ANTI-SELF-DUAL HERMITIAN METRICS AND PAINLEVÉ III

Shолі OKUMURA

(Received January 20, 2003)

0. Introduction

The aim of this paper is to study the $S U(2)$-invariant anti-self-dual metrics which is specified by the solutions of Painlevé III. We study not only the diagonal metrics, but also the non-diagonal metrics.

Hitchin [6] shows that the $S U(2)$-invariant anti-self-dual metric is generically specified by a solution of Painlevé VI with two complex parameters.

Painlevé VI is shown to be a deformation equation for a linear problem

$$
\left(\frac{d}{d z}-B_{1}\right)\binom{y_{1}}{y_{2}}=0
$$

where B_{1} has four simple poles on $\mathbb{C P}^{1}$ [7]. And Painlevé V, IV, III, II are degenerated from Painlevé VI:

This is the confluence diagram of poles of B_{1}, where the Roman numerals represent the types of the Painlevé equation, and the parenthesized numbers represent the orders of poles of B_{1}. For example, Painlevé III is shown to be a deformation equation for a linear problem with two double poles.

Hitchin used the twistor correspondence [1, 11] to associate the anti-self-dual equation and the Painlevé equation. On the twistor space, the lifted action of $S U(2)$ determines a pre-homogeneous action of $S U(2)$, and it determines an isomonodromic family of connections on $\mathbb{C P}^{1}$, and then we obtain the Painlevé equation.

Due to the reality condition of the twistor space, the poles of B_{1} makes two antipodal pairs. Therefore, the configuration of poles becomes the type of Painlevé III or VI. Generically, the anti-self-dual metric is specified by a solution of Painlevé VI.

In this framework, Hitchin [6] classified the diagonal anti-self-dual metrics, and Dancer [5] shows that the diagonal scalar-flat Kähler metric is specified by a solution of Painlevé III with a parameter $(0,4,4,-4)$, where diagonal metric is in the shape of (1) in Section 1. Since the anti-self-dual Einstein metrics are diagonal, the classifi-
cation for diagonal metrics enough serves Hitchin's purpose. However, generically, the $S U(2)$-invariant metric is in the shape of (4) in Section 2. In this case, Hitchin shows that the metric is generically specified by a solution of Painlevé VI, but he dose not go into detail. In this paper, we study not only the diagonal metrics but also the nondiagonal metrics.

We show that the $S U(2)$-invariant anti-self-dual equations reduce to the following Painlevé equations:
(a) A family of Painlevé VI

$$
\begin{aligned}
\frac{d^{2} q}{d x^{2}}=\frac{1}{2}\left(\frac{1}{q}+\frac{1}{q-1}+\right. & \left.\frac{1}{q-x}\right)\left(\frac{d q}{d x}\right)^{2}-\left(\frac{1}{x}+\frac{1}{x-1}+\frac{1}{q-x}\right) \frac{d q}{d x} \\
& +\frac{q(q-1)(q-x)}{x^{2}(x-1)^{2}}\left\{\alpha+\beta \frac{x}{q^{2}}+\gamma \frac{x-1}{(q-1)^{2}}+\delta \frac{x(x-1)}{(q-x)^{2}}\right\}
\end{aligned}
$$

with two complex parameters,

$$
(\alpha, \beta, \gamma, \delta)=\left(\frac{1}{2}\left(\theta_{0}-1\right)^{2}, \frac{1}{2} \bar{\theta}_{0}^{2},-\frac{1}{2} \theta_{1}^{2}, \frac{1}{2}\left(1+\bar{\theta}_{1}^{2}\right)\right) .
$$

If the metric is in the form (15), then $\theta_{0}=\theta_{1}$ or $\theta_{0}, \theta_{1} \in \mathbb{R}$.
(b) A family of Painlevé III

$$
\frac{d^{2} q}{d x^{2}}=\frac{1}{q}\left(\frac{d q}{d x}\right)^{2}-\frac{1}{x} \frac{d q}{d t}+\frac{1}{x}\left(\alpha q^{2}+\beta\right)+\gamma q^{3}+\frac{\delta}{q} .
$$

with one complex parameter,

$$
(\alpha, \beta, \gamma, \delta)=(4 \theta, 4(1+\bar{\theta}), 4,-4)
$$

If the metric is in the form (15), then $\theta \in \mathbb{R}$.
The case (b) is a generalization of Dancer's result [5].
Generically, the $S U(2)$-invariant anti-self-dual metric is specified by a solution of Painlevé VI with a parameter above. The metric is specified by a solution of Painlevé III, if and only if there exists an $S U(2)$-invariant hermitian structure. With an appropriate conformal rescaling, the hermitian metric turns into a scalar-flat Kähler metric.

1. The diagonal anti-self-dual equations

In this section, we review the anti-self-dual equations on the $S U(2)$-invariant diagonal metrics.

The $S U(2)$-invariant diagonal metric is represented in the following form:

$$
\begin{equation*}
g=w_{1} w_{2} w_{3} d t^{2}+\frac{w_{2} w_{3}}{w_{1}} \sigma_{1}^{2}+\frac{w_{3} w_{1}}{w_{2}} \sigma_{2}^{2}+\frac{w_{1} w_{2}}{w_{3}} \sigma_{3}^{2} \tag{1}
\end{equation*}
$$

w_{1}, w_{2} and w_{3} are functions of t, and $\sigma_{1}, \sigma_{2}, \sigma_{3}$ are left invariant one-forms on each $S U$ (2)-orbit satisfying

$$
\begin{equation*}
d \sigma_{1}=\sigma_{2} \wedge \sigma_{3}, \quad d \sigma_{2}=\sigma_{3} \wedge \sigma_{1}, \quad d \sigma_{3}=\sigma_{1} \wedge \sigma_{2} \tag{2}
\end{equation*}
$$

Tod [12] showed that the (scalar-flat) anti-self-dual equations on the $S U(2)$-invariant diagonal metric are given by the following system:

$$
\begin{align*}
& \dot{w_{1}}=-w_{2} w_{3}+w_{1}\left(\alpha_{2}+\alpha_{3}\right), \\
& \dot{w_{2}}=-w_{3} w_{1}+w_{2}\left(\alpha_{3}+\alpha_{1}\right), \\
& \dot{w_{3}}=-w_{1} w_{2}+w_{3}\left(\alpha_{1}+\alpha_{2}\right), \tag{3}\\
& \dot{\alpha_{1}}=-\alpha_{2} \alpha_{3}+\alpha_{1}\left(\alpha_{2}+\alpha_{3}\right), \\
& \dot{\alpha_{2}}=-\alpha_{3} \alpha_{1}+\alpha_{2}\left(\alpha_{3}+\alpha_{1}\right), \\
& \dot{\alpha_{3}}=-\alpha_{1} \alpha_{2}+\alpha_{3}\left(\alpha_{1}+\alpha_{2}\right),
\end{align*}
$$

where $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are auxiliary functions and the dots denote differentiation with respect to t. The anti-self-dual equation (3) has a first integral

$$
k=\frac{\alpha_{1}\left(w_{2}^{2}-w_{3}^{2}\right)+\alpha_{2}\left(w_{3}^{2}-w_{1}^{2}\right)+\alpha_{3}\left(w_{1}^{2}-w_{2}^{2}\right)}{8\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{2}-\alpha_{3}\right)\left(\alpha_{3}-\alpha_{1}\right)} .
$$

Furthermore, if we set

$$
\begin{aligned}
& x=\frac{\alpha_{2}-\alpha_{1}}{\alpha_{2}-\alpha_{3}} \\
& q=\frac{w_{2}\left(\alpha_{1}-\alpha_{2}\right)\left(w_{2}\left(w_{1}^{2}-w_{3}^{2}\right)+2 \sqrt{2 k} w_{1} w_{3}\left(\alpha_{1}-\alpha_{3}\right)\right)}{w_{1}^{2}\left(w_{2}^{2}-w_{3}^{2}\right) \alpha_{1}+w_{2}^{2}\left(w_{3}^{2}-w_{1}^{2}\right) \alpha_{2}+w_{3}^{2}\left(w_{1}^{2}-w_{2}^{2}\right) \alpha_{3}},
\end{aligned}
$$

then the system (3) generically reduces to a family of Painlevé VI with a special parameter

$$
(\alpha, \beta, \gamma, \delta)=\left(\frac{(\sqrt{2 k}-1)^{2}}{2}, k,-k, \frac{1+2 k}{2}\right)
$$

2. The non-diagonal anti-self-dual equations

We can express an $S U(2)$-invariant metric in the form

$$
\begin{equation*}
g=f(\tau) d \tau^{2}+\sum_{l, m=1}^{3} h_{l m}(\tau) \sigma_{l} \sigma_{m} \tag{4}
\end{equation*}
$$

Using the Killing form, we can diagonalize the metric g on each $S U(2)$-orbit. Then we can express the metric as follows:

$$
g=(a b c)^{2} d t^{2}+a^{2} d \hat{\sigma}_{1}^{2}+b^{2} \hat{\sigma}_{2}^{2}+c^{2} \hat{\sigma}_{3}^{2}
$$

where $t=t(\tau), a=a(t), b=b(t), c=c(t)$ and

$$
\left(\begin{array}{c}
\hat{\sigma}_{1} \\
\hat{\sigma}_{2} \\
\hat{\sigma}_{3}
\end{array}\right)=R(t)\left(\begin{array}{c}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{3}
\end{array}\right),
$$

where $R(t)$ is an $S O(3)$-valued function.
Since $\dot{R} R^{-1} \in \mathfrak{s o}(3)$, we obtain

$$
\begin{aligned}
d\left(\begin{array}{l}
\hat{\sigma}_{1} \\
\hat{\sigma}_{2} \\
\hat{\sigma}_{3}
\end{array}\right) & =R(t)\left(\begin{array}{l}
\sigma_{2} \wedge \sigma_{3} \\
\sigma_{3} \wedge \sigma_{1} \\
\sigma_{2} \wedge \sigma_{2}
\end{array}\right)+\dot{R} d t \wedge\left(\begin{array}{c}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{3}
\end{array}\right) \\
& =\left(\begin{array}{c}
\hat{\sigma}_{2} \wedge \hat{\sigma}_{3} \\
\hat{\sigma}_{3} \wedge \hat{\sigma}_{1} \\
\hat{\sigma}_{1} \wedge \hat{\sigma}_{2}
\end{array}\right)+\left(\begin{array}{rrr}
0 & \xi_{3} & -\xi_{2} \\
-\xi_{3} & 0 & \xi_{1} \\
\xi_{2} & -\xi_{1} & 0
\end{array}\right) d t \wedge\left(\begin{array}{c}
\hat{\sigma}_{1} \\
\hat{\sigma}_{2} \\
\hat{\sigma}_{3}
\end{array}\right),
\end{aligned}
$$

for some $\xi_{1}=\xi_{1}(t), \xi_{2}=\xi_{2}(t), \xi_{3}=\xi_{3}(t)$.
If $\xi_{1}=0, \xi_{2}=0, \xi_{3}=0$, then the matrix $\left(h_{l m}\right)$ can be chosen to be diagonal for all τ, and then we call that g has a diagonal form.

In the following, we mainly study the non-diagonal metrics.
To compute the curvature tensor, we choose a basis for Λ^{2}

$$
\left\{\Omega_{1}^{+}, \Omega_{2}^{+}, \Omega_{3}^{+}, \Omega_{1}^{-} \Omega_{2}^{-}, \Omega_{3}^{-}\right\}
$$

where

$$
\begin{aligned}
& \Omega_{1}^{+}=a^{2} b c d t \wedge \hat{\sigma}_{1}+b c \hat{\sigma}_{2} \wedge \hat{\sigma}_{3}, \\
& \Omega_{2}^{+}=a b^{2} c d t \wedge \hat{\sigma}_{2}+c a \hat{\sigma}_{3} \wedge \hat{\sigma}_{1}, \\
& \Omega_{3}^{+}=a b c^{2} d t \wedge \hat{\sigma}_{3}+a b \hat{\sigma}_{1} \wedge \hat{\sigma}_{2}, \\
& \Omega_{1}^{-}=a^{2} b c d t \wedge \hat{\sigma}_{1}-b c \hat{\sigma}_{2} \wedge \hat{\sigma}_{3}, \\
& \Omega_{2}^{-}=a b^{2} c d t \wedge \hat{\sigma}_{2}-c a \hat{\sigma}_{3} \wedge \hat{\sigma}_{1}, \\
& \Omega_{3}^{-}=a b c^{2} d t \wedge \hat{\sigma}_{3}-a b \hat{\sigma}_{1} \wedge \hat{\sigma}_{2} .
\end{aligned}
$$

With respect to this frame, the curvature tensor has the following block form [3]:

$$
\left(\begin{array}{rr}
A & B \\
t^{\prime} B & D
\end{array}\right)
$$

where $s=4$ trace D is the scalar curvature, $W^{+}=A-(1 / 12) s$ and $W^{-}=D-(1 / 12) s$ are the self-dual and anti-self-dual parts of the Weyl tensor, and B is the trace free parts of Ricci tensor.

We set $w_{1}=b c, w_{2}=c a, w_{3}=a b$ and determine auxiliary functions $\alpha_{1}, \alpha_{2}, \alpha_{3}$ by

$$
\begin{align*}
& \dot{w}_{1}=-w_{2} w_{3}+w_{1}\left(\alpha_{2}+\alpha_{3}\right), \\
& \dot{w}_{2}=-w_{3} w_{1}+w_{2}\left(\alpha_{3}+\alpha_{1}\right), \tag{5}\\
& \dot{w}_{3}=-w_{1} w_{2}+w_{3}\left(\alpha_{1}+\alpha_{2}\right) .
\end{align*}
$$

Calculating the condition $A=0$, we obtain the following theorem.

Theorem 2.1. The metric is anti-self-dual with vanishing scalar curvature, if and only if $\alpha_{1}, \alpha_{2}, \alpha_{3}$ and $\xi_{1}, \xi_{2}, \xi_{3}$ satisfy the following equations:

$$
\begin{align*}
\dot{\alpha}_{1}= & -\alpha_{2} \alpha_{3}+\alpha_{1}\left(\alpha_{2}+\alpha_{3}\right)+\frac{1}{4}\left(w_{2}^{2}-w_{3}^{2}\right)^{2}\left(\frac{\xi_{1}}{w_{2} w_{3}}\right)^{2} \\
& +\frac{1}{4}\left(w_{3}^{2}-w_{1}^{2}\right)\left(3 w_{1}^{2}+w_{3}^{2}\right)\left(\frac{\xi_{2}}{w_{3} w_{1}}\right)^{2} \\
& +\frac{1}{4}\left(w_{2}^{2}-w_{1}^{2}\right)\left(3 w_{1}^{2}+w_{2}^{2}\right)\left(\frac{\xi_{3}}{w_{1} w_{2}}\right)^{2}, \\
\dot{\alpha}_{2}= & -\alpha_{3} \alpha_{1}+\alpha_{2}\left(\alpha_{3}+\alpha_{1}\right)+\frac{1}{4}\left(w_{3}^{2}-w_{1}^{2}\right)^{2}\left(\frac{\xi_{2}}{w_{3} w_{1}}\right)^{2} \\
& +\frac{1}{4}\left(w_{1}^{2}-w_{2}^{2}\right)\left(3 w_{2}^{2}+w_{1}^{2}\right)\left(\frac{\xi_{3}}{w_{1} w_{2}}\right)^{2} \tag{6}\\
& +\frac{1}{4}\left(w_{3}^{2}-w_{2}^{2}\right)\left(3 w_{2}^{2}+w_{3}^{2}\right)\left(\frac{\xi_{1}}{w_{2} w_{3}}\right)^{2}, \\
\dot{\alpha}_{3}= & -\alpha_{1} \alpha_{2}+\alpha_{3}\left(\alpha_{1}+\alpha_{2}\right)+\frac{1}{4}\left(w_{1}^{2}-w_{2}^{2}\right)^{2}\left(\frac{\xi_{3}}{w_{1} w_{2}}\right)^{2} \\
& +\frac{1}{4}\left(w_{2}^{2}-w_{3}^{2}\right)\left(3 w_{3}^{2}+w_{2}^{2}\right)\left(\frac{\xi_{1}}{w_{2} w_{3}}\right)^{2} \\
& +\frac{1}{4}\left(w_{1}^{2}-w_{3}^{2}\right)\left(3 w_{3}^{2}+w_{1}^{2}\right)\left(\frac{\xi_{2}}{w_{3} w_{1}}\right)^{2},
\end{align*}
$$

and

$$
\begin{align*}
\left(w_{2}^{2}-w_{3}^{2}\right) \frac{d}{d t}\left(\frac{\xi_{1}}{w_{2} w_{3}}\right)= & \frac{\xi_{2}}{w_{3} w_{1}} \frac{\xi_{3}}{w_{1} w_{2}}\left(-2 w_{2}^{2} w_{3}^{2}+w_{3}^{2} w_{1}^{2}+w_{1}^{2} w_{2}^{2}\right) \\
& +\frac{\xi_{1}}{w_{2} w_{3}}\left(\alpha_{2} w_{2}^{2}-\alpha_{3} w_{3}^{2}+3 \alpha_{2} w_{3}^{2}-3 \alpha_{3} w_{2}^{2}\right) \\
\left(w_{3}^{2}-w_{1}^{2}\right) \frac{d}{d t}\left(\frac{\xi_{2}}{w_{3} w_{1}}\right)= & \frac{\xi_{3}}{w_{1} w_{2}} \frac{\xi_{1}}{w_{2} w_{3}}\left(-2 w_{3}^{2} w_{1}^{2}+w_{1}^{2} w_{2}^{2}+w_{2}^{2} w_{3}^{2}\right) \tag{7}\\
& +\frac{\xi_{2}}{w_{3} w_{1}}\left(\alpha_{3} w_{3}^{2}-\alpha_{1} w_{1}^{2}+3 \alpha_{3} w_{1}^{2}-3 \alpha_{1} w_{3}^{2}\right), \\
\left(w_{1}^{2}-w_{2}^{2}\right) \frac{d}{d t}\left(\frac{\xi_{3}}{w_{1} w_{2}}\right)= & \frac{\xi_{1}}{w_{2} w_{3}} \frac{\xi_{2}}{w_{3} w_{1}}\left(-2 w_{1}^{2} w_{2}^{2}+w_{2}^{2} w_{3}^{2}+w_{3}^{2} w_{1}^{2}\right) \\
& +\frac{\xi_{3}}{w_{1} w_{2}}\left(\alpha_{1} w_{1}^{2}-\alpha_{2} w_{2}^{2}+3 \alpha_{1} w_{2}^{2}-3 \alpha_{2} w_{1}^{2}\right)
\end{align*}
$$

Remark 2.2. If we take a conformal rescaling g to $F(t) g$, then t turns into s that satisfies $d s / d t=1 / F$, and w_{1}, w_{2}, w_{3} turn into $F w_{1}, F w_{2}, F w_{3}$, and $\xi_{1}, \xi_{2}, \xi_{3}$ turn into $F \xi_{1}, F \xi_{2}, F \xi_{3}$ respectively. And then $\alpha_{1}, \alpha_{2}, \alpha_{3}$ turn into

$$
\tilde{\alpha}_{1}=\frac{1}{2} \frac{d F}{d t}+F \alpha_{1}, \quad \tilde{\alpha}_{2}=\frac{1}{2} \frac{d F}{d t}+F \alpha_{2}, \quad \tilde{\alpha}_{3}=\frac{1}{2} \frac{d F}{d t}+F \alpha_{3} .
$$

The equations (5), (6), (7) are invariant under a conformal rescaling g to $F g$, if $2 F \dot{F}^{2}=\ddot{F}^{2}$.

Remark 2.3. By the equation (5), (6), (7), we obtain $-2 w_{1}^{2} w_{2}^{2}+w_{2}^{2} w_{3}^{2}+w_{3}^{2} w_{1}^{2} \not \equiv 0$. Therefore, if $\xi_{3} \equiv 0$, then $\xi_{1} \equiv 0$ or $\xi_{2} \equiv 0$. In the same way, if $\xi_{1} \equiv 0$, then $\xi_{2} \equiv 0$ or $\xi_{3} \equiv 0$, and if $\xi_{2} \equiv 0$, then $\xi_{3} \equiv 0$ or $\xi_{1} \equiv 0$.

Remark 2.4. If $\xi_{1}=0, \xi_{2}=0, \xi_{3}=0$, then the equation (5), (6), (7) reduces to a sixth-order system (3) given by Tod [12]. Furthermore, if $\alpha_{1}=w_{1}, \alpha_{2}=w_{2}$, $\alpha_{3}=w_{3}$, then (5), (6), (7) reduce to a third-order system, which determines AtiyahHitchin family [1]. And if $\alpha_{1}=0, \alpha_{2}=0, \alpha_{3}=0$, then (5), (6), (7) reduce to a third-order system, which determines BGPP family [4].

Remark 2.5. If $w_{2}=w_{3}$, then we can set $\xi_{1}=0, \xi_{2}=0, \xi_{3}=0$ by taking another frame. This is also in the diagonal case. Therefore we assume $\left(w_{2}-w_{3}\right)\left(w_{3}-w_{1}\right)\left(w_{1}-\right.$ $\left.w_{2}\right) \neq 0$.

3. The isomonodromic deformations

Let (M, g) be an oriented Riemannian four manifold. We define a manifold Z to be a unit sphere bundle in the bundle of anti-self-dual two-forms, and let $\pi: Z \rightarrow M$
denote the projection. Each point z in the fiber over $\pi(z)$ defines a complex structure on the tangent space $T_{\pi(z)} M$, compatible with the metric and its orientation.

Using the Levi-Civita connection, we can split the tangent space $T_{z} Z$ into horizontal and vertical spaces, and the projection π identifies the horizontal space with $T_{\pi(z)} M$. This space has a complex structure defined by z and the vertical space is the tangent space of the fiber $S^{2} \cong \mathbb{C P}^{1}$ which has its natural complex structure.

The almost complex structure on Z is integrable, if and only if the metric is anti-self-dual $[2,11]$. In this situation Z is called the twistor space of (M, g) and the fibers are called the real twistor lines.

The almost complex structure on Z can be determined by the following $(1,0)$ forms:

$$
\begin{align*}
\Theta_{1}= & z\left(e^{1}+\sqrt{-1} e^{2}\right)-\left(e^{0}+\sqrt{-1} e^{3}\right) \\
\Theta_{2}= & z\left(e^{0}-\sqrt{-1} e^{3}\right)+\left(e^{1}-\sqrt{-1} e^{2}\right) \\
\Theta_{3}= & d z+\frac{1}{2} z^{2}\left(\omega_{1}^{0}-\omega_{3}^{2}+\sqrt{-1}\left(\omega_{2}^{0}-\omega_{1}^{3}\right)\right) \tag{8}\\
& -\sqrt{-1} z\left(\omega_{3}^{0}-\omega_{2}^{1}\right)+\frac{1}{2}\left(\omega_{1}^{0}-\omega_{3}^{2}-\sqrt{-1}\left(\omega_{2}^{0}-\omega_{1}^{3}\right)\right),
\end{align*}
$$

where $\left\{e^{0}, e^{1}, e^{2}, e^{3}\right\}$ is an orthonormal frame, and ω_{j}^{i} are the connection forms determined by $d e^{i}+\omega_{j}^{i} \wedge e^{j}=0$ and $\omega_{j}^{i}+\omega_{i}^{j}=0$. (M, g) is anti-self-dual, if and only if the Pfaffian system (or the distribution defined by the following system)

$$
\begin{equation*}
\Theta_{1}=0, \tag{9}
\end{equation*}
$$

$$
\Theta_{2}=0
$$

$$
\Theta_{3}=0
$$

is integrable, that is to say

$$
\begin{equation*}
d \Theta_{1} \equiv 0, \quad d \Theta_{2} \equiv 0, \quad d \Theta_{3} \equiv 0 \quad\left(\bmod \Theta_{1}, \Theta_{2}, \Theta_{3}\right) \tag{10}
\end{equation*}
$$

Remark 3.1. The Pfaffian system (9) is invariant under $z \mapsto(z+\sqrt{-1}) /(z-\sqrt{-1})$ and permutation $1 \mapsto 2,2 \mapsto 3,3 \mapsto 1$ of suffixes of e^{i} and ω_{j}^{i}.

Theorem 3.2. The Pfaffian system (9) is invariant under the conjugate action and $z \mapsto-1 / \bar{z}[2]$.

If the metric is $S U(2)$ invariant, we obtain

$$
\left(\begin{array}{l}
\Theta_{1} \tag{11}\\
\Theta_{2} \\
\Theta_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) d z+\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) d t+A\left(\begin{array}{c}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{3}
\end{array}\right)
$$

where $v_{1}=v_{1}(z, t), v_{2}=v_{2}(z, t), v_{3}=v_{3}(z, t) ; A=\left(a_{i j}(z, t)\right)_{i, j=1,2,3}$.

If $\operatorname{det} A \equiv 0$, then the metric turns to be diagonal, and the metric is in the BGPP family [4].

If $\operatorname{det} A \neq 0$, then we obtain

$$
\left(\begin{array}{l}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{3}
\end{array}\right) \equiv-A^{-1}\left(\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) d z+\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) d t\right), \quad\left(\bmod \Theta_{1}, \Theta_{2}, \Theta_{3}\right) .
$$

If we set

$$
\left(\begin{array}{l}
s_{1} \tag{12}\\
s_{2} \\
s_{3}
\end{array}\right)=-A^{-1}\left(\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) d z+\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) d t\right),
$$

then

$$
d\left(\begin{array}{c}
s_{1} \tag{13}\\
s_{2} \\
s_{3}
\end{array}\right) \equiv\left(\begin{array}{l}
s_{2} \wedge s_{3} \\
s_{3} \wedge s_{1} \\
s_{1} \wedge s_{2}
\end{array}\right), \quad\left(\bmod \Theta_{1}, \Theta_{2}, \Theta_{3}\right)
$$

Since s_{1}, s_{2}, s_{3} are one-forms on ($\left.z, t\right)$-plane, the congruency equation (13) turns to be a plain equation:

$$
d\left(\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right)=\left(\begin{array}{l}
s_{2} \wedge s_{3} \\
s_{3} \wedge s_{1} \\
s_{1} \wedge s_{2}
\end{array}\right)
$$

By Theorem 3.2, s_{1}, s_{2}, s_{3} are invariant under the conjugate action and $z \mapsto-1 / \bar{z}$.
If we set

$$
\begin{aligned}
\Sigma & =\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\sqrt{-1} s_{2} & -s_{1}+\sqrt{-1} s_{3} \\
s_{1}+\sqrt{-1} s_{3} & -\sqrt{-1} s_{2}
\end{array}\right) \\
& =:-B_{1} d z-B_{2} d t,
\end{aligned}
$$

then

$$
d \Sigma+\Sigma \wedge \Sigma=0
$$

This is the isomonodromic condition for the following linear problem [7]

$$
\begin{equation*}
\left(\frac{d}{d z}-B_{1}\right)\binom{y_{1}}{y_{2}}=0 \tag{14}
\end{equation*}
$$

Lemma 3.3. The components of B_{1} are rational functions of z,

$$
B_{1}=\frac{F(z)}{G(z)}
$$

where $F(z)$ is degree 2 and $G(z)$ is degree 4 . We must have $B_{1} \mapsto-^{t} B_{1}$ under the conjugate action and $z \mapsto-1 / \bar{z}$.

Proof. Since s_{1}, s_{2}, s_{3} are invariant under the conjugate action and $z \mapsto-1 / \bar{z}$, we obtain $\Sigma \mapsto-{ }^{t} \Sigma$, and then $B_{1} \mapsto-{ }^{t} B_{1}$.

If we set

$$
\left(\begin{array}{l}
\hat{s}_{1} \\
\hat{s}_{2} \\
\hat{s}_{3}
\end{array}\right)=R(t)\left(\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right),
$$

then we have

$$
\left(\begin{array}{l}
\hat{s}_{1} \\
\hat{s}_{2} \\
\hat{s}_{3}
\end{array}\right) \equiv\left(\begin{array}{l}
\hat{\sigma}_{1} \\
\hat{\sigma}_{2} \\
\hat{\sigma}_{3}
\end{array}\right) \quad\left(\bmod \Theta_{1}, \Theta_{2}, \Theta_{3}\right)
$$

By a straightforward calculation, we obtain

$$
\begin{aligned}
& \hat{s}_{1}\left(\frac{\partial}{\partial z}\right) \equiv \frac{2\left(1+z^{2}\right) w_{1}}{G(z)} \\
& \hat{s}_{2}\left(\frac{\partial}{\partial z}\right) \equiv \frac{2 \sqrt{-1}\left(-1+z^{2}\right) w_{2}}{G(z)} \\
& \hat{s}_{3}\left(\frac{\partial}{\partial z}\right) \equiv \frac{-4 \sqrt{-1} z w_{3}}{G(z)}
\end{aligned}
$$

where

$$
\begin{aligned}
& G(z)=z^{4}\left(\left(\alpha_{1}-\alpha_{2}\right)-\sqrt{-1} \frac{w_{1}^{2}-w_{2}^{2}}{w_{1} w_{2}} \xi_{3}\right)-2 z^{3} \\
&+2 z^{2}\left(\alpha_{1}+\alpha_{2}-2 \alpha_{3}\right)+2 z\left(\frac{w_{2}^{2}-w_{3}^{2}}{w_{2} w_{3}} \xi_{1}-\sqrt{-1} \frac{w_{3}^{2}-w_{1}^{2}}{w_{3} w_{3}} \xi_{1}+\sqrt{-1} \frac{w_{3}^{2}-w_{1}^{2}}{w_{3} w_{1}} \xi_{2}\right) \\
&+\left(\left(\alpha_{1}-\alpha_{2}\right)+\sqrt{-1} \frac{w_{1}^{2}-w_{2}^{2}}{w_{1} w_{2}} \xi_{3}\right)
\end{aligned}
$$

Since $R(t)$ is independent of z, the components of B_{1} are rational functions of z,

$$
B_{1}=\frac{F(z)}{G(z)}
$$

where $F(z)$ is degree 2 and $G(z)$ is degree 4 .
For this lemma, generically B_{1} has four simple poles. In this case, the deformation equation of (14) is Painlevé VI.

Theorem 3.4. The $S U(2)$-invariant anti-self-dual metric is generically specified by the solution of Painlevé VI.

The idea of Hitchin [6] is that the lifted action of $S U(2)$ on the twistor space Z gives a homomorphism of vector bundles $\alpha: Z \times \mathfrak{s u}(2)^{\mathbb{C}} \rightarrow T Z$, and the inverse of α gives a flat meromorphic $S L(2, \mathbb{C})$-connection, which determines isomonodromic deformations. Since one-forms $\Theta_{1}, \Theta_{2}, \Theta_{3}$ on Z can be considered as infinitesimal variations, we can identify Σ with α^{-1}.

By Lemma 3.3, the poles of B_{1} make antipodal pairs $\zeta_{0},-1 / \bar{\zeta}_{0}$, and $\zeta_{1},-1 / \bar{\zeta}_{1}$ on $\mathbb{C P}^{1}$. Therefore we obtain two types of configuration of poles of B_{1}. In each case, we can calculate the local exponents at singularities. These local exponents corresponding to the parameter of the Painlevé equation (see [8]).
(a) B_{1} has four simple poles $\zeta_{0},-1 / \bar{\zeta}_{0}, \zeta_{1},-1 / \bar{\zeta}_{1}$ on $\mathbb{C P}^{1}$.

$$
B_{1}=\frac{A_{0}}{z-\zeta_{0}}+\frac{-^{t} \bar{A}_{0}}{z+1 / \bar{\zeta}_{0}}+\frac{A_{1}}{z-\zeta_{1}}+\frac{-{ }^{t} \bar{A}_{1}}{z+1 / \bar{\zeta}_{1}} .
$$

The deformation equation is Painlevé VI with a parameter,

$$
(\alpha, \beta, \gamma, \delta)=\left(\frac{1}{2}\left(\theta_{0}-1\right)^{2}, \frac{1}{2} \bar{\theta}_{0}^{2},-\frac{1}{2} \theta_{1}^{2}, \frac{1}{2}\left(1+\bar{\theta}_{1}^{2}\right)\right),
$$

where $\theta_{0}^{2}=2 \operatorname{tr} A_{0}^{2}, \theta_{1}^{2}=2 \operatorname{tr} A_{1}^{2}$.
(b) B_{1} has two double poles $\zeta,-1 / \bar{\zeta}$ on $\mathbb{C P}^{1}$.

$$
B_{1}=\frac{A_{2}}{(z-\zeta)^{2}}+\frac{\sqrt{-1} C}{z-\zeta}+\frac{-\sqrt{-1} C}{z+1 / \bar{\zeta}}+\frac{-^{t} \bar{A}_{2} / \bar{\zeta}^{2}}{(z+1 / \bar{\zeta})^{2}}
$$

where $C=-{ }^{t} \bar{C}$. The deformation equation is Painlevé III with a parameter,

$$
(\alpha, \beta, \gamma, \delta)=(4 \theta, 4(1+\bar{\theta}), 4,-4),
$$

where $\theta^{2}=2\left(\operatorname{tr}\left(A_{2} C\right)\right)^{2} / \operatorname{tr} C^{2}$.
Theorem 3.5. The anti-self-dual equations reduce to the following Painlevé equations:
(a) A family of Painlevé VI with two complex parameters,

$$
(\alpha, \beta, \gamma, \delta)=\left(\frac{1}{2}\left(\theta_{0}-1\right)^{2}, \frac{1}{2} \bar{\theta}_{0}^{2},-\frac{1}{2} \theta_{1}^{2}, \frac{1}{2}\left(1+\bar{\theta}_{1}^{2}\right)\right) .
$$

(b) A family of Painlevé III with one complex parameter,

$$
(\alpha, \beta, \gamma, \delta)=(4 \theta, 4(1+\bar{\theta}), 4,-4)
$$

Remark 3.6. It is known that the anti-self-dual equations reduce to Painlevé VI with the parameter as above ([9], [6]). Dancer [5] shows the diagonal scalar-flat Kähler metric is specified by a solution of Painlevé III with a parameter $(\alpha, \beta, \gamma, \delta)=$ $(0,4,4,-4)$. Now, Theorem 3.5 (b) is a generalization of Dancer's result.

By Remark 2.3, if $\xi_{1} \xi_{2} \xi_{3}=0$, then at least two of $\xi_{1}, \xi_{2}, \xi_{3}$ must be zero. From now on this section, we assume $\xi_{2}=\xi_{3}=0$, and then we obtain the metric in the form:

$$
\begin{equation*}
g=f(\tau) d \tau+h_{11}(\tau) \sigma_{1}^{2}+h_{22}(\tau) \sigma_{2}^{2}+h_{23}(\tau) \sigma_{2} \sigma_{3}+h_{33}(\tau) \sigma_{3}^{2} \tag{15}
\end{equation*}
$$

Therefore, there exists an isometric action

$$
\begin{equation*}
\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) \mapsto\left(\sigma_{1},-\sigma_{2},-\sigma_{3}\right), \tag{16}
\end{equation*}
$$

which preserves each orbit. Since

$$
\left(\begin{array}{l}
\Theta_{1} \\
\Theta_{2} \\
\Theta_{3}
\end{array}\right) \mapsto\left(\begin{array}{c}
\bar{\Theta}_{1} \\
\bar{\Theta}_{2} \\
\bar{\Theta}_{3}
\end{array}\right)
$$

under the action (16) and $z \mapsto \bar{z}$, then we obtain

$$
\left(\begin{array}{c}
\Theta_{1} \\
\Theta_{2} \\
\Theta_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) d z+\overline{\left.\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)\right|_{z \mapsto \bar{z}}} d t+\overline{\left.A\right|_{z \mapsto \bar{z}}}\left(\begin{array}{c}
\sigma_{1} \\
-\sigma_{2} \\
-\sigma_{3}
\end{array}\right) .
$$

Therefore

$$
\left.\left(\begin{array}{c}
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right)\right|_{z \mapsto \bar{z}}=\left(\begin{array}{c}
\bar{s}_{1} \\
-\bar{s}_{2} \\
-\bar{s}_{3}
\end{array}\right),
$$

and then we obtain $\left.B_{1}\right|_{z \mapsto \bar{z}}=\bar{B}_{1}$. Therefore we obtain the following:
(a) If B_{1} has four simple poles, then

$$
\begin{aligned}
B_{1} & =\frac{A_{0}}{z-\zeta_{0}}+\frac{-^{t} \bar{A}_{0}}{z+1 / \bar{\zeta}_{0}}+\frac{A_{1}}{z-\zeta_{1}}+\frac{-^{t} \bar{A}_{1}}{z+1 / \bar{\zeta}_{1}} \\
& =\frac{\bar{A}_{0}}{z-\bar{\zeta}_{0}}+\frac{-^{t} A_{0}}{z+1 / \zeta_{0}}+\frac{\bar{A}_{1}}{z-\bar{\zeta}_{1}}+\frac{-^{t} A_{1}}{z+1 / \zeta_{1}} .
\end{aligned}
$$

If $\zeta_{0}=\bar{\zeta}_{0}$ or $-1 / \zeta_{0}$, then $\theta_{0}^{2}=2 \operatorname{tr} A_{0}^{2}$ and $\theta_{1}^{2}=2 \operatorname{tr} A_{1}^{2}$ must be real numbers. If $\zeta_{0}=\bar{\zeta}_{1}$ or $-1 / \zeta_{1}$, then $\theta_{0}^{2}=2 \operatorname{tr} A_{0}^{2}$ and $\theta_{1}^{2}=2 \operatorname{tr} A_{1}^{2}$ must coincide.
(b) If B_{1} has two double poles, then

$$
\begin{aligned}
B_{1} & =\frac{A_{2}}{(z-\zeta)^{2}}+\frac{\sqrt{-1} C}{z-\zeta}+\frac{-\sqrt{-1} C}{z+1 / \bar{\zeta}}+\frac{-^{t} \bar{A}_{2} / \bar{\zeta}^{2}}{(z+1 / \bar{\zeta})^{2}} \\
& =\frac{\bar{A}_{2}}{(z-\bar{\zeta})^{2}}+\frac{\sqrt{-1} \bar{C}}{z-\bar{\zeta}}+\frac{-\sqrt{-1} \bar{C}}{z+1 / \zeta}+\frac{-^{t} A_{2} / \zeta^{2}}{(z+1 / \zeta)^{2}}
\end{aligned}
$$

where $C=-{ }^{t} \bar{C}$. If $\zeta=\bar{\zeta}$, then $\theta^{2}=2\left(\operatorname{tr}\left(A_{2} C\right)\right)^{2} / \operatorname{tr} A_{2}^{2}$ must be a real number. If $\zeta=-1 / \zeta$, then $\theta^{2}=2\left(\operatorname{tr}\left(A_{2} C\right)\right)^{2} / \operatorname{tr} A_{2}^{2}=0$.

Theorem 3.7. If $\xi_{1} \xi_{2} \xi_{3}=0$, then the anti-self-dual equations reduce to the following Painlevé equations:
(a) A family of Painlevé VI with two real parameters,

$$
(\alpha, \beta, \gamma, \delta)=\left(\frac{1}{2}\left(\theta_{0}-1\right)^{2}, \frac{1}{2} \theta_{0}^{2},-\frac{1}{2} \theta_{1}^{2}, \frac{1}{2}\left(1+\theta_{1}^{2}\right)\right)
$$

or one complex parameter,

$$
(\alpha, \beta, \gamma, \delta)=\left(\frac{1}{2}(\theta-1)^{2}, \frac{1}{2} \bar{\theta}^{2},-\frac{1}{2} \theta^{2}, \frac{1}{2}\left(1+\bar{\theta}^{2}\right)\right)
$$

(b) A family of Painlevé III with one real parameter,

$$
(\alpha, \beta, \gamma, \delta)=(4 \theta, 4(1+\theta), 4,-4)
$$

4. Hermitian structure

In this section, we study the geometric meaning of the $S U(2)$-invariant anti-selfdual metric specified by the solutions of Painlevé III. Painlevé III is the deformation equation of

$$
\left(\frac{d}{d z}-B_{1}\right)\binom{y_{1}}{y_{2}}=0
$$

where B_{1} has two double poles. By a direct calculation, we obtain the following lemma.

Lemma 4.1. The poles of B_{1} are determined by the following equation:

$$
\begin{align*}
z^{4}\left(\left(\alpha_{1}-\alpha_{2}\right)-\right. & \left.\sqrt{-1} X_{3}\right)-2 z^{3}\left(X_{1}-\sqrt{-1} X_{2}\right) \tag{17}\\
& +2 z^{2}\left(\alpha_{1}+\alpha_{2}-2 \alpha_{3}\right)+2 z\left(X_{1}+\sqrt{-1} X_{2}\right) \\
& +\left(\left(\alpha_{1}-\alpha_{2}\right)+\sqrt{-1} X_{3}\right)=0
\end{align*}
$$

where

$$
X_{1}=\frac{w_{2}^{2}-w_{3}^{2}}{w_{2} w_{3}} \xi_{1}, \quad X_{2}=\frac{w_{3}^{2}-w_{1}^{2}}{w_{3} w_{1}} \xi_{2}, \quad X_{3}=\frac{w_{1}^{2}-w_{2}^{2}}{w_{1} w_{2}} \xi_{3} .
$$

Since the equation (17) is preserved by $z \mapsto-1 / \bar{z}$ and the conjugate action, if the equation (17) has a solution $z=\zeta$ of order two, then $z=-1 / \bar{\zeta}$ is also a solution of order two.

Lemma 4.2. Let g be a non-diagonal $S U(2)$-invariant metric. Then B_{1} has two double poles, if and only if there exists a function $f(t)$ satisfying

$$
\begin{align*}
& X_{1}^{2}=4\left(f-\alpha_{2}\right)\left(f-\alpha_{3}\right), \\
& X_{2}^{2}=4\left(f-\alpha_{3}\right)\left(f-\alpha_{1}\right), \tag{18}\\
& X_{3}^{2}=4\left(f-\alpha_{1}\right)\left(f-\alpha_{2}\right) .
\end{align*}
$$

And then the anti-self-dual equation reduce to (5), (6) and $\dot{f}=f^{2}$.
Proof. If $X_{1}=X_{2}=X_{3}=0$, then the discriminant of (17) is

$$
16\left(\alpha_{1}-\alpha_{2}\right)^{2}\left(\alpha_{2}-\alpha_{3}\right)^{2}\left(\alpha_{3}-\alpha_{1}\right)^{2} .
$$

Therefore, if

$$
\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{2}-\alpha_{3}\right)\left(\alpha_{3}-\alpha_{1}\right)=0,
$$

then B_{1} has two double poles. This case is in the form of (18) by $f=\alpha_{1}=\alpha_{2}$ or $f=\alpha_{2}=\alpha_{3}$ or $f=\alpha_{3}=\alpha_{1}$. By the equation (5), (6), (7), we obtain $\dot{f}=f^{2}$. If $f=0$, then we obtain the diagonal scalar-flat-Kähler metric given by Pedersen and Poon [10].

If $X_{1} X_{2} X_{3}=0$, then, from Remark 2.3, at least two of X_{1}, X_{2}, X_{3} must be zero. Assume that $X_{1} \neq 0$ and $X_{2}=X_{3}=0$. Then the discriminant of (17) is $\left(X_{1}^{2}+\left(\alpha_{2}-\alpha_{3}\right)^{2}\right)\left(X_{1}^{2}-4\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)\right)^{2}$. Therefore, the equation

$$
X_{1}^{2}=4\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)
$$

is the condition that B_{1} has two double poles. This is (18) where $f=\alpha_{1}$. In this case, we obtain the double poles on

$$
\begin{equation*}
\zeta=\frac{\sqrt{\alpha_{3}-\alpha_{1}} \pm \sqrt{-1} \sqrt{\alpha_{2}-\alpha_{1}}}{\sqrt{\alpha_{2}+\alpha_{3}+2 \alpha_{1}}} . \tag{19}
\end{equation*}
$$

X_{1}, X_{2}, X_{3} satisfy the equation (5), (6), (7), if and only if $\dot{\alpha_{1}}=\alpha_{1}^{2}$.

If $X_{1} X_{2} X_{3} \neq 0$, the discriminant of (17) is too complicated to calculate. Therefore, we attack by an other way. We obtain (17) in the following form:

$$
\begin{equation*}
\bar{a} z^{4}-\bar{b} z^{3}+c z^{2}+b z+a=0 \tag{20}
\end{equation*}
$$

where a, b are complex coefficients and c is a real coefficient. By a linear fractional transformation

$$
\begin{equation*}
z \mapsto \frac{(b-|b|) \zeta-b+|b|}{(-\bar{b}+|b|) \zeta-\bar{b}+|b|}, \tag{21}
\end{equation*}
$$

the equation (17) turns into the following form:

$$
\begin{equation*}
\zeta^{4}-\bar{b}_{0} \zeta^{3}+c_{0} \zeta^{2}+b_{0} \zeta+1=0 \tag{22}
\end{equation*}
$$

where b_{0} is a complex coefficient and c_{0} is a real coefficients. Since (21) preserves the antipodal pairs on $\mathbb{C P}^{1}$, if $\zeta=\zeta_{0}$ is a solution of (22) of order two, then $\zeta=-1 / \bar{\zeta}_{0}$ is also a solution of order two. Therefore

$$
\begin{equation*}
\zeta^{4}-\bar{b}_{0} \zeta^{3}+c_{0} \zeta^{2}+b_{0} \zeta+1=\left(\zeta-\zeta_{0}\right)^{2}\left(\zeta+\frac{1}{\bar{\zeta}_{0}}\right)^{2} \tag{23}
\end{equation*}
$$

and then $\zeta_{0}= \pm \bar{\zeta}_{0}$, which implies ζ_{0} is real or pure-imaginary. Therefore $b_{0}=$ $2 \zeta(-1+\zeta \bar{\zeta}) / \bar{\zeta}^{2}$ must be real or pure-imaginary. By a direct calculation, we obtain the following. The real part of b_{0} vanishes, if and only if

$$
X_{2}^{4}\left(X_{1}^{2}+X_{2}^{2}\right)^{2}=0,
$$

which never occurs. The imaginary part of b_{0} vanishes, if and only if

$$
X_{2}^{4}\left(\left(X_{1}^{2}-X_{2}^{2}\right) X_{3}-2 X_{1} X_{2}\left(\alpha_{1}-\alpha_{2}\right)\right)=0 .
$$

Therefore,

$$
\begin{equation*}
\left(X_{1}^{2}-X_{2}^{2}\right) X_{3}=2 X_{1} X_{2}\left(\alpha_{1}-\alpha_{2}\right), \tag{24}
\end{equation*}
$$

if and only if B_{1} has two double poles. By the linear transformation $z \mapsto(z+\sqrt{-1})$ / $(z-\sqrt{-1})$, the suffixes of X_{i} and α_{i} on (17) are replaced cyclically. Therefore, if B_{1} has two double poles, then the following must be also satisfied:

$$
\begin{align*}
& \left(X_{2}^{2}-X_{3}^{2}\right) X_{1}=2 X_{2} X_{3}\left(\alpha_{2}-\alpha_{3}\right), \tag{25}\\
& \left(X_{3}^{2}-X_{1}^{2}\right) X_{2}=2 X_{3} X_{1}\left(\alpha_{3}-\alpha_{1}\right) . \tag{26}
\end{align*}
$$

By (24), (25) and (26), X_{1}, X_{2}, X_{3} must satisfy (18) with an auxiliary function f. Actually, if X_{1}, X_{2}, X_{3} satisfy (18), then (17) has two solutions of order two:

$$
\begin{equation*}
\zeta=\frac{X_{1} X_{2} \pm \sqrt{X_{2}^{2} X_{3}^{2}+X_{3}^{2} X_{1}^{2}+X_{1}^{2} X_{2}^{2}}}{X_{3}\left(X_{1}-\sqrt{-1} X_{2}\right)} . \tag{27}
\end{equation*}
$$

In this case, X_{1}, X_{2}, X_{3} satisfy the equation (5), (6), (7), if and only if $\dot{f}=f^{2}$.

Therefore, we obtain the following theorem.

Theorem 4.3. The $S U(2)$-invariant anti-self-dual metric is specified by the solution of Painlevé III, if and only if X_{1}, X_{2}, X_{3} satisfy (18) and $\dot{f}=f^{2}$.

If we restrict $\left.\Theta_{1}\right|_{z=\zeta(t)}$ and $\left.\Theta_{2}\right|_{z=\zeta(t)}$ for some $z=\zeta(t)$, then we obtain (1,0)-forms on M, which determine an $S U(2)$-invariant almost complex structure on M.

Theorem 4.4. Let g be an $S U(2)$-invariant anti-self-dual scalar-flat metric. There exists an $\operatorname{SU}(2)$-invariant hermitian structure (g, I) if and only if B_{1} has double poles.

Proof. Let $G(z)$ be the left hand side of (17). Then $G(z)$ is the denominator of B_{1}. We obtain

$$
\Theta_{3} \equiv d z+H_{0} d t+H_{1} \hat{\sigma}_{1} \quad\left(\bmod \Theta_{1}, \Theta_{2}\right)
$$

where $H_{1}=0$ is equivalent with $G(z)=0$, and $d z+H_{0} d t=0$ is equivalent with $d G=0$. Therefore, the almost complex structure determined by $\left\{\left.\Theta_{1}\right|_{z=\zeta(t)},\left.\Theta_{2}\right|_{z=\zeta(t)}\right\}$ is integrable, if and only if $G(z)$ admits a multiple zero on $z=\zeta(t)$.

Theorem 4.5. The hermitian structure (g, I) determined on Theorem 4.4 is Kähler, if and only if

$$
\begin{equation*}
X_{1}^{2}=4 \alpha_{2} \alpha_{3}, \quad X_{2}^{2}=4 \alpha_{3} \alpha_{1}, \quad X_{3}^{2}=4 \alpha_{1} \alpha_{2} \tag{28}
\end{equation*}
$$

Proof. If $X_{1} X_{2} X_{3} \neq 0$, the Kähler form is determined by (27) as

$$
\begin{aligned}
\Omega= & \frac{X_{2} X_{3}}{\sqrt{X_{2}^{2} X_{3}^{2}+X_{3}^{2} X_{1}^{2}+X_{1}^{2} X_{2}^{2}}} \Omega_{1}^{+} \\
& +\frac{X_{3} X_{1}}{\sqrt{X_{2}^{2} X_{3}^{2}+X_{3}^{2} X_{1}^{2}+X_{1}^{2} X_{2}^{2}}} \Omega_{2}^{+}
\end{aligned}
$$

$$
+\frac{X_{1} X_{2}}{\sqrt{X_{2}^{2} X_{3}^{2}+X_{3}^{2} X_{1}^{2}+X_{1}^{2} X_{2}^{2}}} \Omega_{3}^{+}
$$

By the equations (5), (6), (7) and $\dot{f}=f^{2}$, we obtain

$$
\begin{aligned}
d \Omega= & \frac{2 f w_{1} X_{2} X_{3}}{\sqrt{X_{2}^{2} X_{3}^{2}+X_{3}^{2} X_{1}^{2}+X_{1}^{2} X_{2}^{2}}} d t \wedge \hat{\sigma}_{2} \wedge \hat{\sigma}_{3} \\
& +\frac{2 f w_{2} X_{3} X_{1}}{\sqrt{X_{2}^{2} X_{3}^{2}+X_{3}^{2} X_{1}^{2}+X_{1}^{2} X_{2}^{2}}} d t \wedge \hat{\sigma}_{3} \wedge \hat{\sigma}_{1} \\
& +\frac{2 f w_{3} X_{1} X_{2}}{\sqrt{X_{2}^{2} X_{3}^{2}+X_{3}^{2} X_{1}^{2}+X_{1}^{2} X_{2}^{2}}} d t \wedge \hat{\sigma}_{1} \wedge \hat{\sigma}_{2}
\end{aligned}
$$

Since $w_{1} w_{2} w_{3} \neq 0$ and $X_{1} X_{2} X_{3} \neq 0$, we obtain $d \Omega=0$, if and only if $f=0$.
If $X_{1} X_{2} X_{3}=0$, then f must be α_{1}, α_{2} or α_{3}. Suppose that $f=\alpha_{1}$, then we obtain $X_{1}^{2}=4\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{3}-\alpha_{1}\right), X_{2}=0, X_{3}=0$. The Kähler form is determined by (19) as

$$
\begin{equation*}
\Omega=\frac{\sqrt{\alpha_{2}-\alpha_{1}}}{\sqrt{\alpha_{2}+\alpha_{3}-2 \alpha_{1}}} \Omega_{2}^{+}+\frac{\sqrt{\alpha_{3}-\alpha_{1}}}{\sqrt{\alpha_{2}+\alpha_{3}-2 \alpha_{1}}} \Omega_{3}^{+} \tag{29}
\end{equation*}
$$

Then we obtain

$$
\begin{equation*}
d \Omega=\frac{2 w_{2} \alpha_{1} \sqrt{\alpha_{2}-\alpha_{1}}}{\sqrt{\alpha_{2}+\alpha_{3}-2 \alpha_{1}}} d t \wedge \hat{\sigma}_{3} \wedge \hat{\sigma}_{1}+\frac{2 w_{3} \alpha_{1} \sqrt{\alpha_{3}-\alpha_{1}}}{\sqrt{\alpha_{2}+\alpha_{3}-2 \alpha_{1}}} d t \wedge \hat{\sigma}_{1} \wedge \hat{\sigma}_{2} \tag{30}
\end{equation*}
$$

If the metric is non-diagonal, then $X_{1}^{2}=4\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{3}-\alpha_{1}\right) \neq 0$. Therefore, we obtain $d \Omega=0$, if and only if $\alpha_{1}=0$.

By a conformal rescaling $g \mapsto F g$ where F satisfies $(1 / 2)(d F / d t)=f$, we can eliminate f of lemma 4.2 (see Remark 2.2).

Theorem 4.6. An $S U(2)$-invariant anti-self-dual metric is specified by a solution of Painlevé III, if and only if the metric is conformally equivalent with a scalar-flat Kähler metric.

Acknowledgements. The author would express his gratitude to Professor Yousuke Ohyama, who introduced him to the subject, for enlightening discussions.

References

[1] M.F. Atiyah and N.J. Hitchin: Low energy scattering of non-Abelian monopoles, Phys. Lett. A 107 (1985), 21-25.
[2] M.F. Atiyah, N.J. Hitchin and I.M. Singer: Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc, London Ser. A 362 (1978) 425-461.
[3] A.L. Besse: Einstein Manifolds, Springer-Verlag, Berlin-Heidelberg, 1987.
[4] V.A. Belinski, G.W. Gibbons, D.W. Page and C.N. Pope: Asymptotically Euclidean Bianchi IX metrics in quantum gravity, Phys. Lett. B 76 (1978), 433-435.
[5] A.S. Dancer: Scalar-flat Kähler metrics with $S U(2)$ symmetry, J. reine. angew. Math. 479 (1996), 99-120.
[6] N.J. Hitchin: Twistor spaces, Einstein metrics and isomonodromic deformations, J. Differential Geom. 42 (1995), 30-112.
[7] M. Jimbo, T. Miwa and K. Ueno: Monodromy Preserving Deformation of Linear Ordinary Differential Equations with Rational Coefficients. I, Physica 2D (1981), 306-352.
[8] M. Jimbo and T. Miwa: Monodromy Preserving Deformation of Linear Ordinary Differential Equations with Rational Coefficients. II, Physica 2D (1981), 407-448.
[9] R. Maszczyk, L.J. Mason and N.M.J. Woodhouse: Self-dual Bianchi metrics and the Painlevé transcendents, Classical Quantum Gravity 11 (1994), 65-71.
[10] H. Pedersen and Y.S. Poon: Kähler surfaces with zero scalar curvature, Classical Quantum Gravity 7 (1990), 1707-1719.
[11] R. Penrose: Nonlinear gravitons and curved twistor theory, Gen. Rel. Grav. 7 (1976), 31-52.
[12] K.P. Tod: Self-dual Einstein metrics from the Painlevé VI equation, Phys. Lett. A 190 (1994), 221-224.

Department of Mathematics
Osaka University
Toyonaka 560-0043, Japan
e-mail: okumura@math.sci.osaka-u.ac.jp

