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Introduction

Let be an oriented compact connected Riemannian manifold and let be a
unit vector field on . The total bending of , which measures to what extent fails
to be parallel, is defined in [6], up to a constant, by

B ( ) =
∫
‖∇ ‖2

where integration is taken with respect to the Riemannian volume form ∇ is the Levi-
Civita connection, (∇ ) ∈ End

( )
, 7→ ∇ , and ‖ ‖2 = tr . The unit

vector field is a map from into 1 , the unit tangent bundle of . If one con-
siders on 1 the canonical (Sasaki) metric, then the energy of can be expressed
as

E ( ) = 1 + 2B ( )

where 1 and 2 are constants depending only on the dimension and the volumeof .
Beginning with G. Wiegmink and C.M. Wood [6, 7], critical points of (any of) such
functionals on unit vector fields on have been extensively studied (see for instance
in [3] the abundant bibliography on the subject).

Some Riemannian manifolds, for instance odd dimensional spheres, admit volume
preserving, unit speed flows. In a certain sense, one can say that the best organized of
these flows are those with minimum total bending among them.

We give new examples of unit vector fields on compact Riemannian manifolds
having the following properties:

(∗1) is critical for the energy functional among all unit vector fields on .
(∗2) has minimum energy among all solenoidal (that is, divergence free) unit vector
fields on .

A unit vector field on a compact oriented Riemannian manifoldis said to
have minimum Ricci curvatureif Ricci

( )
≤ Ricci

( )
for all ∈ and any
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unit vector field on . It is said to be an eigenvector of the Ricci curvature if
Ricci

( )
= ( ) for some smooth function on and all∈ .

Proposition 1. Let be a compact oriented Riemannian manifold and a
Killing unit vector field on . If is an eigenvector on the Riccioperator, then
it satisfies property(∗1). If has minimum Ricci curvature, then it satisfies prop-
erty (∗2).

Proof. The first assertion was proved by Wiegmink in [6, Theorem 2 (iv)]. The
second one follows from the expression for the total bendinggiven in formula (2) of
the same article, which originated in K. Yano (see for instance [8]) and states that, up
to a constant,

B ( ) =
∫

Ricci ( ) +
1
2
‖L ‖2 − (div )2 ,

for any unit vector field on , whereL denotes the Lie derivative of the metric
in the direction of and integration is taken with respect to the Riemannian volume
form. (If is a Killing vector field, then the second and third terms of the integrand
vanish, since by definition, the metric does not vary along a Killing vector field, let
alone the volume form.)

An immediate consequence of the Proposition is that the following vector fields
satisfy properties (∗1–2):
a) Unit Hopf vector fields on odd dimensional spheres.
b) Left or right invariant unit vector fields on a compact simple Lie group endowed
with a bi-invariant metric (the Lie group needs only to be semisimple if the metric is
determined by the opposite of the Killing form).

With additional techniques, González-Dávila and Vanhecke [4] proved that each
of the two distinguished unit vector fields on the Berger spheres

(
3

)
, for some

range of , have minimum energy among all unit vector fields. Inparticular, they sat-
isfy properties (∗1–2).

In this paper we present many examples of unit vector fields satisfying proper-
ties (∗1–2), among them Hopf unit vector fields on spheres2 +1 or 4 +3 for certain
homothetic modifications of the canonical metrics in the vertical spaces of the Hopf
submersions 2 +1→ C , 4 +3→ H , as in the following proposition. Let =C
or H be the complex and quaternionic algebras, respectively, and let Im denote the
orthogonal complement of 1.

Theorem 2. Let = 2 +1 or 4 +3 be the unit sphere in +1 and let D be
the one-, respectively, three-dimensional distribution on defined byD = (Im ) ⊂

. For each > 0, let γ be the Riemannian metric on satisfying

γ ( ) = 0 γ ( ) = ‖ ‖2
γ ( ) = 2 ‖ ‖2
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for all ∈ D , ∈ D⊥, ∈ . Then, for any unit vector ∈ Im ( ), the vec-
tor field on defined by = / (with unit length with respect toγ ) sat-
isfies property(∗1). Moreover, it satisfies property(∗2) provided that 2 ∈ (0 1],

2 ∈
[
1/ (2 + 3) 1

]
, respectively.

The proof is based on considerations about some examples below and is post-
poned to the end of the article.

An application of Jensen’s examples

All our examples arise from a construction by Gary Jensen [5]of metrics (for
in some real interval) on the total spaces of certain principal bundles → , with

an irreducible symmetric space. The metrics differ homothetically on the verti-
cal spaces and coincide on the horizontal ones. These spacesmay be thought of
as a sort of generalization of Berger spheres. Based on Jensen’s arguments, we ob-
tain examples generalizing example (a) above. Using Proposition 13 of [5] one could
also generalize example (b) in an analogous manner, finding unit vector fields satisfy-
ing properties (∗1–2) on compact Lie groups with left invariant metrics, which are not
bi-invariant.

Next we recall Jensen’s results. Let be a compact connected semisimple Lie
group endowed with a bi-invariant Riemannian metric . Suppose that has closed
subgroups , 1, 2 with Lie algebrash, h1 6= {0}, h2, respectively, such that

(h1 h2) = 0 and h = h1 ⊕ h2 is a direct sum of ideals ofh (that is, as a group,
is locally the product of 1 and 2). Let k be the Lie algebra of andm the or-

thogonal complement ofh in k. Let us denote = / 2, = / andπ : →
the canonical projection. Notice that/ 2 is Lie group with Lie algebrah1 andπ is
an
(

/ 2
)
-principal bundle.

Proposition 3 ([5]). For any > 0, the inner product

(1) = |m×m + 2 |h1×h1
(m h1) = 0

on h⊥2 = m ⊕ h1 is Ad ( 2)-invariant and defines a -invariant Riemannian metric
on , subducing a -invariant Riemannian metric on . Moreover, for any vector
∈ h1, a vertical vector field˜ on is well-defined by

˜
2 = ˜ ( )

and is Killing (here ˜ denotes left multiplication by ∈ in ).

In the following suppose that =− , the opposite of the Killing form ofk and
that there exists ∈ R such that 1, the Killing form of h1, satisfies 1 = |h1×h1

,
for instance whenh1 is simple or abelian.
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Theorem 4 ([5, Proposition 12]). Suppose additionally that is an irreducible
Riemannian symmetric space. If, and ∈ h1 are as above, with ( ) = 1,
then ˜ is an eigenvector of the Ricci operator on . Moreover, ˜ has minimum Ricci
curvature, provided that > 0 belongs to the real closed interval whose endpoints are
the nonnegative roots of the equation

(2)

(
2

+ 1

)
(1− ) 4 − 2 2 + = 0

where = dimm, = dimh1.

REMARK. a) Jensen proves that the metric is Einstein if and only if isa
nonzero root of the equation (2).
b) No vector field ˜ as in the Theorem is parallel, since any such a vector field has
positive Ricci curvature, by Proposition 11 (iii) and equation (26) of [5]. (Notice that
parallel unit vector fields are trivial minima of the energy functional.)

As an immediate corollary of Theorem 4 and Proposition 1 we have

Corollary 5. If and are as above, then the unit vector field˜ satisfies
property (∗1). If additionally is in the cited interval, then ˜ satisfies property(∗2).

Concrete examples

Jensen classified all Lie algebra triplesk, h, h2 satisfying the hypothesis of Theo-
rem 4. We adapt to our situation all those examples, up to finite coverings, of Jensen’s
list involving classical groups (Examples 1–10) and one exceptional (Example 11),
making them explicit for instance as Grassmann- or Stiefel-like manifolds.

Next we fix some notation and recall some concepts involved inthe examples. We
refer the reader to [1]. Let{ 1 . . . } denote the canonical basis ofR , C or H .
The × identity and zero matrices are denoted by and 0 , respectively. The
matrix with blocks 1 . . . in the diagonal and zeroes in the rest is denoted by
diag( 1 . . . ).

A complex orientationon an -dimensional complex vector space is an ele-
ment of

(
− {0}

)
/R+, that is an equivalence class of nonzeroC-multilinear al-

ternating functions× =1 → C modulo positive multiples. Equivalently, if carries
an Hermitian inner product, a complex orientation is an equivalence class of ordered
orthonormal bases of , two of them being in the same class if and only if the com-
plex matrix relating them has determinant one, that is, a multivector 1∧· · ·∧ , with
( 1 . . . ) an ordered orthonormal basis of .

The 1-projectivization of an ordered orthonormal basis (1 . . . ) of an Her-
mitian complex vector space is the set

{
( 1 . . . ) | ∈ 1

}
and is denoted by

[ 1 . . . ].
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Let be a real vector space with an inner product〈 〉 and an orthogonal com-
plex structure , that is, an orthogonal operator on such that2 = − Id (in partic-
ular the dimension of is even). Then has canonically the structure of a complex
vector space and

( ) = 〈 〉 + 〈 〉

defines an Hermitian product on .
Let

(
〈 〉 θ

)
be an oriented Euclidean space of dimension 2 . An orthogonal

complex structure on is said to bespecial if ω = θ, whereω ( ) = 〈 〉 for
all ∈ . If = R2 with the canonical inner product and the canonical orientation

1 ∧ · · · ∧ 2 , then the linear transformation given by the matrix =
( 0 −

0

)
is

a special complex structure and all the other ones have the form −1 for some
∈ (2 ).

The Killing forms of ( ) ( ) ⊂ M( C) and of ( ) ⊂ M(2 C) are
given by

(3) ( ) = λ tr ( )

whereλ = − 2, 2 , + 2, respectively.
In each of the Examples 1–11 below, the Lie group acts transitively on

and . Suppose that is endowed with the bi-invariant metric determined by the op-
posite of the Killing form and and carry the Riemannian structures such that the
canonical projections of onto them are Riemannian submersions.

Theorem 6. In each of the following examples, the projection

π : ∼= / 2→ ∼= /

is a Riemannian submersion and is an irreducible symmetric space. If carries the
metric defined in(1), then for all > 0 the unit vector fields̃ , with ∈ h1, which
are parametrized by the unit sphere inh1

∼= R , have property(∗1). If additionally
is in the real interval whose endpoints are the roots of(2), with the given constant,
then ˜ has property(∗2).

EXAMPLE 1. is the Grassmann manifold of all oriented -dimensional sub-
spaces ofR + and is the Stiefel manifold of all ordered orthonormal basesof ele-
ments of .

= ( + ) 2
∼= ( ) = ( )× ( )

h1
∼= ( ) =

(
2

)
= ( − 2)/ ( + − 2)

Clearly, 2 = { } × ( ) and are the isotropy subgroups at
(

1 . . .
)

and

1∧ · · · ∧ , respectively. Next we compute . By (3), if ∈ ( ), then 1 ( ) =
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( − 2) tr 2 and

(
diag

(
0
)

diag
(

0
))

= ( + − 2) tr 2

Hence, = ( − 2)/ ( + − 2).

EXAMPLE 2. is the manifold of special complex structures ofR2 and is the
manifold of all complex orientations on the complex vector space structures onR2

determined by elements of .

= (2 ) 2
∼= ( ) ∼= ( )

h1
∼= R = 1 = 0

We recall that acts on by conjugation. The isotropy subgroupat is
= { ∈ (2 ) | = }, whose Lie algebrah consists of all matrices

( + ) :=
( − )

, where , are real (× )-matrices, is skew-symmetric
and is symmetric. The map : ( )→ h is a Lie algebra isomorphism. The Lie
algebra of the isotropy subgroup at

((
R2

) ∼= C 1 ∧ · · · ∧
)

is h2 = ( ( )),
that is,

h2 = { ( + ) | tr = 0}

Henceh1 = R is abelian and so = 0.

EXAMPLE 3. is as in the previous example and is the manifold of all
1-projectivized orthonormal bases of the complex vector space structures onR2 de-

termined by elements of .

= (2 ) 2
∼= 1 ∼= ( )

h1
∼= ( ) = 2 − 1 = / (2 − 2)

The Lie algebra of the isotropy subgroup at
((

R2
) ∼= C

[
1 . . .

])
is h2 =

R , since exp
( −1

( ))
= for all = 1 . . . . Henceh2 is the subalgebra

we calledh1 in the previous example and vice versa. Next we compute . Let∈
( ) ⊂ ( ) and = 0. By (3), 1 ( ) = 2 tr 2 and

(
( ) ( )

)
=

2 (2 − 2) tr 2. Hence is as stated.

EXAMPLE 4. is the Grassmann manifold of all oriented 4-dimensional sub-
spaces ofR4+ and is the manifold of all special orthogonal complex structures on
elements of , with their complex orientations.

= (4 + ) 2
∼= 3 × ( ) = (4)× ( )

h1
∼= (3) = 3 = 2/ ( + 2)

Clearly, is the isotropy subgroup at1∧ · · ·∧ 4. For a quaternion , let , de-
note right, respectively left, multiplication by . With theusual identificationR4 ∼= H,
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any element of (4) may be written as ◦ for some ∈ 3 ⊂ H, and
the special complex structure := diag(1 1) is represented by . Now, ◦ is a
complex automorphism of

(
R4

)
if and only if it commutes with , or equivalently,

= θ for someθ ∈ R. Moreover, the complex orientation1 ∧ 3 is preserved if and
only if = ±1. Therefore, if (respectively, ) is the subgroup of (4) consisting
of all matrices, with respect to the canonical basis, of the transformations (respec-
tively, ), ∈ 3 ⊂ H, then the isotropy subgroup at (1 ∧ · · · ∧ 4 1∧ 3) ∈
is 2 = × ( ) and h1 is the Lie algebra of .

We now compute . For ∈ 3, let ( ) ∈ ( ) denote the matrix of with
respect to the canonical basis. The map :3 → is a Lie group isomorphism and

( ) = ∈ Lie ( ) ⊂ (4). Let ¯ = diag
(

0
)
∈ (4 + ). Since is a Lie

algebra isomorphism, and

(4) [ ] = 2

for all orthogonal , ∈ Im H = 1
3, we have that 1

(
¯

)̄
= −8. On the

other hand, we have by (3) that
(

¯
)̄

= ( + 2)tr 2 = −4 ( + 2). Therefore,
= 2/ ( + 2).

EXAMPLE 5. is the Grassmann manifold of all -dimensional subspaces of
C + and is the manifold of all complex orientations of elements of .

= ( + ) 2 = ( )× ( ) = ( ( )× ( ))
h1
∼= R = 1 = 0

Clearly, and 2 are the isotropy subgroups at span{ 1 . . . } and at 1∧ · · · ∧ ,
respectively. The orthogonal complement ofh2 in h is h1 = Rdiag

(
−

) ∼= R,
which is abelian. Hence, = 0.

EXAMPLE 6. is as in the previous example and is the Stiefel manifold ofall
1-projectivized ordered orthonormal bases of elements of .

= ( + ) h2
∼= ( ) = ( ( )× ( ))

h1
∼= ( ) = 2 − 1 = / ( + )

The isotropy subgroup at
[

1 . . .
]

is the connected group

2 =
{

diag
( )

| ∈ 1 ∈ ( ) det ( ) = 1
}

with Lie algebrah2 =
{

diag
( )

| ∈ R ∈ ( ) + tr = 0
}

. The orthog-
onal complement ofh2 in h is h1 = ( )× {0 }. Next we compute . If ∈ ( ),
by (3), 1 ( ) = 2 tr 2 and

(
diag

(
0
)

diag
(

0
))

= 2 ( + ) tr 2
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Hence = / ( + ).

EXAMPLE 7. is the Grassmann manifold of all -dimensional subspaces of C2

and is the Stiefel manifold of all 1-projectivized ordered orthonormal bases of the
elements of and their orthogonal complements.

= (2 ) 2
∼= 1 × Z = ( ( )× ( ))

h1 = ( )× ( ) = 2
(

2 − 1
)

= 1/2

Clearly, is the isotropy subgroup at span{ 1 . . . } and the isotropy subgroup at([
1 . . .

] [
+1 . . . 2

])
is

2 =
{

diag
( )

| ∈ 1 = 1
}

The mapφ : 1 × Z → 2, φ ( ) = diag
(

¯
)

is a Lie group isomorphism
(we think of Z as the solutions of = 1). Next we compute . Let ∈ ( ).
Sinceh1 is a sum of ideals, we have by (3) that

1 (diag ( ) diag ( )) = 2
(
tr 2 + tr 2

)

On the other hand, also by (3), we have that

(diag ( ) diag ( )) = 4 tr diag
(

2 2
)

= 4
(
tr 2 + tr 2

)

Hence, = 1/2.

EXAMPLE 8. is the Grassmann manifold of all -dimensional quaternionic sub-
spaces ofH + and is the Stiefel manifold of all ordered orthonormal basesof ele-
ments of .

= ( + ) 2
∼= ( ) = ( )× ( )

h1
∼= ( ) = (2 + 1) = ( + 2)/ ( + + 2)

Notice that ∼= ( + H). is the isotropy subgroup at1 ∧ · · · ∧ and the
isotropy subgroup at

(
1 . . .

)
is { } × ( ). Henceh1 = ( )× {0 }. By (3),

since ( ) is a real form of ( C), we have that = ( + 2)/ ( + + 2).

EXAMPLE 9. is the Grassmann manifold of all totally isotropic -dimensional
complex subspaces ofC2 (with respect to the canonical complex symplectic structure

=
∑

=1 ∧ + ) and is the manifold of all complex orientations of elements
of .

= ( ) 2
∼= ( ) ∼= ( )

h1
∼= R = 1 = 0
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Recall that is the group of complex automorphisms ofC2 preserving both and
the canonical Hermitian scalar product. The isotropy subgroup at span{ 1 . . . } is

=
{

diag
(

¯
)
| ∈ ( )

}
. The isotropy subgroup at1 ∧ · · · ∧ is 2 ={

diag
(

¯
)
| ∈ ( )

}
with Lie algebrah2 =

{
diag

(
¯
)
| ∈ ( )

}
. Hence

h1 = R diag
(

−
)
, which is abelian and so = 0

EXAMPLE 10. is as in the previous example and is the Stiefel manifold of
all 1-projectivized ordered orthonormal bases of elements of .

= ( ) 2
∼= 1 ∼= ( )

h1
∼= ( ) = 2 − 1 = / ( + 2)

The isotropy subgroup at
[

1 . . .
]

is 2 =
{

diag
(

¯
)
| ∈ 1

}
. Hence,h2

is the subalgebra we calledh1 in the previous example and vice versa. Next we com-
pute . Given ∈ ( ), we have by (3) that 1 ( ) = 2 tr 2 and

(
diag

(
¯
)

diag
(

¯
))

= ( + 2) tr diag
(

2 ¯2
)

= 2 ( + 2) tr 2

since ¯2 =
(
−

)2
. Hence, = / ( + 2).

EXAMPLE 11. is the Grassmann manifold of all quaternionic subalgebras of the
octonians and is the Stiefel manifold of all algebra monomorphisms ofH into the
octonians.

= 2 2
∼= (2) ∼= (2)× (2)

h1
∼= (2) = 3 = 1/6

We recall that the algebraO of the octonians isH × H with the multiplication given
by

( ) ( ) =
(
− ¯ + ¯

)

and 2 is its group of automorphisms. The group3 × 3 acts onO as follows:

(5) ( ) ( ) = ( ¯ ¯)

(we denote the action by a dot, to avoid confusion with the octonian multiplication).
The action is effective and preserves the algebra structure, hence we may consider

3× 3 as a subgroup of 2. The product 3× 3 is moreover the isotropy subgroup
at 1∧ ∧ ∧ . On the other hand, the isotropy subgroup at the inclusion :H→ O,

( ) = ( 0) is 2 = {1} × 3. We compute the constant corresponding to this
example in the following Proposition.

Proposition 7. The constant corresponding to the last example is1/6.
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Proof. We consider the presentation ofg2 in terms of its root system, as the or-
thogonal direct sum

g2 = t⊕
∑

γ∈ +

mγ

where t = R2 with the canonical metric,α = (2 0), β =
(
−3
√

3
)

and
+ = {α β α + β 2α + β 3α + β 3α + 2β} is the set of positive roots,mγ is a two-

dimensional vector space with orthonormal basis{ γ γ} and

(6)
[

γ

]
= 〈 γ〉 γ

[
γ

]
= −〈 γ〉 γ

[ ′] = 0
[

γ γ

]
= γ

for all ′ ∈ t and all γ ∈ + (we do not need the expression for the Lie brackets of
the other elements). Notice that the inner product is a negative multiple of the Killing
form.

Let 1 =
{
| ∈ R

}
⊂ 3. Since the restrictions to each factor3 of the ac-

tion (5) on O commute, 1 × 1 ⊂ 3 × 3 is a maximal torus in 2 and there is a
Lie algebra monomorphism

ι : (1 1)
( 3 × 3) = ImH× Im H→ g2

such that the restriction ofι to each factor ImH preserves inner products (butι does
not!). We may suppose thatι

(
Im H× {0}

)
= Rγ1 ⊕ mγ1 and ι

(
{0} × Im H

)
= Rγ2 ⊕

mγ2 for some pair of orthogonal positive rootsγ1, γ2, say{γ1 γ2} = {α 3α + 2β}. By
Lemma 8 below,γ1 = α and henceh1 = Rα⊕mα. Using (6), one computes the matrix
of adα with respect to the basis ofg2 consisting ofα, β and γ , γ for γ ∈ +: It
is a matrix with blocksλ 1 in the diagonal, withλ = 0, 4, 6, 2, 0,−2, −6. Hence,

(α α) = tr ad2
α = −192. On the other hand, the matrix of adα|h1

with respect to

the basis{α α α} is diag(0 4 1) and so 1 (α α) = tr ad2
α

∣∣
h1

= −32. Therefore
= 32/192 = 1/6.

Lemma 8. With the notation of the previous Proposition, γ1 = α.

Proof. Since the inner products on ImH and g2 are (negative) multiples of the
respective Killing forms and those Lie algebras are simple,there exist positive con-
stantsλ andµ such that

‖ι ( 0)‖ = λ ‖ ‖ and ‖ι (0 )‖ = µ ‖ ‖

for all ∈ Im H. Now, since ι is a Lie algebra morphism, we have by (4) that
[ι ( 0) ι ( 0)] = 2ι ( 0). Hence we may takeι ( 0)/λ and ι ( 0)/λ as γ1 and

γ1, respectively, since they are orthonormal and their Lie bracket is a positive multi-
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ple of ι ( 0). Therefore,

‖γ1‖ =
∥∥[

γ1 γ1

]∥∥ =
‖2ι ( 0)‖

λ2
=

2
λ

Analogously,‖γ2‖ = 2/µ. Thus, to show thatγ1 = α, the short root, it suffices to
verify that λ > µ.

Differentiating the action (5) of 2 on O, we have an inclusion :g2 → (8)
(identifying O with R8 in the canonical way):

( 0) ( ) =

∣∣∣∣
0

( − − )
= ( − − )(7)

(0 ) ( ) =

∣∣∣∣
0

( )
= (0 )

Let be the inner product on (8) defined by ( ) =− tr , which is a nega-
tive multiple of the Killing form of (8), and also (via ) of that of g2, since this al-
gebra is simple. By (7), ( 0) = diag (02 2 1 − 1 1) and (0 ) = diag (04 1 1).
Hence,

λ2

µ2
=
‖ι ( 0)‖2

‖ι (0 )‖2 =
( ( 0) ( 0))
( (0 ) (0 ))

=
12
4

= 3> 1

as desired.

Proof of Theorem 2. Let and 2 be as in Example 5 (for =C) or as in
Example 8 (for =H), with = 1 and = . The group acts on by isome-
tries, preserving the distributionD. The isotropy subgroup at1 is 2, which acts ir-
reducibly onD 1 and on its orthogonal complement in1 . Therefore, there exist pos-
itive numbersλ, µ such that the map

(8) φ :
(

/ 2
)
→ ( µγλ ) , φ ( 2) = 1

is an isometry for any > 0. Moreover, in each caseh1 is canonically isomorphic to
Im and a vector field˜ on / 2 ( ∈ h1) is mapped by φ to one of the vector
fields considered in the Theorem. Hence, the assertion regarding property (∗1) is
proved (notice that if a unit vector field on a Riemannian manifold ( ) satisfies
properties (∗1–2), thenµ on ( µ ) has the same properties).

By Theorem 6 - Example 5, the Remark after Theorem 4 and (8), only the round
metric γ1 is Einstein among the metricsγ on 2 +1 and hence any unit vector on(

2 +1 γ
)

satisfies property (∗2) if 0 < ≤ 1. We consider now 4 +3. By the Exam-
ple in [5], the metric of Example 8 is Einstein if and only if2 = 2 (corresponding
to a round metricµγ1) or 2 = 2/ (2 + 3). Since =λ , we haveλ2 = 1/2. Therefore,
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proceeding analogously as before, the unit vector on
(

4 +3 γ
)

satisfies property
(∗2) if 1/ (2 + 3)≤ 2 ≤ 1.
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