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0. Introduction

The aim of this paper is to study the (2)-invariant anti-self-dual metrics which
is specified by the solutions of Painlevé III. We study not only the diagonal metrics,
but also the non-diagonal metrics.

Hitchin [6] shows that the (2)-invariant anti-self-dual metric is generically
specified by a solution of Painlevé VI with two complex parameters.

Painlevé VI is shown to be a deformation equation for a linear problem
(
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)(
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2

)
= 0

where 1 has four simple poles onCP1 [7]. And Painlevé V, IV, III, II are degener-
ated from Painlevé VI:
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This is the confluence diagram of poles of1, where the Roman numerals represent
the types of the Painlevé equation, and the parenthesized numbers represent the orders
of poles of 1. For example, Painlevé III is shown to be a deformation equation for a
linear problem with two double poles.

Hitchin used the twistor correspondence [1, 11] to associate the anti-self-dual
equation and the Painlevé equation. On the twistor space, the lifted action of (2)
determines a pre-homogeneous action of (2), and it determines an isomonodromic
family of connections onCP1, and then we obtain the Painlevé equation.

Due to the reality condition of the twistor space, the poles of 1 makes two an-
tipodal pairs. Therefore, the configuration of poles becomes the type of Painlevé III
or VI. Generically, the anti-self-dual metric is specified by a solution of Painlevé VI.

In this framework, Hitchin [6] classified the diagonal anti-self-dual metrics, and
Dancer [5] shows that the diagonal scalar-flat Kähler metric is specified by a solution
of Painlevé III with a parameter (0 4 4−4), wherediagonal metric is in the shape
of (1) in Section 1. Since the anti-self-dual Einstein metrics are diagonal, the classifi-
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cation for diagonal metrics enough serves Hitchin’s purpose. However, generically, the
(2)-invariant metric is in the shape of (4) in Section 2. In this case, Hitchin shows

that the metric is generically specified by a solution of Painlevé VI, but he dose not
go into detail. In this paper, we study not only the diagonal metrics but also the non-
diagonal metrics.

We show that the (2)-invariant anti-self-dual equations reduce to the following
Painlevé equations:
(a) A family of Painlevé VI

2

2
=

1
2

(
1

+
1
− 1

+
1
−

)( )2

−
(

1
+

1
− 1

+
1
−

)

+
( − 1) ( − )

2 ( − 1)2

{
α + β

2
+ γ

− 1

( − 1)2
+ δ
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with two complex parameters,

(α β γ δ) =

(
1
2

(θ0− 1)2
1
2
θ̄2

0 −
1
2
θ2

1
1
2

(1 + θ̄2
1)

)

If the metric is in the form (15), thenθ0 = θ1 or θ0, θ1 ∈ R.
(b) A family of Painlevé III

2

2
=

1
( )2

− 1
+

1 (
α 2 + β

)
+ γ 3 +

δ

with one complex parameter,

(α β γ δ) =
(
4θ 4(1 + θ̄) 4 −4

)

If the metric is in the form (15), thenθ ∈ R.
The case (b) is a generalization of Dancer’s result [5].

Generically, the (2)-invariant anti-self-dual metric is specified by a solution
of Painlevé VI with a parameter above. The metric is specified by a solution of
Painlevé III, if and only if there exists an (2)-invariant hermitian structure. With
an appropriate conformal rescaling, the hermitian metric turns into a scalar-flat Kähler
metric.

1. The diagonal anti-self-dual equations

In this section, we review the anti-self-dual equations on the (2)-invariant di-
agonal metrics.

The (2)-invariant diagonal metric is represented in the following form:

(1) = 1 2 3
2 + 2 3

1
σ2

1 + 3 1

2
σ2

2 + 1 2

3
σ2

3
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1, 2 and 3 are functions of , andσ1, σ2, σ3 are left invariant one-forms on each
(2)-orbit satisfying

σ1 = σ2 ∧ σ3 σ2 = σ3 ∧ σ1 σ3 = σ1 ∧ σ2(2)

Tod [12] showed that the (scalar-flat) anti-self-dual equations on the (2)-invariant
diagonal metric are given by the following system:

˙1 = − 2 3 + 1 (α2 + α3)

˙2 = − 3 1 + 2 (α3 + α1)

˙3 = − 1 2 + 3 (α1 + α2)

α̇1 = −α2α3 + α1 (α2 + α3)

α̇2 = −α3α1 + α2 (α3 + α1)

α̇3 = −α1α2 + α3 (α1 + α2)

(3)

whereα1, α2, α3 are auxiliary functions and the dots denote differentiation with re-
spect to . The anti-self-dual equation (3) has a first integral

=
α1( 2

2 − 2
3) + α2( 2

3 − 2
1) + α3( 2

1 − 2
2)

8(α1− α2)(α2− α3)(α3− α1)

Furthermore, if we set

=
α2− α1

α2− α3

= 2(α1− α2)( 2( 2
1 − 2

3) + 2
√

2 1 3(α1− α3))
2
1( 2

2 − 2
3)α1 + 2

2( 2
3 − 2

1)α2 + 2
3( 2

1 − 2
2)α3

then the system (3) generically reduces to a family of Painlevé VI with a special pa-
rameter

(α β γ δ) =

((√
2 − 1

)2

2
− 1 + 2

2

)

2. The non-diagonal anti-self-dual equations

We can express an (2)-invariant metric in the form

= (τ ) τ2 +
3∑

=1

(τ ) σ σ(4)

Using the Killing form, we can diagonalize the metric on each(2)-orbit. Then
we can express the metric as follows:

= ( )2 2 + 2 σ̂2
1 + 2σ̂2

2 + 2σ̂2
3
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where = (τ ), = ( ), = ( ), = ( ) and



σ̂1

σ̂2

σ̂3


 = ( )



σ1

σ2

σ3




where ( ) is an (3)-valued function.
Since ˙ −1 ∈ so(3), we obtain



σ̂1

σ̂2

σ̂3


 = ( )



σ2 ∧ σ3

σ3 ∧ σ1

σ2 ∧ σ2


 + ˙ ∧



σ1

σ2

σ3




=



σ̂2 ∧ σ̂3

σ̂3 ∧ σ̂1

σ̂1 ∧ σ̂2


 +




0 ξ3 −ξ2

−ξ3 0 ξ1

ξ2 −ξ1 0


 ∧



σ̂1

σ̂2

σ̂3




for someξ1 = ξ1( ), ξ2 = ξ2( ), ξ3 = ξ3( ).
If ξ1 = 0, ξ2 = 0, ξ3 = 0, then the matrix ( ) can be chosen to be diagonal for

all τ , and then we call that has a diagonal form.
In the following, we mainly study the non-diagonal metrics.
To compute the curvature tensor, we choose a basis for

∧2

{ +
1

+
2

+
3

−
1
−
2

−
3 }

where

+
1 = 2 ∧ σ̂1 + σ̂2 ∧ σ̂3

+
2 = 2 ∧ σ̂2 + σ̂3 ∧ σ̂1

+
3 = 2 ∧ σ̂3 + σ̂1 ∧ σ̂2

−
1 = 2 ∧ σ̂1 − σ̂2 ∧ σ̂3

−
2 = 2 ∧ σ̂2 − σ̂3 ∧ σ̂1

−
3 = 2 ∧ σ̂3 − σ̂1 ∧ σ̂2

With respect to this frame, the curvature tensor has the following block form [3]:

( )

where = 4 trace is the scalar curvature,+ = − (1/12) and − = − (1/12)
are the self-dual and anti-self-dual parts of the Weyl tensor, and is the trace free
parts of Ricci tensor.
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We set 1 = , 2 = , 3 = and determine auxiliary functionsα1, α2, α3

by

˙ 1 = − 2 3 + 1(α2 + α3)

˙ 2 = − 3 1 + 2(α3 + α1)

˙ 3 = − 1 2 + 3(α1 + α2)

(5)

Calculating the condition = 0, we obtain the following theorem.

Theorem 2.1. The metric is anti-self-dual with vanishing scalar curvature, if and
only if α1, α2, α3 and ξ1, ξ2, ξ3 satisfy the following equations:

α̇1 =− α2α3 + α1(α2 + α3) +
1
4

( 2
2 − 2

3)2

(
ξ1

2 3

)2

+
1
4

( 2
3 − 2

1)(3 2
1 + 2

3)

(
ξ2

3 1

)2

+
1
4

( 2
2 − 2

1)(3 2
1 + 2

2)

(
ξ3

1 2

)2

α̇2 =− α3α1 + α2(α3 + α1) +
1
4

( 2
3 − 2

1)2

(
ξ2

3 1

)2

+
1
4

( 2
1 − 2

2)(3 2
2 + 2
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(
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+
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( 2
3 − 2

2)(3 2
2 + 2

3)

(
ξ1
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)2

α̇3 =− α1α2 + α3(α1 + α2) +
1
4

( 2
1 − 2

2)2

(
ξ3

1 2

)2

+
1
4

( 2
2 − 2

3)(3 2
3 + 2
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(
ξ1
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+
1
4

( 2
1 − 2

3)(3 2
3 + 2
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(
ξ2

3 1

)2

(6)
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and

( 2
2 − 2

3)

(
ξ1

2 3

)
=

ξ2

3 1

ξ3

1 2
(−2 2

2
2
3 + 2

3
2
1 + 2

1
2
2)

+
ξ1

2 3
(α2

2
2 − α3

2
3 + 3α2

2
3 − 3α3

2
2)

( 2
3 − 2

1)

(
ξ2

3 1

)
=

ξ3

1 2

ξ1

2 3
(−2 2

3
2
1 + 2

1
2
2 + 2

2
2
3)

+
ξ2

3 1
(α3

2
3 − α1

2
1 + 3α3

2
1 − 3α1

2
3)

( 2
1 − 2

2)

(
ξ3

1 2

)
=

ξ1

2 3

ξ2

3 1
(−2 2

1
2
2 + 2

2
2
3 + 2

3
2
1)

+
ξ3

1 2
(α1

2
1 − α2

2
2 + 3α1

2
2 − 3α2

2
1)

(7)

REMARK 2.2. If we take a conformal rescaling to ( ) , then turns into that
satisfies / = 1/ , and 1, 2, 3 turn into 1, 2, 3, and ξ1, ξ2, ξ3 turn
into ξ1, ξ2, ξ3 respectively. And thenα1, α2, α3 turn into

α̃1 =
1
2

+ α1 α̃2 =
1
2

+ α2 α̃3 =
1
2

+ α3

The equations (5), (6), (7) are invariant under a conformal rescaling to , if
2 ˙ 2 = ¨ 2.

REMARK 2.3. By the equation (5), (6), (7), we obtain−2 2
1

2
2+ 2

2
2
3+ 2

3
2
1 6≡ 0.

Therefore, ifξ3 ≡ 0, thenξ1 ≡ 0 or ξ2 ≡ 0. In the same way, ifξ1 ≡ 0, thenξ2 ≡ 0
or ξ3 ≡ 0, and if ξ2 ≡ 0, thenξ3 ≡ 0 or ξ1 ≡ 0.

REMARK 2.4. If ξ1 = 0, ξ2 = 0, ξ3 = 0, then the equation (5), (6), (7) reduces
to a sixth-order system (3) given by Tod [12]. Furthermore, if α1 = 1, α2 = 2,
α3 = 3, then (5), (6), (7) reduce to a third-order system, which determines Atiyah-
Hitchin family [1]. And if α1 = 0, α2 = 0, α3 = 0, then (5), (6), (7) reduce to a
third-order system, which determines BGPP family [4].

REMARK 2.5. If 2 = 3, then we can setξ1 = 0, ξ2 = 0, ξ3 = 0 by taking another
frame. This is also in the diagonal case. Therefore we assume( 2− 3)( 3− 1)( 1−

2) 6= 0.

3. The isomonodromic deformations

Let ( ) be an oriented Riemannian four manifold. We define a manifold to
be a unit sphere bundle in the bundle of anti-self-dual two-forms, and letπ : →
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denote the projection. Each point in the fiber overπ( ) defines a complex structure
on the tangent spaceπ( ) , compatible with the metric and its orientation.

Using the Levi-Civita connection, we can split the tangent space into hor-
izontal and vertical spaces, and the projectionπ identifies the horizontal space with

π( ) . This space has a complex structure defined by and the vertical space is the
tangent space of the fiber2 ∼= CP1 which has its natural complex structure.

The almost complex structure on is integrable, if and only ifthe metric is anti-
self-dual [2, 11]. In this situation is called the twistor space of ( ) and the fibers
are called the real twistor lines.

The almost complex structure on can be determined by the following (1 0)-
forms:

1 =
(

1 +
√
−1 2

)
−
(

0 +
√
−1 3

)

2 =
(

0−
√
−1 3

)
+
(

1−
√
−1 2

)

3 = +
1
2

2
(
ω0

1 − ω2
3 +
√
−1 (ω0

2 − ω3
1)
)

−
√
−1

(
ω0

3 − ω1
2

)
+

1
2

(
ω0

1 − ω2
3 −
√
−1
(
ω0

2 − ω3
1

))

(8)

where{ 0 1 2 3} is an orthonormal frame, andω are the connection forms deter-

mined by +ω ∧ = 0 andω +ω = 0. ( ) is anti-self-dual, if and only if the
Pfaffian system (or the distribution defined by the followingsystem)

1 = 0 2 = 0 3 = 0(9)

is integrable, that is to say

1 ≡ 0 2 ≡ 0 3 ≡ 0 (mod 1 2 3)(10)

REMARK 3.1. The Pfaffian system (9) is invariant under7→ ( +
√
−1)/( −

√
−1)

and permutation 17→ 2, 2 7→ 3, 3 7→ 1 of suffixes of andω .

Theorem 3.2. The Pfaffian system(9) is invariant under the conjugate action
and 7→ −1/¯ [2].

If the metric is (2) invariant, we obtain




1

2

3


 =




0
0
1


 +




1

2

3


 +



σ1

σ2

σ3


(11)

where 1 = 1( ), 2 = 2( ), 3 = 3( ); =
(

( )
)

=1 2 3
.
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If det ≡ 0, then the metric turns to be diagonal, and the metric is in the BGPP
family [4].

If det 6= 0, then we obtain



σ1

σ2

σ3


 ≡ − −1






0
0
1


 +




1

2

3





 (mod 1 2 3)

If we set



1

2

3


 = − −1






0
0
1


 +




1

2

3





(12)

then



1

2

3


 ≡




2 ∧ 3

3 ∧ 1

1 ∧ 2


 (mod 1 2 3)(13)

Since 1, 2, 3 are one-forms on ( )-plane, the congruency equation (13) turns to be
a plain equation:




1

2

3


 =




2 ∧ 3

3 ∧ 1

1 ∧ 2




By Theorem 3.2, 1, 2, 3 are invariant under the conjugate action and7→ −1/¯.
If we set

=
1√
2

( √
−1 2 − 1 +

√
−1 3

1 +
√
−1 3 −

√
−1 2

)

=: − 1 − 2

then

+ ∧ = 0

This is the isomonodromic condition for the following linear problem [7]
(

− 1

)(
1

2

)
= 0(14)

Lemma 3.3. The components of 1 are rational functions of ,

1 =
( )
( )



HERMITIAN METRICS AND PAINLEV É III 553

where ( ) is degree2 and ( ) is degree4. We must have 1 7→ − 1 under the
conjugate action and 7→ −1/ .̄

Proof. Since 1, 2, 3 are invariant under the conjugate action and7→ −1/¯,
we obtain 7→ − , and then 1 7→ − 1.

If we set




ˆ1

ˆ2

ˆ3


 = ( )




1

2

3




then we have




ˆ1

ˆ2

ˆ3


 ≡



σ̂1

σ̂2

σ̂3


 (mod 1 2 3)

By a straightforward calculation, we obtain

ˆ1

(
∂

∂

)
≡ 2

(
1 + 2

)
1

( )

ˆ2

(
∂

∂

)
≡ 2
√
−1

(
−1 + 2

)
2

( )

ˆ3

(
∂

∂

)
≡ −4

√
−1 3

( )

where

( ) = 4

(
(α1− α2)−

√
−1

2
1 − 2

2

1 2
ξ3

)
− 2 3

( 2
2 − 2

3

2 3
ξ1 −

√
−1

2
3 − 2

1

3 1
ξ2

)

+ 2 2 (α1 + α2 − 2α3) + 2

( 2
2 − 2

3

2 3
ξ1 +
√
−1

2
3 − 2

1

3 1
ξ2

)

+

(
(α1− α2) +

√
−1

2
1 − 2

2

1 2
ξ3

)

Since ( ) is independent of , the components of1 are rational functions of ,

1 =
( )
( )

where ( ) is degree 2 and ( ) is degree 4.

For this lemma, generically 1 has four simple poles. In this case, the deformation
equation of (14) is Painlevé VI.
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Theorem 3.4. The (2)-invariant anti-self-dual metric is generically specified
by the solution of Painlev́e VI.

The idea of Hitchin [6] is that the lifted action of (2) on the twistor space
gives a homomorphism of vector bundlesα : × su(2)C → , and the inverse ofα
gives a flat meromorphic (2C)-connection, which determines isomonodromic de-
formations. Since one-forms 1, 2, 3 on can be considered as infinitesimal vari-
ations, we can identify withα−1.

By Lemma 3.3, the poles of 1 make antipodal pairsζ0, −1/ζ̄0, andζ1, −1/ζ̄1 on
CP1. Therefore we obtain two types of configuration of poles of1. In each case, we
can calculate the local exponents at singularities. These local exponents corresponding
to the parameter of the Painlevé equation (see [8]).
(a) 1 has four simple polesζ0, −1/ζ̄0, ζ1, −1/ζ̄1 on CP1.

1 = 0

− ζ0
+
− ¯0

+ 1/ζ̄0
+ 1

− ζ1
+
− ¯1

+ 1/ζ̄1

The deformation equation is Painlevé VI with a parameter,

(α β γ δ) =

(
1
2

(θ0− 1)2
1
2
θ̄2

0 −
1
2
θ2

1
1
2

(1 + θ̄2
1)

)

whereθ2
0 = 2 tr 2

0, θ2
1 = 2 tr 2

1.
(b) 1 has two double polesζ, −1/ζ̄ on CP1.

1 = 2

( − ζ)2
+

√
−1
− ζ +

−
√
−1

+ 1/ζ̄
+
− ¯2/ζ̄

2

( + 1/ζ̄)2

where =− ¯. The deformation equation is Painlevé III with a parameter,

(α β γ δ) =
(
4θ 4(1 + θ̄) 4 −4

)

whereθ2 = 2(tr( 2 ))2/tr 2.

Theorem 3.5. The anti-self-dual equations reduce to the following Painlev́e
equations:
(a) A family of Painlev́e VI with two complex parameters,

(α β γ δ) =

(
1
2

(θ0− 1)2
1
2
θ̄2

0 −
1
2
θ2

1
1
2

(1 + θ̄2
1)

)

(b) A family of Painlev́e III with one complex parameter,

(α β γ δ) =
(
4θ 4(1 + θ̄) 4 −4

)
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REMARK 3.6. It is known that the anti-self-dual equations reduce toPainlevé VI
with the parameter as above ([9], [6]). Dancer [5] shows the diagonal scalar-flat
Kähler metric is specified by a solution of Painlevé III with a parameter (α β γ δ) =
(0 4 4 −4). Now, Theorem 3.5 (b) is a generalization of Dancer’s result.

By Remark 2.3, ifξ1ξ2ξ3 = 0, then at least two ofξ1, ξ2, ξ3 must be zero. From
now on this section, we assumeξ2 = ξ3 = 0, and then we obtain the metric in the
form:

= (τ ) τ + 11(τ ) σ2
1 + 22(τ ) σ2

2 + 23(τ ) σ2σ3 + 33(τ ) σ2
3(15)

Therefore, there exists an isometric action

(σ1 σ2 σ3) 7→ (σ1 −σ2 −σ3)(16)

which preserves each orbit. Since




1

2

3


 7→




¯1
¯2
¯3




under the action (16) and 7→ ¯, then we obtain




1

2

3


 =




0
0
1


 +




1

2

3




∣∣∣∣∣∣
7→¯

+ | 7→¯




σ1

−σ2

−σ3




Therefore



1

2

3




∣∣∣∣∣∣
7→¯

=




1̄

− 2̄

− 3̄




and then we obtain 1| 7→¯ = 1̄. Therefore we obtain the following:
(a) If 1 has four simple poles, then

1 = 0

− ζ0
+
− ¯0

+ 1/ζ̄0
+ 1

− ζ1
+
− ¯1

+ 1/ζ̄1

=
¯0

− ζ̄0
+
− 0

+ 1/ζ0
+

¯1

− ζ̄1
+
− 1

+ 1/ζ1

If ζ0 = ζ̄0 or −1/ζ0, thenθ2
0 = 2 tr 2

0 and θ2
1 = 2 tr 2

1 must be real numbers. Ifζ0 = ζ̄1

or −1/ζ1, then θ2
0 = 2 tr 2

0 and θ2
1 = 2 tr 2

1 must coincide.
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(b) If 1 has two double poles, then

1 = 2

( − ζ)2
+

√
−1
− ζ +

−
√
−1

+ 1/ζ̄
+
− ¯2/ζ̄

2

( + 1/ζ̄)2

=
¯2

( − ζ̄)2
+

√
−1 ¯

− ζ̄ +
−
√
−1 ¯

+ 1/ζ
+
− 2/ζ

2

( + 1/ζ)2

where = − ¯. If ζ = ζ̄, then θ2 = 2(tr( 2 ))2/tr 2
2 must be a real number. If

ζ = −1/ζ, then θ2 = 2(tr( 2 ))2/tr 2
2 = 0.

Theorem 3.7. If ξ1ξ2ξ3 = 0, then the anti-self-dual equations reduce to the fol-
lowing Painlev́e equations:
(a) A family of Painlev́e VI with two real parameters,

(α β γ δ) =

(
1
2

(θ0− 1)2
1
2
θ2

0 −
1
2
θ2

1
1
2

(1 + θ2
1)

)

or one complex parameter,

(α β γ δ) =

(
1
2

(θ − 1)2
1
2
θ̄2 −1

2
θ2 1

2
(1 + θ̄2)

)

(b) A family of Painlev́e III with one real parameter,

(α β γ δ) = (4θ 4(1 +θ) 4 −4)

4. Hermitian structure

In this section, we study the geometric meaning of the (2)-invariant anti-self-
dual metric specified by the solutions of Painlevé III. Painlevé III is the deformation
equation of

(
− 1

)(
1

2

)
= 0

where 1 has two double poles. By a direct calculation, we obtain the following
lemma.

Lemma 4.1. The poles of 1 are determined by the following equation:

(17) 4
(

(α1 − α2)−
√
−1 3

)
− 2 3

(
1−
√
−1 2

)

+ 2 2 (α1 + α2− 2α3) + 2
(

1 +
√
−1 2

)

+
(

(α1 − α2) +
√
−1 3

)
= 0
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where

1 =
2
2 − 2

3

2 3
ξ1 2 =

2
3 − 2

1

3 1
ξ2 3 =

2
1 − 2

2

1 2
ξ3

Since the equation (17) is preserved by7→ −1/¯ and the conjugate action, if the
equation (17) has a solution =ζ of order two, then =−1/ζ̄ is also a solution of
order two.

Lemma 4.2. Let be a non-diagonal (2)-invariant metric. Then 1 has two
double poles, if and only if there exists a function ( ) satisfying

2
1 =4( − α2)( − α3)
2
2 =4( − α3)( − α1)(18)
2
3 =4( − α1)( − α2)

And then the anti-self-dual equation reduce to(5), (6) and ˙ = 2.

Proof. If 1 = 2 = 3 = 0, then the discriminant of (17) is

16 (α1− α2)2 (α2 − α3)2 (α3 − α1)2

Therefore, if

(α1 − α2) (α2 − α3) (α3 − α1) = 0

then 1 has two double poles. This case is in the form of (18) by =α1 = α2 or
= α2 = α3 or = α3 = α1. By the equation (5), (6), (7), we obtaiṅ = 2. If
= 0, then we obtain the diagonal scalar-flat-Kähler metric given by Pedersen and

Poon [10].
If 1 2 3 = 0, then, from Remark 2.3, at least two of1, 2, 3 must be

zero. Assume that 1 6= 0 and 2 = 3 = 0. Then the discriminant of (17) is(
2
1 + (α2 − α3)2) ( 2

1 − 4 (α1 − α2) (α1− α3)
)2

. Therefore, the equation

2
1 = 4 (α1− α2) (α1− α3)

is the condition that 1 has two double poles. This is (18) where =α1. In this case,
we obtain the double poles on

ζ =
√
α3− α1±

√
−1
√
α2 − α1√

α2 + α3 + 2α1
(19)

1, 2, 3 satisfy the equation (5), (6), (7), if and only if ˙α1 = α2
1.
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If 1 2 3 6= 0, the discriminant of (17) is too complicated to calculate. Therefore,
we attack by an other way. We obtain (17) in the following form:

¯ 4− ¯ 3 + 2 + + = 0(20)

where , are complex coefficients and is a real coefficient. By alinear fractional
transformation

7→
(
− | |

)
ζ − + | |(

−¯+ | |
)
ζ − ¯+ | |(21)

the equation (17) turns into the following form:

ζ4− 0̄ζ
3 + 0ζ

2 + 0ζ + 1 = 0(22)

where 0 is a complex coefficient and0 is a real coefficients. Since (21) preserves the
antipodal pairs onCP1, if ζ = ζ0 is a solution of (22) of order two, thenζ = −1/ζ̄0 is
also a solution of order two. Therefore

ζ4 − 0̄ζ
3 + 0ζ

2 + 0ζ + 1 = (ζ − ζ0)2

(
ζ +

1

ζ̄0

)2

(23)

and thenζ0 = ±ζ̄0, which implies ζ0 is real or pure-imaginary. Therefore0 =
2ζ
(
−1 + ζζ̄

)
/ζ̄2 must be real or pure-imaginary. By a direct calculation, we obtain the

following. The real part of 0 vanishes, if and only if

4
2

(
2
1 + 2

2

)2
= 0

which never occurs. The imaginary part of0 vanishes, if and only if

4
2

((
2
1 − 2

2

)
3− 2 1 2 (α1 − α2)

)
= 0

Therefore,

(24)
(

2
1 − 2

2

)
3 = 2 1 2 (α1− α2)

if and only if 1 has two double poles. By the linear transformation7→ ( +
√
−1 )/

( −
√
−1 ), the suffixes of andα on (17) are replaced cyclically. Therefore, if1

has two double poles, then the following must be also satisfied:

(
2
2 − 2

3

)
1 = 2 2 3 (α2− α3)(25)

(
2
3 − 2

1

)
2 = 2 3 1 (α3− α1)(26)
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By (24), (25) and (26), 1, 2, 3 must satisfy (18) with an auxiliary function .
Actually, if 1, 2, 3 satisfy (18), then (17) has two solutions of order two:

ζ =
1 2±

√
2
2

2
3 + 2

3
2
1 + 2

1
2
2

3( 1−
√
−1 2)

(27)

In this case, 1, 2, 3 satisfy the equation (5), (6), (7), if and only iḟ = 2.

Therefore, we obtain the following theorem.

Theorem 4.3. The (2)-invariant anti-self-dual metric is specified by the solu-
tion of Painlev́e III, if and only if 1, 2, 3 satisfy (18) and ˙ = 2.

If we restrict 1| =ζ( ) and 2| =ζ( ) for some =ζ( ), then we obtain (1 0)-forms
on , which determine an (2)-invariant almost complex structure on .

Theorem 4.4. Let be an (2)-invariant anti-self-dual scalar-flat metric.
There exists an (2)-invariant hermitian structure( ) if and only if 1 has double
poles.

Proof. Let ( ) be the left hand side of (17). Then ( ) is the denominator of

1. We obtain

3 ≡ + 0 + 1 σ̂1 (mod 1 2)

where 1 = 0 is equivalent with ( ) = 0, and + 0 = 0 is equivalent with
= 0. Therefore, the almost complex structure determined by{ 1| =ζ( ) 2| =ζ( )} is

integrable, if and only if ( ) admits a multiple zero on =ζ( ).

Theorem 4.5. The hermitian structure( ) determined onTheorem 4.4 is
Kähler, if and only if

2
1 = 4α2α3

2
2 = 4α3α1

2
3 = 4α1α2(28)

Proof. If 1 2 3 6= 0, the Kähler form is determined by (27) as

= 2 3√
2
2

2
3 + 2

3
2
1 + 2

1
2
2

+
1

+ 3 1√
2
2

2
3 + 2

3
2
1 + 2

1
2
2

+
2
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+ 1 2√
2
2

2
3 + 2

3
2
1 + 2

1
2
2

+
3

By the equations (5), (6), (7) anḋ = 2, we obtain

=
2 1 2 3√

2
2

2
3 + 2

3
2
1 + 2

1
2
2

∧ σ̂2 ∧ σ̂3

+
2 2 3 1√

2
2

2
3 + 2

3
2
1 + 2

1
2
2

∧ σ̂3 ∧ σ̂1

+
2 3 1 2√

2
2

2
3 + 2

3
2
1 + 2

1
2
2

∧ σ̂1 ∧ σ̂2

Since 1 2 3 6= 0 and 1 2 3 6= 0, we obtain = 0, if and only if = 0.
If 1 2 3 = 0, then must beα1, α2 or α3. Suppose that =α1, then we

obtain 2
1 = 4(α2 − α1)(α3 − α1), 2 = 0, 3 = 0. The Kähler form is determined

by (19) as

=

√
α2− α1√

α2 + α3− 2α1

+
2 +

√
α3 − α1√

α2 + α3 − 2α1

+
3(29)

Then we obtain

=
2 2α1

√
α2− α1√

α2 + α3 − 2α1
∧ σ̂3 ∧ σ̂1 +

2 3α1
√
α3 − α1√

α2 + α3 − 2α1
∧ σ̂1 ∧ σ̂2(30)

If the metric is non-diagonal, then 2
1 = 4(α2−α1)(α3−α1) 6= 0. Therefore, we obtain

= 0, if and only if α1 = 0.

By a conformal rescaling 7→ where satisfies (1/2)( / ) = , we can
eliminate of lemma 4.2 (see Remark 2.2).

Theorem 4.6. An (2)-invariant anti-self-dual metric is specified by a solution
of Painlev́e III, if and only if the metric is conformally equivalent with a scalar-flat
Kähler metric.

ACKNOWLEDGEMENTS. The author would express his gratitude to Professor Yousuke
Ohyama, who introduced him to the subject, for enlighteningdiscussions.



HERMITIAN METRICS AND PAINLEV É III 561
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