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0. Introduction

The aim of this paper is to study thel/  (2)-invariant anti-skeiél metrics which
is specified by the solutions of Painlevé Ill. We study notyotihe diagonal metrics,
but also the non-diagonal metrics.

Hitchin [6] shows that theSU (2)-invariant anti-self-dual tme is generically
specified by a solution of Painlevé VI with two complex paedens.

Painlevé VI is shown to be a deformation equation for a ling@blem

(@2 ()0

where B; has four simple poles ofP* [7]. And Painlevé V, IV, lIl, Il are degener-
ated from Painlevé VI:

W,
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This is the confluence diagram of poles Bf, wh(ere )the Roman numerals represent
the types of the Painlevé equation, and the parenthesizetbers represent the orders
of poles of B;. For example, Painlevé Il is shown to be a deformation #gndor a
linear problem with two double poles.

Hitchin used the twistor correspondence [1, 11] to assecthe anti-self-dual
equation and the Painlevé equation. On the twistor spdme)ifted action of SU (2)
determines a pre-homogeneous actionSéf  (2), and it detesmém isomonodromic
family of connections orCP*, and then we obtain the Painlevé equation.

Due to the reality condition of the twistor space, the polésBp makes two an-
tipodal pairs. Therefore, the configuration of poles becoriee type of Painlevé Il
or VI. Generically, the anti-self-dual metric is specified & solution of Painlevé VI.

In this framework, Hitchin [6] classified the diagonal asél-dual metrics, and
Dancer [5] shows that the diagonal scalar-flat Kahler radtrispecified by a solution
of Painlevé IIl with a parameter (0, 4, 44), wherediagonal metric is in the shape
of (1) in Section 1. Since the anti-self-dual Einstein nustrare diagonal, the classifi-
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cation for diagonal metrics enough serves Hitchin’s puepd$owever, generically, the
SU(2)-invariant metric is in the shape of (4) in Section 2. listbase, Hitchin shows
that the metric is generically specified by a solution of Rai@ VI, but he dose not
go into detail. In this paper, we study not only the diagonaitnas but also the non-
diagonal metrics.

We show that theSU (2)-invariant anti-self-dual equationduce to the following
Painlevé equations:
(@) A family of Painlevé VI

g 1/1 1 1 dg\* /1 1 1\ dq

—_— == -+ —+ — — | -+ + —

dx2 2\qg q-1 qg—x) \dx x x—-1 qg-—x)dx
+q(q—1)(q—X){a+ﬂx+ x—-1 +5X(x—1)}

x2(x — 1)? 92

Y
* (q-17 (q-x)?
with two complex parameters,

1 1 1 1 —
(Oé, ﬁa v, 5) = (5(90 - 1)27 Eega _50%7 5(1 +9%)) .
If the metric is in the form (15), theAy = 81 or g, 61 € R.
(b) A family of Painlevé llI

with one complex parameter,
(O[, ﬂv s 5) = (497 4(1 +9—)7 47 _4) .

If the metric is in the form (15), theA € R.
The case (b) is a generalization of Dancer’s result [5].

Generically, theSU (2)-invariant anti-self-dual metric ipesified by a solution
of Painlevé VI with a parameter above. The metric is spetifiy a solution of
Painlevé lll, if and only if there exists aSU (2)-invarianermitian structure. With
an appropriate conformal rescaling, the hermitian metriaog into a scalar-flat Kahler
metric.

1. The diagonal anti-self-dual equations

In this section, we review the anti-self-dual equations lba SU (2)-invariant di-
agonal metrics.

The SU (2)-invariant diagonal metric is represented in théofaihg form:
U)QU)3O_2 " w3wi - " wiwz -

1 g2 3.

1) g = U)leU)3dl‘2 +
w1 w2 w3
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wy, wz and ws are functions oft , andr1, o2, o3 are left invariant one-forms on each
SU (2)-orbit satisfying

(2) doy =02 A 03, dop = o3 A\ o1, doz =01 A o).

Tod [12] showed that the (scalar-flat) anti-self-dual emuest on theSU (2)-invariant
diagonal metric are given by the following system:

w1 = —wawz + wy (a2 +az),
wz = —wawy + wz (a3 +az),
3) w3 = —wiwz + w3z (a1 +az),
ag = —azaztag (g +as),
az = —agag + az (g +ag),
ag = —aaz +ag (a1 +a2),

where a1, a2, az are auxiliary functions and the dots denote differentiativith re-
spect tor . The anti-self-dual equation (3) has a first infegra

i = al(wg — w%) + ag(w§ — w%) + ag(wf — w%)
8(a1 — a)(a2 — az)(az — 1) ’
Furthermore, if we set

a2 — (1

X = 5
Q2 — Qa3

_ wa(ar — az)(wz(wf — w%) +2v/2k wiwsz(ag — ag))

w23 — wdag + wi(ws — w?)agp + wi(w? — was’

then the system (3) generically reduces to a family of Pa@MI| with a special pa-
rameter

2% —1)°
(o, B, 7, 6) = <(W2 N “22")

2. The non-diagonal anti-self-dual equations

We can express afU (2)-invariant metric in the form

3
(4) ¢= fd2+ S hin(r) o10m,

l,m=1

Using the Killing form, we can diagonalize the metgc  on edi(2)-orbit. Then
we can express the metric as follows:

g = (abc)? dt? + a?d 62 + b%62 + %53,
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wheret =t ¢), a =a(t), b =b(t),c =c() and

01 o1
g2 | =R(@) | o2 |
o3 o3

whereR () is anSO (3)-valued function.
Since RR™! € s0(3), we obtain

01 o2 N\ 03 o1
d| 62 | =R@) | o3No1 +Rdl/\ op)
03 o2 N\ 02 o3
G2 N3 0 & -& 01
=|0sNo1 |+| =& 0 & |din| oz |,
01N\ G2 &2—-& 0 03

for some{; = &u(r), &2 = &a(1), &3 = &5(1).

If &1 =0, & =0, & =0, then the matrix/4;,, ) can be chosen to be diagonal for
all 7, and then we call thag has a diagonal form.

In the following, we mainly study the non-diagonal metrics.

To compute the curvature tensor, we choose a basig\for

{Q1, 93, 935,97 9,, Q3 },
where

Qi =a®bcdt NGy +be by A Gs,
QF = ab’cdt N\ 63+ ca b3 A6y,
Q% =abc?dt N\ G3+ab 6y A 62,
Q= a’bedt A\ &1 — be 5y A 63,
Q, = ab’cdt N\ 63 — ca 63 A &1,

Q; = abc®dt A 53 — ab 61 A 6.

With respect to this frame, the curvature tensor has thewitlg block form [3]:

A B
'B D)’
wheres =4trac® is the scalar curvatui®; = A — (1/12)s andW~ = D —(1/12)s

are the self-dual and anti-self-dual parts of the Weyl tenaod B is the trace free
parts of Ricci tensor.
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We setwi =bc, wy =ca, wz =ab and determine auxiliary functionss;, az, as
by

w1 = —wowz + wi(an + o),
5) wz = —waw1 + wa(az + 1),
w3 = —wiwo+ U)3(O¢1 + ()zz).

Calculating the conditiomd =0, we obtain the following theiwr.

Theorem 2.1. The metric is anti-self-dual with vanishing scalar curvaiuf and
only if oy, ap, ag and &, &2, &3 satisfy the following equations

2
: 1
a1 = — apaz + a(ag + az) + _(wg _ wg)z ( &1 )
4 waws
1 & 2
-8 - udEut +ud) (2)
2
1 &
+ Z(w% — w?)(3w? + wi) <w1w2> )
2
: 1
a2 = — agag + az(ag +aq) + Z‘r(w% _ wi)z ( &2 )
w3w1
1 £ 2
© + Z(wf — w3)(3w} + w?) <w1w2>
2
1 &
+3s - udEu el (L)
2
: 1
a3z =—orap t+ a3(a1 + az) + _(wi _ w%)Z ( 53 )
4 wiwz

1 a \*
e td - udEad+ud) (L)

1 & \*
+E - v (2]
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and
2 &1 _ &2 €3 2.2 2.2 2.2
w = —2wsws + wiswi + wiw
W3- 09 (2] =228 Caugud v uguf + ufud
+ 3! (azwg - agwg + 3a2w§ - 3a3w§),
waw3
d &2 & &
2 2 _ 2.2 2.2 2.2
ws — wi)— = —2wswi + wiws; + wsw
o g (52) =8 8 Cauut e utul + udud)
+ &2 (agwg - alw% + 3a3wf - 3a1w§),
w3w1
d &3 &L &
2 2 _ 2.2 2.2 2.2
wy — ws)— = —2wiws + wiws + waw
W3- 09g (o) =t & 2utuf+udud + udud
+ & (c1w? — aow? + 30 w? — 3apw?).
wiwz2

Remark 2.2. If we take a conformal rescaling 1t £ ) , then turns intoatth
satisfiesds /dt = 1/F, and wi, wp, w3 turn into Fwi, Fwy, Fws, and&y, &, &3 turn
into F&, F&, Fé& respectively. And themvy, oo, as turn into

Thg equations (5), (6), (7) are invariant under a confornescalingg toFg , if
2FF? = [2,

Remark 2.3. By the equation (5), (6), (7), we obtairRw?wi+wiw3+wiw? # 0.
Therefore, ifé3 = 0, then&, = 0 or & = 0. In the same way, if; = 0, thené& =0
oré&=0,and if& =0, theng&g =0 or & =0.

Remark 2.4. If & =0, & = 0, & = 0, then the equation (5), (6), (7) reduces
to a sixth-order system (3) given by Tod [12]. Furthermoffep = w1, az = wpy,
ag = ws, then (5), (6), (7) reduce to a third-order system, whichedaines Atiyah-
Hitchin family [1]. And if oy = 0, ap = 0, ag = 0, then (5), (6), (7) reduce to a
third-order system, which determines BGPP family [4].

Remark 2.5. If wy = w3, then we can sef; =0, & =0, &3 = 0 by taking another
frame. This is also in the diagonal case. Therefore we asgume w3)(ws—w1)(w1—
wp) # 0.

3. The isomonodromic deformations

Let (M, g) be an oriented Riemannian four manifold. We define aifaolgh Z to
be a unit sphere bundle in the bundle of anti-self-dual tamrs, and letr: Z — M
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denote the projection. Each point in the fiber owér) defines a complex structure
on the tangent spacg.;)M, compatible with the metric and its orientation.

Using the Levi-Civita connection, we can split the tangepace 7,Z into hor-
izontal and vertical spaces, and the projectioridentifies the horizontal space with
Tr M. This space has a complex structure definedzby and the Jespeae is the
tangent space of the fibe® = CP! which has its natural complex structure.

The almost complex structure afi  is integrable, if and onlthé metric is anti-
self-dual [2, 11]. In this situatiolZ is called the twistorase of (1, g ) and the fibers
are called the real twistor lines.

The almost complex structure oA  can be determined by thewwihy (1, 0)-
forms:

1 :z(el+\/—_1€2) — (eo+\/—_1€3),
02 :z(eo — \/—_163) + (el — \/—_162),

1
®) Og =dz + 52%(f - wf + V=L (f — )
1
—V-1z(w§ —wj) + E(w? —wi — V-1(w§ — wj)),

where {eo, el e? e3} is an orthonormal frame, andj. are the connection forms deter-
mined byde' +w' Ae/ =0 andw +w/ =0. (M, g) is anti-self-dual, if and only if the
Pfaffian system (or the distribution defined by the followisygstem)

(9) @1 = 0, @2 = 0, @3 =0

is integrable, that is to say

(10) d®, =0, d®, =0, dOz; =0 (mod B1, O, @3).

Remark 3.1. The Pfaffian system (9) is invariant under (z+v/—1)/(z—v—1)
and permutation 1 2, 2+— 3, 3+ 1 of suffixes ofe’ and’.

Theorem 3.2. The Pfaffian systenf9) is invariant under the conjugate action
andz — —1/z [2]

If the metric isSU (2) invariant, we obtain

®1 0 V1 o1
(12) O | =0 )dz+| v |dt+A| oo |,
@3 1 U3 03

wherevi = v1(z, 1), v2 = v2(z, t), v3 =v3(z,1); A= (a,-j(z, t))i.j=1.23.
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If detA = 0, then the metric turns to be diagonal, and the metric is @ BGPP
family [4].
If detA # 0, then we obtain

o1 0 U1
o | =—A"Y[ [0 dz+ | v2 | dt], (mod®i, O, O3).
03 1 v3
If we set
S1 0 v1
(12) so | =—A1 |0 dz+ | v | at],
$3 1 v3
then
S1 s2 N\ §3
(13) d|lso | =1 ssAnsy |, (mod B1, Oy, @3).
53 N ARY)

Sincess, s2, s3 are one-forms onz(¢ )-plane, the congruency equation (13)sttw be
a plain equation:

51 s2 A\ §3
dl so | = s3A81
53 51N\ 82

By Theorem 3.2s1, 52, s3 are invariant under the conjugate action and> —1/z .

If we set
- 1 vV=1s2 —s1++v—1s3
\/z s1tv—=1s3 —v—1so
= — Bi1dz — By dt,
then
dZ+X ANX =0

This is the isomonodromic condition for the following limearoblem [7]

(E-m)(3)-

Lemma 3.3. The components aB; are rational functions ot

_F(2)

G(z)’
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where F(z) is degree2 and G(z) is degree4. We must haveB; — —'B; under the
conjugate action and — —1/z.

Proof. Sinces, s2, s3 are invariant under the conjugate action ane~ —1/z,
we obtainX — —'X, and thenB; — —'Bj.

If we set
51 s1
S2| =R(@)|s2],
§3 53
then we have
51 o1
so|l =102 (mod 01, Oy, @3).
53 03

By a straightforward calculation, we obtain

(0 _2(1+z%)ws
Sl(a_z): G

5 ( 8) _ 21 (—1+2%) w2

0z G(z) ’
R (8) =4/ —1zws
%\ \92) =7 6

where
Gz)=z* ((041—0&2)—\/—_1M§3>—21 < w3§1 \/—1w3 wlf)
wiwy w3wy
u) w2
+ 22 (a0 - 209+ 22 (L gy mT H M
w1
((al—az)ﬂ/_wl w2€>
W2

SinceR ¢) is independent of , the componentsBafare rational functions of ,

_F@)
1= G)’

where F ¢ ) is degree 2 and z () is degree 4. O

For this lemma, generically; has four simple poles. In this case, the deformation
equation of (14) is Painlevé VI.
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Theorem 3.4. The SU(2)-invariant anti-self-dual metric is generically specified
by the solution of Painléy VI.

The idea of Hitchin [6] is that the lifted action fU (2) on theistor spaceZ
gives a homomorphism of vector bundles Z x su(2)® — TZ, and the inverse ofy
gives a flat meromorphiSL (Z)-connection, which determines isomonodromic de-
formations. Since one-form®;, ®,, ®3 on Z can be considered as infinitesimal vari-
ations, we can identify=  witl L. 3 B

By Lemma 3.3, the poles aB; make antipodal pairgo, —1/¢p, and ({1, —1/¢; on
CP. Therefore we obtain two types of configuration of polesBaf In each case, we
can calculate the local exponents at singularities. Thesal lexponents corresponding
to the parameter of the Painlevé equation (see [8]).

(a) By has four simple polegy, —1/¢o, ¢1, —1/¢1 on CP.

Ao Ao Ay Ay

b T v ye TG G

The deformation equation is Painlevé VI with a parameter,

1 15 1
(av /67 v 6) = (5(90 - 1)2v 508, _E

1 —
02, 5@ +62 ) ,
wheref3 = 2 trA3, 02 = 2 tr A2, B
(b) B; has two double pole§, —1/¢ on CP*,

— A A2
As +\/ 1C+ Vi 1C+ Ay/C

s Ay eyl A Y7o

whereC =—'C. The deformation equation is Painlevé Il with a parameter
(c. 8,7, 6) = (40, 4(1 +6), 4, —4),
where 62 = 2(tr(A,C))? /tr C2.

Theorem 3.5. The anti-self-dual equations reduce to the following Rai@al
equations
(a) A family of Painlee VI with two complex parameters

1 1- 1,1 —
(av /87 v 6) = (5(90 - 1)27 59%7 _50%7 E(l +9§ ) .
(b) A family of Painle® Ill with one complex parameter

(@, B, 7, 8) = (40, 4(1 +6), 4, —4) .
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RemArk 3.6. It is known that the anti-self-dual equations reducd&inlevé VI
with the parameter as above ([9], [6]). Dancer [5] shows tha&gahal scalar-flat
Kahler metric is specified by a solution of Painlevé Ill wia parameterd(, 3, v, ) =
(0, 4, 4 —4). Now, Theorem 3.5 (b) is a generalization of Dancer’s ltesu

By Remark 2.3, if£1£263 = 0, then at least two of;, &, & must be zero. From
now on this section, we assungg = {3 = 0, and then we obtain the metric in the
form:

(15) g = f(1)dT + h11(T) 02 + ho(T) 05 + hos(7) 0203 + has(T) 3.
Therefore, there exists an isometric action
(16) (01, 02, 03) = (01, —02, —03),

which preserves each orbit. Since

O] @El
O | — | O2
O3 O3

under the action (16) and— z, then we obtain

@1 0 U1 g1
O | =0 | dz+ | v dr + ez | —O2
@3 1 U3 T —03
Therefore
51 51
52 = _s_2 )
53 —53

=z

and then we obtaimB;|, .7 = B,. Therefore we obtain the following:
(a) If By has four simple poles, then

Ao —'Ag A —1A,
B = + + +
z2—=C z+1/¢%0 z—-CG z+1/¢
Ao + —"Ap Aq —1TAq

= + + .
z—C 2+1/% z—-CG z+1/G

If o= (o or —1/Co, then®?2 = 2 tr AZ and 62 = 2 tr A2 must be real numbers. th = (;
or —1/¢1, then 3 = 2 tr A3 and 67 = 2 tr A? must coincide.
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(b) If By has two double poles, then

_ A +\/—_1C+—\/—_1C+—’Zg/§2
(-0 z-¢ z+1/¢ (z+1/¢)?
A, VEIC, —VTIC, g
(z—-0? z-¢ z+1/¢ (z+1/0)%

where C =—'C. If ¢ = ¢, then 62 = 2(tr(A,C))?/tr A2 must be a real number. If
¢ =-1/¢, then6? = 2(tr(AC))?/tr A3 = 0.

B

Theorem 3.7. If £1£¢3 = 0, then the anti-self-dual equations reduce to the fol-
lowing Painlee equations
(a) A family of Painlee VI with two real parameters

1 1 1,1
(Oé, ﬁa 77 5) = (5(90 - 1)2’ 505’ _56%7 §(1+0% ) ’
or one complex parameter
(L1, peln 1.1, -5
(aaﬁvlyvé)_(z(g 1)7297 2072(1+9) .
(b) A family of Painlee Ill with one real parameter
(O[, ﬂv v 5) = (497 4(1 +9)7 47 _4)

4. Hermitian structure

In this section, we study the geometric meaning of ¢  (2yiant anti-self-
dual metric specified by the solutions of Painlevé Ill. Raig Il is the deformation

equation of
d y1
— —B =0,
(=) ()

where B; has two double poles. By a direct calculation, we obtain tbkowing
lemma.

Lemma 4.1. The poles ofB; are determined by the following equation
a7 ((al — o) — \/—1X3) — 27 (Xl - \/—1X2)
+ 272 (a1 + a2 —2a3) + 27 (Xl + —le)
+ ((Oé]_ - Oéz) + —1X3) =0,
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where
2 9 2 2 2 2
Ws — W Wy — W wy — w
_ Wy — w3 _ ws 1 _ Wi 2
X1 = &1, Xo= &2, X3= &3.
waw3 w3wi wiw?2

Since the equation (17) is preserved py» —1/z and the conjugate action, if the
equation (17) has a solution & of order two, thenz =-1/¢ is also a solution of
order two.

Lemma 4.2. Let g be a non-diagonalU (2)-invariant metric. ThenB; has two
double polesif and only if there exists a functioyf(¢) satisfying

X3 =4(f — a2)(f — ),
(18) X3 =4(f — a3)(f — ),
X5 =4(f — a2)(f — @2).
And then the anti-self-dual equation reduce(%), (6) and f = f2,
Proof. If X1 = X2 = X3 =0, then the discriminant of (17) is
16 (Oé]_ — ()zz)z (Ozz — O¢3)2 (0¢3 - ()zl)z.
Therefore, if
(Oé]_ — ()zz) (Oéz — ()zg) (0¢3 — ()zl) = 0,

then B; has two double poles. This case is in the form of (18) by «a;F== ay or
f =a;=asor f =as = a. By the equation (5), (6), (7), we obtaifi = f2. If
f = 0, then we obtain the diagonal scalar-flat-Kahler metiierg by Pedersen and
Poon [10].

If X1X,X3 = 0, then, from Remark 2.3, at least two &f;, X,, X3 must be
zero. Assume thatX; # 0 and X, = X3 = 0. Then the discriminant of (17) is
(X2 + (a2 — a3)?) (X2 — 4 (a1 — @) (a1 — ag))z. Therefore, the equation

X2=4(a1 — a2) (1 — a3)

is the condition thatB; has two double poles. This is (18) whefe oz In this case,
we obtain the double poles on

(19) ¢= Voas—ag V=1 —aq
Voo +az+ 20 ’

X1, X2, X3 satisfy the equation (5), (6), (7), if and only df; = 2.
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If X1X2X3 #0, the discriminant of (17) is too complicated to calculdtberefore,
we attack by an other way. We obtain (17) in the following form

(20) az*—bzP+cz?+bz+a =0,

wherea ,b are complex coefficients and is a real coefficient. Binear fractional
transformation

(b—16]) ¢ — b+ b|

(21) T b+ ) C—b+ b

the equation (17) turns into the following form:
(22) ¢* = bo¢®+co¢® +bo( +1=0

wherebg is a complex coefficient andy is a real coefficients. Since (21) preserves the
antipodal pairs orCP?, if ¢ = (p is a solution of (22) of order two, theei= —1/(o is
also a solution of order two. Therefore

2
23) S N SO A (R

and thengp = ig_o, which implies (o is real or pure-imaginary. Thereforgy =
2¢ (—1+¢¢)/¢? must be real or pure-imaginary. By a direct calculation, Jtaim the
following. The real part ofpg vanishes, if and only if

x4 (x2+x3)°=0,
which never occurs. The imaginary part &af vanishes, if and only if
X3 ((X§ — X3) X5 — 2X1X2(a1 — a2)) = 0.
Therefore,

(24) (X2 — X3) X3 = 2X1X2 (a1 — a),

if and only if B; has two double poles. By the linear transformations (z ++/—1)/
(z — v/—1), the suffixes ofX; andy; on (17) are replaced cyclically. Therefore, Bf
has two double poles, then the following must be also satiisfie

(25) (X%—X%) X1:2X2X3(a2—a3),
(26) (X3 — XI) X2 = 2X3X1 (a3 — aq).
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By (24), (25) and (26),X1, X», X3 must satisfy (18) with an auxiliary functiorf
Actually, if X3, X», X3 satisfy (18), then (17) has two solutions of order two:

X1Xp+ /X3X3 + X3X3 + X2X3
(27) ¢=
X3(X1—vV-1X>)

In this case,X1, X», X3 satisfy the equation (5), (6), (7), if and only jf = f2.
]

Therefore, we obtain the following theorem.

Theorem 4.3. The SU(2)-invariant anti-self-dual metric i_s specified by the solu-
tion of Painlew IlI, if and only if X1, X», X3 satisfy(18) and f = f2.

If we restrict ©; =C0) and ©, =) for somez =((t), then we obtain (1 0)-forms
on M, which determine asU (2)-invariant almost complex streeton M .

Theorem 4.4. Let g be an SU(2)-invariant anti-self-dual scalar-flat metric.
There exists arsU (2)-invariant hermitian structurdg, 1) if and only if By has double
poles.

Proof. LetG ¢ ) be the left hand side of (17). Théhz () is the deimator of
Bi. We obtain

O3 =dz+ Hpdt + H1 61 (mod Oy, ©y),

where H; = 0 is equivalent withG { ) = 0, andlz Hydr = 0 is equivalent with
dG = 0. Therefore, the almost complex structure determined ®y|.=¢), ©2|.=¢¢)} is
integrable, if and only ifG { ) admits a multiple zero an (§&). ]

Theorem 4.5. The hermitian structure(g, I) determined onTheorem 4.4is
Kahler, if and only if

(28) X2 = dapas, X3 = 4azon, X2 = 4oy as.

Proof. If X1X2X3 # 0, the Kahler form is determined by (27) as

XoX
Q= 223 Q
V/X3X3+ X3X3 + X33
+ XaX1 Q

V/X3X3+ X3X3 + X3X3
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X1X»

+ Q3.
V/X3X3+ X3X3 + X3X3

By the equations (5), (6), (7) andl = f2, we obtain

_ 2f wiX2X3
V/X3X5+ X3X3 + X3x3
2 X3X A A
+ S waXaXa dt No3 N\ oq
VX8 + XX+ X035
2f U)3X1X2
VB X3 XD

a2 dt N\ oo N\ 03

+ dt N\ o1 N 0.

Since wiwows # 0 and X1X,X 3 # 0, we obtaind2 =0, if and only iff =0.

If X1X2X3 =0, thenf must bev;, ax or az. Suppose thatf =, then we
obtain X2 = 4(ap — a1)(az — a1), X2 = 0, X3 = 0. The Kahler form is determined
by (19) as

a3 — g +

Q=_YR_"U oy

29 =
(29) Vaz+taz—2a; > \az+az— 201

Then we obtain

2 Vagz — 2 Voz — A
(30) dQ=EEAVA2T M i fGa A Gy + SRV T M A Gy A Gy,

Voo +az — 201 Voo +az — 201
If the metric is non-diagonal, theX? = 4(a; — a1)(as — a1) # 0. Therefore, we obtain
d2 =0, if and only if a; = 0. Ol

By a conformal rescaling — Fg where F satisfies (R)(F/dt) = f, we can
eliminate f of lemma 4.2 (see Remark 2.2).

Theorem 4.6. An SU(2)-invariant anti-self-dual metric is specified by a solution
of Painle Ill, if and only if the metric is conformally equivalent with a koeflat
Kéahler metric.
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