgale mea-
sure with quadratic variation measurer X, Yix(ds)  defined by (318 €.4). Then
we have

Theorem 3.2. For eachr > 0 and f € C(E) we have a.

1 1
(3.5) Y, (f)=Yo (P,”f) +/ / P,b_sf(x)M(ds, dx) +/ m (q(s, -)P,b_sf) ds.
0 JE 0
The process{Y,: t > 0} constructed by (3.2) can be regarded as anb(c )-
superprocess allowing immigration with immigration rateveg by the predictable
function ¢ (-, -, -). To give the proof of the above theorems we need a set of lem-
mas.

Lemma 3.1. The results ofTheorems 3.land 3.2 hold if ¢(-, -, -) is of
the form(3.1).

Proof. Observe tha;(x) is a deterministic function o® under the regular con-
ditional probability P{- | G, }. Since G,, and the restriction ofN ds, dx, du,dw )
to (r;, 00) X E x [0, c0) x Wy are independent, this restriction undef - | G} is still
a Poisson random measure with intensitym dx (du)Q*(dw). Note that{X,: r > 0}
is also an a.s. continuousA{b, ¢ )-superprocess uiifer | Go}. Then we conclude
by Theorem 2.1 thafY,: 0 <7 < ri} underP{ - | Go} is an a.s. continuousA( b,c )-
superprocess allowing immigration with immigration rajg - ). Let

r1 Mo(x)
Yt(O) = X, +/ / / / w(t —s)N(ds, dx, du,dw), t>r1.
0 EJO Wo

By Theorem 2.1,{Y”: ¢ > r;} underP{- | Go} is an a.s. continuousA(b,c )-
superprocess. Of cours{eY,(o): t > r1} is still an a.s. continuousA( b, ¢ )-superprocess
underP{- | G, }. It is not difficult to see that

! n1(x)
Y, = Y,(O) +/ / / / w(t — s)N(ds, dx, du,dw), ri<t<rp.
rn JE JO Wo

By Theorem 2.1 again{¥,: n < ¢t < rp} underP{- | G.} is an a.s. contin-
uous (A, b, ¢ )-superprocess allowing immigration with immigpatirate n;(-). Using
the above argument inductively we can see tht r; <t < r;+1} underP{- | G}
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is an a.s. continuousA( b, ¢ )-superprocess allowing immignatidth immigration
rate n;(-). By Theorem 2.1{Y,: + > 0} has a continuous modification. The martin-
gale characterizations of Theorems 3.1 and 3.2 follow frowsé of the immigration
process with deterministic immigration rate. [l

Lemma 3.2. Suppose that there is a non-negative deterministic funcfid-) €
LY(E,m) such thatg(t, x,w) < gi(x) for all (¢,x,w) € [0,0) x E x Q. Let {g,}
be a sequence of non-negative predictable functions of ¢ {3.1) such that
gn(t, x,w) < qi1(x) and g,(t,x,w) — q(t, x,w) for almost all (#, x,w) € [0, x©) X
E x Q. Let {¥: ¢ > 0} be defined by3.2) in terms ofg,(-, -, -). Then there is
an M(E)-valued procesgY,: t > 0} such thatlim,_ .. E{||¥" — ¥,||} = 0 uniformly
on each finite interval of > 0, where || - || denotes the total variation metric

Proof. Since the result of Theorem 3.2 holds {af™: ¢ > 0}, we have

(36)  E{X(f)r=u(P'f)+ /0 E{m(gu(s, )PP f)}ds, [ € C(E).

Observe that for ank > n > 1, bothg, V gr and g, A g are predictable functions of
the form (3.1). Let

' ! gn(S-X)ng(S’x)
Y’(n, ) — X, +/ / / / w(t — s)N(ds, dx, du, dw)
0 JEJO Wo

t 8n (5. X)Agk(s.,x)
ZI(n,,k) =X, +/ / / / w(t — s)N(ds, dx, du, dw).
o JEJo Wo

Since [Yy™ — v®|| < v"P(1) — z"9(1), we may apply (3.6) to{v"P: ¢ > 0}
and {Z"": ¢ > 0} so that

and

t
E{Ily” - x|} < / eIMNEIELm(gu(s, -) = gils, -} ds.
0
By dominated convergence, the right hand side goes to zdforonty on each finite

interval ofr > 0 asn — co. Then there is anM K )-valued proce§g, : ¢ > 0} such
that

1
3.7) E{Y.(/)} = n(Pf) +/O E{m(q(s, )P",f)} ds, [ € C(E),
and lim,_. E{||Y/" — ¥,||} = 0 uniformly on each finite interval of > 0. O

Lemma 3.3. Suppose that the condition dfemma 3.2holds Then the process
{¥,: t > 0} obtained there is independent of the choice{ef} in the sense that
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if {Z,:+ > 0} obtained from another sequence with the same propetties Y, = Z,
a.s. for eachr > 0. Moreover (3.2) holds as. for eachr > 0.

Proof. Let {g,} be another sequence having the properties{gf}. Then
{g. V q,} and{g, g, } have the same properties. Lgt/: ¢+ > 0} and{Y/,: r > O} be
the processes obtained respectively frémVvq,} and{g,Ag,}. Clearly,Y” <Y, <Y/
a.s. for eacty > 0. But, E{Y/(1)} = E{Y/(1)} = E{Y,(1)} by (3.7), so we have
Y/ =Y/ =Y as. for eachr > 0. Thus{Y; : + > 0O} is independent of the choice
of {g.}. To show (3.2), letZ, denote the value of its right hand side. fid¢ assume
in addition there is a strictly positive deterministic ftions ¢2(-) € LY(E, m) such
that g2(x) < ¢(¢, x,w) for all (t,x,w) € [0,00) x E x Q. Fork > 1, let {Y;,:t > 0}
and {Z,: t+ > 0} be the process obtained by Lemma 3.2 from the non-negatie pr
dictable functionsg (, x, w) + g2(x)/k and g ¢, x, w) — g2(x)/k, respectively. Since

q2(x)
P

q2(x)
k

<q(t,x,w) <q(t, x,w)+

q(t, x,w) —
we haveZ,, < Z,, Y, <Y, a.s. for eaclr > 0. But, by (3.7) it is easy to show that

Zte”bllfm
E(1 (1)~ Ze, (1) < 245D,
so we must have, =2, a.s. for each> 0. In the general case, we may apply
the above reasoning @ ¢, (, w) + g2(x)/k and {Y;,: t > O} to get

t q(s.x)+qz2(x) /k
Y =X, +/ / / / w(t — s)N(ds, dx, du, dw)
0 EJO Wo

and
E{Yi:(f)} = u(Pf) +/Ot E{m ({q(s, D+ %} P,b,sf)} ds.

Clearly, Y, decreases td, &s— oo. As in the proof of Lemma 3.2, it is easy to
show that lim_. E{||Yx, — Y:||} = O uniformly on each finite interval of > 0, so
the desired results hold. O

Lemma 3.4. Under the assumptions dfheorem 3.1,choose a strictly positive
function ga(-) € LY(E, m) and letg, (¢, x, w) = ¢(t, x, w) A (nqa(x)). Let {Z: ¢ > 0}
be defined by(3.2) in terms ofg, (-, -, -). Then we havé&{||Z"—Y,||} = 0 uniformly
on each finite interval of > 0, where {Y,: r > O} is defined by(3.2).

Proof. As in the proof of Lemma 3.2 one can show that there i3/4&)-valued
process{Z,: t > 0} such that lim_.. E{||Z" — Z|} = 0 uniformly on each finite
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interval oft > 0. As in the proof of Lemma 3.3 we haw % a.s. for each 0.
O

Lemma 3.5. The results ofTheorems 3.Jand 3.2 hold if E is compact
Proof. We first assume the condition of Lemma 3.2 holds. ﬂ.)é{’): t > 0} be
the approximating sequence given by Lemma 3.2 and de{Mﬁ‘): t >0} by (3.3)in
terms of {¥): 1 >0} and g, (-, -, -). By (3.6) we have
! 1
/ E{r"(@)}ds < / eI (1) + sm (g2)] ds.
0 0
Then for 7 > 0 ande > 0, there isy > 0 such that
T n T
P{/ Y®(|b|) ds > E} < 2n*1||b||/ eIPIST (1) + sm (g2)] ds < e.
0 0
Moreover,

T T
(38)  E(MP@P) = /0 E(YO()}ds < | /O ML) + sm (q2)] ds.

In view of the martingale characterization (3.3) and (3@ §¥: + > 0}, choosing
n > 2(u(1) + Tm(g2)) we have

{ sup ¥(1) > n}
o<t<T

T
s+P{ sup ¥"(1) > 1, / Y§">(|b|)ds<g}
0

o<i<T

jv)

IN

IN

= P{ sup 1) + MW+ [ mients. D s] > g}
0

0<t<T

IN

£+ P{ sup M"(1) > g — (1) - Tm(qz)}

o<i<T

IN

)
4(3 - u) - Tm() E{MPP)

B T
< 4(3 @)~ @) el [ V) +smiga] ds

by a martingale inequality; see e.g. [6, p. 34]. Consequentl

lim supP{ sup Y1) > n} =0.

N0 p>1 o<i<T
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Thus {Y,(”): t > 0} viewed as processes ([&), M(E)) satisfy the compact con-
tainment condition of [3, p. 142]. (Note tha& ([8), M(E)) is a closed subspace
of D([0, 00), M(E)).) By Itd’'s formula, for G € C3(R™) and {f1, ..., fu} C D(A),

G(YUf), - YOUf) — G (YD), - YE(fn)
—ZAGNWanJ@mmw@mom+WMﬁ4mws
i=1

m

B % Z/O Gl (YO(R), .., YO f) Y (cf?) ds

ij=1

is a continuous martingale. From (3.8) and the martingaleradterizations of Lem-
ma 3.1 we see thaE{Y,(")(l)z} is dominated by a locally bounded positive func-
tion independent ofz > 1. By [3, pp. 142—145] we conclude thgw™: ¢ > 0}

is a tight sequence i€ ([@0), M(E)). Consequently{Y,: + > 0} has a continu-
ous modification ane[Y,(”): t > 0} converges a.s. to this modification in the topology
of C([0, o0), M(E)). Note also that

/MMMMW*/MWJﬂWIZQ
0 0

in the topology ofC ([0oc), R). Then the martingale characterization (3.3) and (3.4)
for {Y,: + > 0} follows from Lemma 3.1 and [7, p. 342]. If the condition of
Lemma 3.2 does not hold, we may consider the additional appeding sequence
{Z,("'): t > 0} given by Lemma 3.4. Then a modification of the above argumsimbsvs
that {Z,("'): t > 0} is a tight sequence, so we also have (3.3) and (3.4). The -equal
ity (3.5) follows in the same way as in the proof of Theorem. 2.2 [l

Proof of Theorems 3.1 and 3.2. Note tha@ (>¢) can be extended to a Feller
transition semigroug(P;),., on E, the one point compactification a&f . Sinee  can

be viewed as a-finite measure orE and sinceb () andc (-) have continuous exten-
sionsh(-) and¢(-) on E, we can also regardX,: + > 0} and {Y;: t > 0} as objects
associated wit{ P,) . Applying Lemma 3.5 in this way we see th@l,: ¢ > 0} has

a M (E)-valued continuous modificatioflY, : 7 > 0} which satisfies the corresponding
martingale characterization (3.3) and (3.4). Then the thwotems will follow from
Lemma 3.5 once it is proved that

(3.9 P{Y,({8})=0forallz €[0,T]} =1, T >0.

Observe that for anyf € C(E),

Ml () =7, (P, F) Yo (YF) - [ m (P Fats. ) as
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t —p —
= / / P, f(x)M(ds, dx)
0o JE
is a continuous martingale ine [0, T'] with quadratic variation process
— r_ —b  —\2
<MT (f)>1 :A YS (E (PT—sf) )ds,

where @,b)zzo is defined from f? )0 andb. By a martingale inequality we have
b b ! b 2
P{oi,“gpr v, (P T) - Yo (P77) - /O m (P7_Tas. )) ds }

<4 /O e {ﬁ <a (ﬁ’;_j)z) } ds.

Choose a sequendgf,} C C(E) such thatf, — 15, boundedly ask — co. Since
eachY; is a.s. supported b¥ , replacing by f, in the above and letting — oo
we obtain (3.9). O

4. A stochastic equation with Poisson process

We fix a o-finite reference measure ofi . Le®,(A4, P) be a standard proba-
bility space on whichN ds, dx,du,dw ) andX,: ¢t > 0} are given as in Section 2.
Let G; be theo-algebra onQ2 generated by thenull sets inA and the random vari-
ables in (2.7). Suppose that - (-) is a Borel function onM E X E such that there
is a constantk such that

(4.1) mgw, ) < KQ+|vl), veM(E),
and for eachR > 0 there is a constankz > 0 such that
(4.2) m(qw, -)—q(y, ) < Kgllv =1

for v andy € M(E) satisfyingr(1) < R and (1) < R. We consider the stochastic
integral equation:

t q(¥y,x)
(4.3) Y, =X, +/ // / w(t —s)N(ds, dx,du,dw), t>0.
0 EJO Wo

By a (strong)solution of (4.3) we mean a continuoud E( )-valued procé¢gs. : > 0}
which is adapted to the filtratior(), >0 and satisfies (4.3) with probability one. A so-
lution of this equation can be regarded as an immigratidnb(c superprocess with
interactive immigration rate given by -( -).
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Lemma 4.1. Let R > 0 and letqi(-, -) and g2(-, -) be Borel functions
on M(E) x E satisfyingqi(v, -) = q2(v, -) = q(v, -) for v(1) < R. Suppose
that {¥™:+ > 0} and {¥®?: ¢ > 0} are solution of(4.3) with ¢(-, -) replaced
by g1(-, -) and ga( - , -) respectivelyLet = inf{r > 0: YP(1) > R or Y®(1) > R}.
Then{Y Y.+ > 0} and {¥/2,: 1 > 0} are indistinguishable

Proof. Since eacHY”: 1 > 0} is continuous,q(Y?, x)Iy,<,y is predictable.
Note also thatn (¢ (Y, -)Iy<,) is bounded. Let

AT (YD x)vq(r@.x)
Y= / / / / w(t — s)N(ds, dx, du, dw)
0 EJo Wo

T a(Y®.x)ng(r?.x)
zZr= / / / / w(t — s)N(ds, dx, du, dw).
0 EJo Wo

Applying Theorem 3.1 to the predictable function

and

(s, x,w) —gq (Ys(l), x) Vg (Ys(z), x) Iii<ry
we see that
1 t
M) =Y (1) +/ Y (b)ds — / m(g (Y&, ) vag (YP, ) I<ry ds
0 0

is a continuous martingale. By Doob’s stopping theorem,

E (1 )= [ E{m (g (69 ) Va (19, ) tn} ds— [ E{5 @ 1pen } ds
Similarly, we have
E{Z. (1)} = /O’ E{m (g (v®, ) ng (Y@, ) In<ry} ds—/ol E{ZI (0 <ry} ds.
By (4.2) and the fact|y ", — v || < v (1) — Z,, (1), we obtain
E{[Y/\ (D) - Z\ (D]}
= [ Elm () = (k0. )| 1) s+ [ {17700~ 200 1y s
< Kg /0 e {IY® =@ 1 y<ry } ds + |Ib] /0 € {7 ()= Z; ()] Iy<ry } ds

1
n e
0

O _y@

SAT SAT

bas+ bl [ B[00 @)= 25 (0]} as
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!
< (K [0) [ E{1750,(0) - 22, (0]} ds.
Then Gronwall’'s inequality yields that

=]

for all r > 0. Since{Y,(i)T: t > 0} and {Y,(E)T: t > 0} are continuous, they are indis-
tinguishable. U

1 2
T

‘} <E{[Y,.(1)-Z; (1]} =0

Lemma 4.2. There is at most one solution ¢4.3).

Proof. Suppos€Y;:t >0} and{Y/: t > 0} are two solutions of (4.3). Let, =
inf{t >0:Y,(1)>n or Y/(1) > n}. By Lemma 4.1{Y,x,,: t > 0} and{Y/, :t >0}
are indistinguishable for each> 1. Thus

1. =inf{t > 0: Y,(1) > n} =inf{r > 0: Y/(1) > n}.

By continuity of paths;,, 1 co a.s. a1 — oo and hence(Y,: r > 0} and{Y/: t > 0}
are indistinguishable, that is, (4.3) has a unique solution [l

Lemma 4.3. Suppose there is a constait > 0 such thatm(g(v, -)) < L for
all v € M(E) and (4.2) holds for all v and v € M(E) with K replaced byL. Then
there is a solution{Y,: t+ > 0} of (4.3). Moreover for this solution and eachf €
D(A)l

M) = Y,(F) — Yo f) — /O YJ(Af — bf)ds — /0 m(g(Ys. -)f)ds. 120,

is a continuous martingale relative to the filtratiof@),>o with quadratic variation
process

(M(f))e = /O Y (cf?)ds, t>0.

Proof. Since{X,: ¢ > 0} is a.s. continuous, the function, (, w) — ¢(X;(w), x)
is predictable. We define an approximating sequefig#”: : > 0} inductively
by ¥ =X, and

t q(l{sg”_l),x)
y" =X, +/ / / / w(t — s)N(ds, dx, du, dw)
o JEJo Wo

for n > 1. A similar argument as in the proof of Lemma 4.1 gives

e {0 - v} < [P fn (g (10D, )~ g (1072, ) }as
0
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13
g Le”b”[/ E{HYs(H*l) _ YJ(I‘I*Z)H}dS’
0
and
1t
e {1 - v} = [ eI qx., Dy as < Lrel
0

Thus there is arM K )-valued proce$g, : ¢ > 0} such that lim_. E{||¥™ —v,|} =
0 uniformly on each finite interval of > 0. Let

1 q(Y.s',-x)
Y/ =X, +/ / / / w(t — s)N(ds, dx, du, dw).
0 EJO Wo

As the above,

(-

t
bo [E(r -}
0

Then we also have lim.. E{||Y/" — Y/||} = O uniformly on each finite interval
of r > 0, so that a.sY/ = Y, and (4.3) is satisfied. By Theorem 3.4Y,: r > 0}
has a continuous modification and we have the martingaleacteization. O

Lemma 4.4. For eachn > 1 define a smooth functiom,(-) on [0, o) such that

if z<n-1,

1
an(z) =

n if z>n+1

b4

and 0> a/(z) > —1/z for all z > 0. Theng, (v, x) := q(a,(¥(1))v, x) satisfies the con-
ditions of Lemma 4.3.

Proof. By (4.1) and the definition af, -( -) we have
m(qn(Vv ' )) < K(l +a, (I/(l))V(l)) < K(l +I’l).

On the other hand, for andy € M(E) letn = v+~ and letg, and g, denote
respectively the densities of and v with respect ton. Without loss of generality, we
may assume/(1) < v(1). By the mean-value theorem we have that

V(1) |an(v(1)) — an (v (D) < v(1)|a, ()] (1) — v(D)] < [lv — I,
wherev(1) < z < v(1). It follows that

Im(gn(, ) —au(v, NI = |m(g(a (D)), -) = qlan(yD))y, )
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Ky [lan(v() — an(y(D)) ||

Kun(lan(v(1))gy — an(v(1))8+)

Kn[lan(v(1)) = an(v(1))[ n(8v) + an(v(1)(I8v — g+ )]
Kn[lan(v(1)) = an(v(1)[v(1) + [lv — ]

2Ky |lv — Il

(AN VAN VANRN VAN VAN

That is, g, (-, -) satisfies the conditions of Lemma 4.3. ]
The following theorem generalizes the result of [17, Canmyll5.5]:

Theorem 4.1. Under the conditiong4.1) and (4.2), there is a unique solution
{Y;: t+ > 0} of (4.3). Moreover {Y;: t+ > 0} is a measure-valued diffusion and for
each f € D(A),

44) M, (F)=Y, (F)= Yo(f) - /0 YJ(AS — bf)ds — /0 m(g(Ys. )f)ds. 130,

is a continuous martingale relative to the filtratiof@;),>o with quadratic variation
process

(4.5) (M(f): = /O Y, (cf?)ds. 1>0.

Proof. The uniqueness of (4.3) holds by Lemma 4.2. For thefpob existence,
we first construct an approximating sequence. For eacheanteg> 1 let ¢, (-, -)
be defined as in Lemma 4.4. By Lemma 4.3 there is an unigquentmus solution
{yx™:+ > 0} of (4.3) with ¢(-, -) replaced byg, (, -). Then, by Lemma 4.1,
for k > n, we have a.sy?, =y%) for eachs >0, where

7 = inf {t > 0: v (1) > n} = inf {t >0: y¥() > n} .
Since{Y,(X)T”: t > 0} and {Y,(ﬁ)ﬂ,: t > 0} have continuous paths, they are indistinguish-

able. Using Theorem 3.2, condition (4.1) and noticing thaty"), -) = ¢ (¥, -)
for s € [0, 7 A 7,,] we get

IN

1
elPl (1) +/ enbn(r—x)E{m <q (Y&Lﬂ, ))} ds
0

t
() + K1) +Ke||bllr/ E {y&)ﬂ,(l)} ds.
0

E{r{, W)}

IN

By Gronwall’'s inequality there is a locally bounded funeti@'(-) on [0, o) indepen-
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dent ofn > 1 such that
(4.6) E{r%, )} < c).
By the definition ofr,, we havenP{0 < 7, <t} < C(¢r), and so
P{r, <t} =P(r, =0) +P(0 < 7, < 1) < Ly o) (11(2)) +n2C (1),

which goes to zero a8 — co. But {7,} is an increasing sequence, so we conclude
that a.s.7, T co asn — oo. Thus there is a continuous procefg : r > 0} such
that a.s.¥") = v, for all t € [0, 7,,]. Clearly, {Y;: r > 0} satisfies (4.3) with proba-
bility one. By (4.6) and Fatou’s lemm&{Y;(1)} < C(r). The martingale characteriza-
tion (4.4) and (4.5) follows by Lemma 4.3. The strong Markeoegerty can be proved
as [17, Theorem 4.4]. [l

Suppose that > 0 is a constant3(-) is a bounded Lipschitz function on ,[60)
and y(-) is a non-negative locally Lipschitz function on, &) satisfying the linear
growth condition. The stochastic differential equation

(4.7) dy(t) =+/cy(t)dB(t) + B(y()y(t) dt +~y(y(t))dt, t >0,

defines diffusion proces$y(sr): ¢+ > 0}, which may be called a continuous state
branching diffusion with interactive growth and immigaati Setting

b=—inffz) andq €) =f(x)z +bz +7(z), z=>0,
we can rewrite (4.7) as

(4.8) dy()=+/cy(t)dB(t) — by(t)dt +q(y(t))dt, t>0.

The last equation may be regarded as the special case of thimgake problem (4.4)
and (4.5) withE ={a} being a singleton. Thus equation (4.3) gives a decompasitio
of the paths of{y(s): r > 0} into excursions of the diffusion proceds(s): r > 0}
defined by

(4.9) dx () =+/cx(t)dB(t) — bx(t)dt, t>0.

This generalizes a result of [15], who considered the caserevb(-) and v(-) are
constants and hence the right hand side of (4.3) is indeperafe{y(¢): + > 0}. See
also [9].
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